Vol. 26(2025) No. 2

 

 

  A characterization of constructible norms for bounded Lipschitzian mappings
 
Home
Volumes Selection

Fixed Point Theory, Volume 26, No. 2, 2025, 617-636, May 1st, 2025

DOI: 10.24193/fpt-ro.2025.2.17

Authors: J.R. Acosta-Portilla and L.Y. Garrido-Ramirez

Abstract: Let (X, ‖ · ‖) be a Banach space and C a nonempty subset of X. We will say that a norm for the Banach space of bounded Lipschitzian mappings BLip(C, X) is ‖ · ‖-constructible if that depend only on the infinity norm ‖ · ‖ and the Lipschitz constant K( · , ‖ · ‖ ). In this work we characterize the ‖ · ‖-constructible norms such as those that does not separate ‖ · ‖-indistinguishable operators, and we characterize constructible norms ‖ · ‖0 like those which are φ(‖ · ‖0)-constructible where φ(‖ · ‖0) is the projection of ‖ · ‖0 over the space X.

Key Words and Phrases: Lipschitzian mappings, renorming of Banach spaces, constructible norm.

2010 Mathematics Subject Classification: 26B99, 46B03, 46B20, 47H09, 47H10.

Published on-line: May 1st, 2025.

Fulltext pdf

Back to volume's table of contents


Home | Indexing-Abstracting | Aims and Scope | Editors | Editorial Board | Published Volumes | Instructions for authors | Subscription | Reviewers Ackn. | Secretaries | FPT Conferences | FPT Book Review