Steady free convection in a rectangular cavity filled with a porous medium

1. Introduction

Natural convective heat transfer in fluid-saturated porous media has occupied the center stage in many fundamental
heat transfer analyses and has received a considerable attention over the last several decades. This interest was
estimated due to its wide range of applications in, for example, packed sphere beds, high performance insulation for
buildings, chemical catalytic reactors, grain storage and such geophysical problems as frost heave. Porous media are
also of interest in relation to the underground spread of pollutants, solar power collectors, and to geothermal energy
systems. Literature concerning convective flow in porous media is abundant. Representative studies in this are may
be found in the recent books by Nield and Bejan (2006), Ingham and Pop (2005), Vafai (2005), Bejan et al. (2004)
and Pop and Ingham (2001).

Natural convection in an enclosure in which internal heat generation is present is of prime importance in certain
technological applications. Examples are post-accident heat removal in nuclear reactors and geophysical problems
associated with the underground storage of nuclear water, among others (Acharya and Goldstein, 1985; Ozoe and
Maruo, 1987; Lee and Goldstein, 1988; Fusegi et al., 1992; Venkatachalappa and Subbaraya, 1993; Shim and Hyun,
1997; Hossain and Wilson, 2002; Hossain and Rees, 2005).

2. Mathematical model

Consider the steady natural convection flow in a rectangular cavity filled with a fluid-saturated porous medium and
an internal heat generation. The geometry and the Cartesian coordinate system are schematically shown in Fig. 1,
where the dimensional coordinates X and Y are measured along the horizontal bottom wall and normal to it along

the left vertical wall, respectively. The height of the cavity is denoted by h and the width by |, respectively. It is
assumed that the vertical walls are maintained at a constant temperature T, while the horizontal walls are adiabatic.

We also bring into account the effect of a uniform heat generation in the flow region. The constant volumetric rate of
heat generation is ¢,"" W /m3]. It is also assumed that the effect of buoyancy is included through the well-

known Boussinesq approximation.. The resulting convective flow is governed by the combined mechanism of the
driven buoyant force, and internal heat generation. Under the above assumptions, the conservation equations for
mass, Darcy, energy and electric transfer are
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where V s the velocity vector, T is the fluid temperature, P is the pressure, g is the acceleration vector, K is
the permeability of the porous medium, ¢, is the effective thermal diffusivity, o is the density, & is the dynamic

viscosity, [ is the coefficient of thermal expansion, Cp is the specific heat at constant pressure, o, is the reference

density.
Eliminating the pressure term in Eq. (2) in the usual way, the governing equations (1) to (3) can be written as
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and are subjected to the boundary conditions



u=0, T=T,, at x=0 and x=h
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where v is the kinematic viscosity. Further, we introduce the following non-dimensional variables
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where K is the thermal conductivity.
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Figure 1.Geometry of the problem and co-ordinate system
Introducing the stream function y definedas U = 0w /0Y and V =—0w /0 X , and using (9) in Egs. (5) -
(8), we obtain the following partial differential equations in non-dimensional form:
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subject to the boundary conditions
U=0, =0, #=0 at X=0 and X =1
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where a = I/h is the aspect ratio of the cavity and Ra is the Rayleigh number.
Once we know the numerical values of the temperature function we may obtain the rate of heat flux from each of
the vertical walls. The non-dimensional heat transfer rate, g, per unit length in the depthwise direction for the left

vertical wall is given by
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Table 1

Aceuracy test for Ra = 10° and a = 1
Nodes (0.24, 0.24) #(0.24,0.24)
26 x 26 2.6368 0.0389
51 = b1 2.5087 0.0384
101 = 101 2.5800 0.0382
201 = 201 2.5707 0.03581
Richardon extrapolation 2.5614 0.0380
Table 2
Comparison of iy, and &, for . a=0.5
Ra Haajizadeh et al. [27] Present (Richardson extrapolation )
Wmax Prmax Umnax Bmax
10 0.078 0.130 0.079 0.127
10° 4.880 0.118 4.833(4.832) 0.116(0.116)
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