Introduction to Computational Fluid Dynamics

FINITE DIFFERENCES METHOD - TYPICAL PROBLEMS (part I)

Lid-Driven Problem
(K.A.Hoffman, S.T. Chiang, Computational Fluid Dynamics, EES, Wichita, 2000)

(see videos)
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Mathematical model

Navier-Stokes equations (incompressible viscous flow) using primitive variables

formulation

Vector form

V-V=0
% + (V- V)V + Zp Avil
Two-dimensional Cartesian coordinate
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Dimensionless

Two-dimensional Cartesian coordinate

ou* o'
PR il (8-18)
ou* ,0u* Ou* dp* 1 (8% O
5 Y ope Y Oy* + dz* Re (33:‘2 + By'g) (8-19)
dv* ov* gvt  dp* 1 (0% 6%
+ f__ L] — _
ot Yo Yoy Toyr T Re (33,-*2 * 6‘y'2) (8-20)
The variables in the equations above are nondimensionalized as follows,
. llug F Y
=22 * == =2
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(8-21)
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Yy = — v = —— p = ——
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where L is a characteristic length, and pe and uo, are the reference (e.g., freestream)

density and velocity, respectively. The nondimensional parameter Reynolds number

is defined as
_ PoolieaL

Hoo
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Indeed
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Similar equations for the derivative with respect to y and the derivatives of v are obtained.
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Use the above expressions in the dimensional equations
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In a similar way the momentum equation in y direction is obtained. One have to notice

that Re 1s dimensionless.
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Primitive variable formulation

(a) The governing equations are a mixed elliptic-parabolic system of equations
which are solved simultaneously. The unknowns in the equations are velocity
and pressure.

(b) There is no direct link for the pressure between the continuity and momentum
equations. To establish a connection between the two equations, mathematical
manipulations are introduced. Generally speaking there are two procedures
for this purpose. The first is that of the Poisson equation for pressure which is
developed in the next section; and the second is the introduction of artificial
compressibility into the continuity equation.

(c) Specification of boundary conditions and in particular for pressure may be

nonexistent. To overcome this difficulty, a special procedure must be intro-
duced.

(d) Extension to three dimensions is straightforward with the least amount of
complications.
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Poisson Equation for Pressure: Primitive Vari-
ables

In this section an equation is developed which may be used for the computation
of the pressure field. The reason for incorporating the Poisson equation for pressure,
which is usually used in lieu of the continuity equation, is the lack of a direct link for
pressure between continuity and momentum equations. A typical numerical scheme
for the solution of the Poisson equation for pressure is investigated in the subsequent
sections. For the time being, the steps required to obtain such a formulation are
illustrated. The conservative form of the z- and y-components of the momentum
equation obtained previously are

gt—u + ———( %) + 5 Op o —(uv) = Evz (8-41)
d 8 d 4, 0p 1, _
5 6x(uv) 8y(v ) + By Rev v (8-42)
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Equations (8-41) and (8-42) are differentiated with respect to z and y, respectively,
to provide

0 [Ou ? b 4, &Fp 52 18 ,_,
T (&v) tor )t gt gy ) = s (VW) (843)
a.nd 6 6 32 82 62 6
(< 0 1 9
ot (By) + Oz 0y (uv) + Oy? (V) + 5.3 Ay 92  Re dy (V) (8-44)
Addition of equations (8-43) and (8-44) yields
0 {Ou Ov 0? O° 5° . 82}7 azp
ot (833 6y) + 5‘3(“ )+ Ba:ay (uv) + (v ) + 92 + I
1108 8 .,
=5 [ 6:':(V' u) + 35 (V v)] (8-45)
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The right-hand side is rearranged as

3] 32u+62u +8 32v+32v _ O 8u+8v +62 6u+3v
Oz \8z?  Oy? oy \0z? " 8y2] 0Ox2\0xr Oy) Oy \8z Oy

Finally, Equation (8-45) can be rewritten in the form of Poisson equation

&p &p_ 9D _& , 8 o 1 [&
52 o o amz(“)"zaxay(“")"ayz(””RE 35 D)+ yﬂ(D)
(8-46)
where 3 5
U v

is known as dilatation.
It is obvious that for an incompressible flow, the dilatation term is zero by
continuity. However, due to numerical considerations, this term will not be set to

Zero.
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Vorticity-Stream Function Formulations

The vorticity at a fluid point is defined as twice the angular velocity and is

—

=20 =VxV

which, for a two-dimensional How, is reduced to
q % _ o

dr dy

Now, for a two-dimensional, incompressible flow, a function may be defined which

satisfies the continuity equation. Such a function is known as the siream function
and, in Cartesian coordinate system, is given by

(8-23)

U= % (8-24)
_ %
v = _E [E'EE}

From a physical point of view, the lines of constant i represent stream lines, and
the difference in the values of ¢ between two streamlines gives the volumetric flow
rate between the two.
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In order to derive the vorticity transport equation, the pressure is eliminated
from the momentum equations by cross-differentiation. Differentiation with respect
to y of Equation (8-8) yields

Fu Oudu Bu dwdu Fu_ 10p (ﬂ““ +’5“*‘) (8-26)
o Bydz ' “Bady Oy 0F  pdzdy | \Byoa ' Oy

whereas the differentiation with respect to r of Equation (8-10) yields

v | Budv v by, Fv 1 8 N
5zt Ozdz  '0:°  Ozoy  0z0y  pdzdy (ﬂf N Exhr’) &40

Subtract Equation (8-27) from Equation (8-26) to obtain

a(_aﬂ & (EE ﬂ) 5(@ ﬂu) (ﬂu ﬂu) (Bu By
B ay‘ﬂ¢)+ oy oz)  Voy\dy " az) T \ox T By E‘E)

~ (5 (3 %) * 25 (5~ )
dr? \dy o=z d \dy Oz

Note that the fourth term on the left-hand side is zero by continuity. Now, upon
substitution of the vorticity defined by (8-23), one obtains

5ﬂ+ ﬂﬂ ﬁﬂ. (ﬂ“ﬂ_l_ﬁ“ﬂ
iy EJ'I Ei:.r dz* gyt

(8-28)
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where the subscript z is dropped from £1,. Thus, in the remainder of this sec-
tion, §1 will designate the z-component of the vorticity, unless otherwise specified.
Equation (8-28) is known as the verticity transport eguation and is classified as a
parabolic equation with the unknown being the vorticity {2

Now, reconsider the definition of vorticity given by

dv  du
=5 (8-29)
Substitution of relations (8-24) and (8-25) yields
B
e -+ T —{1 (8-30)

This equation is known as the stream function eguation and is classified as an
elliptic PDE. The unknown is the stream function 1, whose 02 is provided from
the solution of Equation (8-28). Once the stream function has been computed, the
velocity components may be determined from relations (8-24) and (8-25).

The vorticity equation may be expressed in a nondimensional form by using
the nondimensional quantities defined previously and a nondirnensional vorticity
defined as ar

Lo

ﬂl
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The nondimensional form of the varticity equation ean be expressed as

o | Lo e 1 (#a g
gt " Bz U By Rew \ 8z  Gy?

(8-31)

Similarly, the nondimensional form of the stream function equation given by Equa-
tion (8-30) is
a: ﬂl-l azwl
ar? + Ey'i

= - (8-32)

where

. ¥
W= vl
A summary of the vorticity-stream function formulations is provided below.

ar e e 1 (& &
F+“E+"$=Hc(ar=+ﬂy-*) (&39)
ﬂ!} ] a! » .
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Vorticity-stream function formulation

(a) By introduction of new variables, namely the vorticity and the stream func-
tion, the incompressible Navier-Stokes equations are decoupled into one ellip-
tic equation and one parabolic equation which can be solved sequentially.

(b) Vorticity-stream function formulation does not include the pressure term.
Therefore, the velocity field is determined initially and, subsequently, the
Poisson equation for pressure (which is described in the next section) is em-
ployed to solve for the pressure field.

(c) Due to lack of a simple stream function in three dimensions, extension of the

vorticity-stream function formulation to three dimensions loses its attractive-
ness.
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Poisson Equation for Pressure: Vorticity-Stream
Function Formulation

3u o Op Pu  Bu
5 6 (u )+ 6 (uv) e ( 502 + Byz) (8-47)
311 o Op 1 [(8%v 8%
5 B:r: (u.v) + ('v ) + y ( 3 + 6y2) (8-48)

Equation (8-47) is now differentiated with respect to = to provide
0 (Ou J du d [ 0Op ] Ov Ou 1 38
— | = U — — | u— ) = (V2
Jz (at) oz ( UB:J:) * oz oz ( ) N Oz (uay t ”ay) Re Bm(v u)
or

d (Ou Ou u v 0% Oudv v Ovou  *u 1 8
+2——=—+2 = ——(V*
Bt (am) 920z ' 952 0zt 028y “Bzdy 0z 0y Bzby - Redr'w
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The second term (only one) and the fifth term are combined to provide

Ou (Bu Bv) —0

Jz \ Oz + Oy
due to continuity. Similarly, term three (only one) and term six are added to yield

0% O*u 8 (6u 80) —0

0z 0y + Yozt oz t Oy

B “aa:

u

Thus, one has

8 (bu ou\® 0 Ovdu Hu p 1 8,
( ) M (3:1:) + Yozt T Bz Jy T ”azay N Eé;?_::;(v u (849

ot

oz

Similarly, the y-component of momentum becomes

8 (dv dv\?* v 8udv 9%y 8%p 1 8
+ - —_— — 2 )

ot
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Addition of Equations (8-49) and (8-50) yields
d (Bu Bu u\® [(6v\® _Oudv Fu v
+ — —_— R —
ot (6:1: By) + (83:) + (ay) +26y oz v (6&:2 + 3x6y)
u O &’p 0% 1 9 .
+ v (3x6y + 6y2) + u (Bﬁ 57 ) e [ (Veu) + -—(V v)] (8-51)
Note that the first, fifth, and sixth terms each contain the continuity equation and

therefore disappear
o (0, ) _
at \ 0z By

32_u+ 0%y _ 0 (3u+6v)_0

0zt  Ox8y 0O6x \O8z Oy/
and

O*u +62v= o] (6u+8v)_0

Oxl8y 0Oy* Oy \or B
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The right-hand side is now rearranged to provide

Fv

0 82u+62u 0 (0*v O% Fu Fu Fv
Or \0r?  dy? +6y 3x2+3y2

282 3u+5v +62 Ou Ov\
Ozt \O0r OJy dy? 6:1:+3y =0

Therefore Equation (8-51) is reduced to

u\® [ov\®  Budv Op O%
(3:1:) + (3_3,) T iy (8:::2 * 3y2)
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Now, the left-hand side can be further reduced by considering the continuity equa-
tion as follows

du v\ ou\? v\’ ou\ [ Ov
G a) - @)+ (5) () (3 -o

from which
(gg)z+ ' _ _, (8u) (o
Oz oy 0z | \ Oy

Substituting into Equation (8-52) yields

2 2 -
_ (8 P, 0 p) o (Bu v Buav) (8-53)

0z?  Oy? dydz Oz By

This equation can be written in terms of the stream function by using relations
(8-24) and (8-25)

& 8 _1[8%\ (8% 8% \? |
Ben-l@E)-@)] e
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A numerical scheme

n?ﬂ - n:; + 1! H:1+1,g ﬂl‘--..a n ﬁ?..ﬂ: B ﬂE‘J—l

At 9Az T oAy
_ 1 ’l’!}"+ g — b+ S n 05 — 2000, + nIL]
(Ax)? (Ay)?
,’b‘t‘:i = -2{'1 + .Iﬂ: {{MJEEI:F-I-I + ll||!,-i--|-l:_'|I +1It|ﬁj-ll.j + .Hal:ﬂ’fhf-l-] + tl_',H_'l.]]
Ax
where |!'."I = E'IE

Boundary conditions
The stream funetion equation is given by

G | Y _

g = 0 (8-105)
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A solid surface can be considered as a stream line and, therefore, the stream
function is constant and its value may be assigned arbitrarily. As mentioned previ-
ously, boundary conditions for the vorticity do not exist. Therefore, a set of bound-
ary conditions must be constructed. The procedure involves the stream function
equation along with Taylor series expansion of the stream function. As a result,
a different formulation with various orders of approximation can be derived. At
this paint, the construction of a first-order expression is illustrated. Subsequently,
a second-order relation is provided. For illustration pUrposes, AsSUMe Non-porous
and stationary surfaces and a rectangular domain, as shown in Fig. 8-9. The ex-

=] Y

Figure 8-9. The rectangular cavity with fixed surfaces.
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pression for the vorticity to be applied at boundary A4 is determined initially and,
subsequently, the result is extended to the other boundaries at B, ¢, and D.
Consider Equation (8-105) at point (1, i), Le.,

(8-107)

Along the surface, the stream function is constant, and its value may be specified
arbitrarily; for example, i, ; = ;. Then, along A,

Fv _y
&y
and Equation (8-107) is then reduced to
g
3], =~ (8-108)

To obtain an expression for the second-order derivative in the equation above, con-
sider the Taylor series expansion

_ ki Fy| (b=
%_%Jq_aﬂuﬂz_k-ﬁiﬂu 2 +

Lecture 7 —Finite Difference Method. Lid Driven Problem 22



Introduction to Computational Fluid Dynamics

Along boundary A
B

4 = T 14 =0
Therefore, 5 Az
TR 3
#'EJ = "i'!’lu + At 14 9 + ﬂl:ﬂzl:}
from which a4y 2(ny — Yhy)
¥ = J T~ VL .
5ail, = ey + O (8-100)

Substitution of (8-109) into (8-108) yields

a . — 2~ ¥ay)
W (Az)?

(8-110)

A similar procedure Is used to derive the boundary conditions at boundaries B,
C, and D. The appropriate expressions are, respectively,

. @ _ E{ipiﬂ.j - 1||!"'.|'J-!I'J|I"I._1’_}
ﬂf”.j - = Hr? INS = {.ﬂ.ﬂ::}g {3-111]
L@ 2 - ) _
= Tk = (AR (8-112)
B 2 am — Wi aman) ]
G gm = v By)? (8-113)
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Now suppose a boundary is moving with some specified velocity. For example,
assume that the upper surface is moving to the right with a constant velocity wug.
Following the procedure described previously, the Taylor series expansion yields

ik Y| (Ay)
-1 = - -+ 4o
"iE'J 1 #"i._f By ijﬁy EHE y o
or
3
Uy anran = Wi o — wady — O [ﬁ:}
from which
2 om — Wiawan)  2ug
ﬂ' = L i - )
" (Ay)? Ay (B-114)
A second-order equivalent of (8-110) can be expressed as
— Rt «

2(Azx)?
For a moving boundary with a constant velocity of uy at § = JM, one has

—tism + B anan — Thigmas  3up
2(AyP Ay

o = (8-116)

which is a second-order equivalence of (8-114). Higher order implementation of the
boundary conditions in general will increase the accuracy of the solution. However,
it has been shown that it may cause instabilities in high Reynolds number flow.
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Matlab program

format long g;

tic

N=201;h=1/(N-1);
xplot=0:h:1;yplot=0:h:1;

Re=1000;

u=zeros (N,N) ;O0=zeros (N,N) ;uo=zeros (N,N) ; Oo=zeros (N, N) ;
Utop=-1;

Oo(:,N)=2*(u(:,N)-u(:,N-1))/h/h-2*Utop/h;

stop=1;nr i1t=0;r0=0.9;ru=1;
while stop==
nr it=nr 1it+1l;

for i=2:N-1

for j=2:N-1
0(i,3)=0.0625*Re* ((Oo(i,j+1)-0(i,j-1))*(uo(i+1l,3j)-u(i-1,73))-(OCo(i+1,7)-

0(i=1,3))* (uo(i,3+1)-u(i,j=-1)))+0.25% (0o (i+1,3)+0(i-1,3)+00 (i,3+1)+0(i,3-1));

O(i,3J)=r0*0(1i,3)+(1-r0O)*00(i,]);
u(i,j)=0.25*(uo(i+1,j)+u(i-1,7j)+uo(i,Jj+1)+u(i,j-1))+0.25*h*h*0(i,7)
end;

end;
1,:)=-2*(u(2,:)-u(l,:))/h/h;

O(N, :)=2*(u(N,:)-u(N-1,:))/h/h;

O(:,1)=-2*(u(:,2)-u(:,1))/h/h;
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O(:,N)=2*(u(:,N)-u(:,N-1))/h/h-2*Utop/h;
errU=norm(u-uo) ;errO=norm (0-00) ;

i1f mod(nr it,1000)==
fprintf ('nr it=%d errU=%g errO=%g\n', nr it, errU, errO);
if (errU<le-6) & (err0O<le-6)
stop=0;
end
end
uo=u; 0o=0;

end;

contour (xplot, yplot,u',100);
axis equal

max (max (abs (u)))

toc
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Table 2
Comparison of the four third-order schemes on the primary vortex at Re = 1000: maximum of the stream-function,
vorticity and location

Scheme Gnd Wimax I X ¥

Present 128 x 128 011786 20508 046875 0.5625
Upwind 3 128 x 128 011796 20549 046875 0.5625
K awamura 128 x 128 011790 20557 046875 0.5625
Quickest 128 < 128 011503 1.9910 046875 0.5625
Present 256 % 256 0. 11865 20634 046875 0. 5664
Upwind 3 256 % 256 011870 20644 046875 0. 5664
K awamura 256 x 256 0. 11867 20636 046875 0. 5664
Quickest 256 % 256 011599 20069 046875 0. 5664

C-H Bruneau, M. Saad, The 2D lid-driven cavity problem revisited, Computers&Fluids 35 (2006) 326-348.
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