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FINITE DIFFERENCES METHOD part II 

 

Parabolic equations - two (or three) spatial variables  

 

The explicit method  

Consider the heat equation in a square domain    YXD ,0,0    
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along with the Dirichlet type boundary conditions, i.e. the values  
D

tyxu


,,  and 

 
D

yxu 0,,  are known and  is a constant positive number. 
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Consider also the mesh with the steps x  and y  in Ox  and Oydirections: 

yx N

Y
y

N

X
x  ,  

where xN  and yN  represent the nodes number in Ox  and Oydirections. 

 

We note the approximation of the initial 

solution in a point  ji,  of the mesh at the time 

step n  with  

 

 nji
n

ji tyxuU ,,,  ,    

yx NjNi ...,,1,0,...,,1,0  . 
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We note the approximation of the initial solution in a point  ji,  of the mesh at the time 

step n  with  

 nji
n

ji tyxuU ,,,  ,   yx NjNi ...,,1,0,...,,1,0  . 

By using progressive finite differences for the temporal derivative and central finite 

differences for the spatial derivatives the following explicit scheme is obtained: 
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We observe that the 

unknown value 
1

,
n
jiU  can be 

calculated because 

all values  
n

jiU ,  are known. 
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We introduce the truncation error in similar way with the 1D case: 
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and using the Taylor expansion  we get: 
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and the maximum convergence error: 
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is obtained if the bi-dimensional mesh satisfy the severe condition: 
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In order to study the stability we will consider the von Neumann method where the 

Fourier mode has the form: 

  ykxkIExpU yx
nn                                                   (**) 

Substituting this form into the numerical explicit scheme the amplification factor is:  
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from where the condition (*) for stability is obtained. 
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The implicit method 

The implicit method is given by: 
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and it leads to the following system: 
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It is worth mentioning that the structure of the system (oo) does not allow us to solve it 

easy. 

 

The implicit scheme (oo) is stable no matter the temporal and spatial steps’ dimensions.  

 

In order to find the unknowns 
1

,
n
jiU  it is necessary to solve an algebraic sparse linear 

system of dimension    11  yx NN . 

 

Example: Consider the implicit scheme:  
(K. Hoffmann, S. Chiang, Computational Fluid Dynamics, 4th ed, EES, Wichita, 2000) 
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where  

         
We note the coefficients with a, b, c, d, e and f: 
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Matrix form 
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It should be noted that it is possible to obtain many implicit schemes depending on the 

assumption made on the spatial derivatives. An example is the Crank-Nicolson method 

(see Morega, 1998): 
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Alternating direction implicit (ADI) method 

Due to the fact that the explicit schemes are restrictive and the implicit schemes are 

computationally costly, schemes implicit in one spatial direction and explicit in the other 

directions were looked for.  

 

An example of such a scheme is: 
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In order to calculate the solution we have to solve for each step in y  direction a tri-

diagonal system of order 1xN . Using (**) into the scheme (ooo) the amplification factor 

is obtain: 



Introduction to Computational Fluid Dynamics 
 

 Lecture 5 –Finite Difference Method. Two (or three) spatial variables’ parabolic equations      12 
 

 































xk

ykxk

kk

xx

yyxx

yx

2

1
sin21

2

1
sin4

2

1
sin21

,
2

22





  

As expected regarding the stability there is the restriction 
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It is possible to obtain efficient methods by combining two such methods each of which 

being implicit in one direction. This is the principle of the alternating direction implicit 

methods. The first such scheme was proposed by Paceman and Rachford (1955) and was 

used for solving partial differential equations that model the flow in oil tanks.  
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We introduce an intermediary time step, 2/1n , and we get: 
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If the values nU  are known from Eq. (ADI_x) it is possible to calculate 2/1nU  and then 

using (ADI_y) the values of 1nU  are found.  
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In order to calculate 2/1nU  we need the values of nU  but also the values from the 

boundary marked with “”, and for 1nU  we need the values of 2/1nU  and the values 

from the boundary marked with “”  

 

 

 

 

 

 

For a time step we have to solve 1yN  tri-diagonal systems (for the nodes marked with 

“”) of order 1xN , and then to solve 1xN   tri-diagonal systems (for the nodes marked 

with “”) of order 1yN . This process needs less time than solving a system of order 

   11  yx NN  with a non tri-diagonal structure. 

It is worth mentioning that it is possible to demonstrate, using a Fourier analysis, the ADI 

scheme is unconditionally stable (see Morton and Mayers, 1994). 
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Solving the heat equation using ADI method 

 

Consider a square plate of length 1 having the boundary maintained at the dimensionless 

temperature 0. We suppose that at the initial moment (t = 0) a region of the plate having a 

cross form has the temperature T and the rest of the plate has the temperature 0. For the 

sake of simplicity we took 1 . 

 

 

 

 

 

The heat equation is discretized using the ADI method for a rectangular mesh with the 

steps x  and y  and the Eqs. (ADI) are obtained. These equations can be written in the 

form: 
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Matlab program: 

%Solve the heat equation in a rectangular domain  

%[0,X]x[0,Y] using ADI method 

 

X=1; 

Y=1; 

dt=0.0001; 

dx=0.01; 

dy=0.01; 

Nx=X/dx 

Ny=Y/dy 

a=-0.5*dt/dx^2; 

b=dt/dx^2; 

aa=-0.5*dt/dy^2; 

bb=dt/dy^2; 

A=InitA(a,b,Nx,Ny); 

B=InitB(aa,bb,Nx,Ny); 

U=InitU(Nx,Ny); 

surfl(U); 

view(-50,60); 

shading interp; 

colormap(pink); 

axis('off'); 

pause; 

timp=0 

while (timp<=0.01) 

   timp=timp+dt 

   C=InitC(U,Nx,Ny,aa,bb); 

   for j=1:Ny-1 

      U(:,j)=A\C(:,j); 

   end; 

   D=InitD(U,Nx,Ny,a,b); 

   for i=1:Nx-1 

      UU=B\D(i,:)'; 

      U(i,:)=UU'; 

   end; 

end; 

   surfl(U);hold on; 

   view(-40,60); 

   contour3(U,4); 

   view(-50,60); 

   shading interp; 

   colormap(pink); 

   axis('off'); 

   hold off;
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function A=InitA(a,b,Nx,Ny) 

A=zeros(Nx-1,Ny-1); 

for i=1:Nx-1 

   A(i,i)=1+b; 

end; 

for i=1:Nx-2 

   A(i+1,i)=a; 

end; 

for i=1:Nx-2 

   A(i,i+1)=a; 

end; 

 

 

function B=InitB(aa,bb,Nx,Ny) 

B=zeros(Nx-1,Ny-1); 

for i=1:Nx-1 

   B(i,i)=1+bb; 

end; 

for i=1:Nx-2 

   B(i+1,i)=aa; 

end; 

for i=1:Nx-2 

   B(i,i+1)=aa; 

end; 

 

 

 

function U=InitU(Nx,Ny) 

T=0.5 

U=zeros(Nx-1,Ny-1); 

for i=Nx/5:4*Nx/5 

   for j=2*Ny/5:3*Ny/5 

      U(i,j)=T; 

   end; 

end; 

for i=2*Nx/5:3*Nx/5 

   for j=Ny/5:4*Ny/5 

      U(i,j)=T; 

   end; 

end; 

 

 

function C=InitC(U,Nx,Ny,aa,bb) 

C=zeros(Nx-1,Ny-1); 

for i=1:Nx-1 

   C(i,1)=-aa*U(i,2)+(1-bb)*U(i,1); 

   C(i,Ny-1)=-aa*U(i,Ny-2)+(1-

bb)*U(i,Ny-1); 

  for j=2:Ny-2 

    C(i,j)=-aa*U(i,j+1)+(1-bb)*U(i,j)-

aa*U(i,j-1); 

  end; 

end; 
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function  D=InitD(U,Nx,Ny,a,b) 

D=zeros(Nx-1,Ny-1); 

for j=1:Ny-1 

   for i=2:Nx-2 

      D(i,j)=-a*U(i+1,j)+(1-b)*U(i,j)-

a*U(i-1,j); 

   end; 

   D(1,j)=-a*U(2,j)+(1-b)*U(1,j); 

   D(Ny-1,j)=-a*U(Ny-2,j)+(1-b)*U(Ny-

1,j); 

end; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t = 0.004                                                                                          t = 0.01 

t = 0.001 
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Fractional step method 
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Extensions to three-space dimensions 

 

 



Introduction to Computational Fluid Dynamics 
 

 Lecture 5 –Finite Difference Method. Two (or three) spatial variables’ parabolic equations      23 
 

where  
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Linearization 

The investigated models until this moment were linear. However, the real phenomena are 

not linear and in order to solve them some linearization methods must be used.  

 

Further will give some examples for the non-linear term from Navier Stokes equations: 
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Lagging method: (a intarzaierii) The non-linear term can be discretized in the following 

way: 
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where 1n  is the previous time step, and n  is the time step for which the unknown must 

be calculated. 
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Iterations method: The linearized term obtained using the lagging method is corrected 

using an internal iteration until the desired accuracy is reached.  
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For 1k  the value for the previous step is used and then the iterative process continues 

until a stop criteria is fulfilled:  
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Newton linearization method:  

Consider the product BA   and the modification for two successive iterations:  
kk AAA  1  and kk BBB  1 . 

Thus: 

   BABAABBABBAABA kkkkkkkk    11  

We suppose that BA  is small and we get: 
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For the Navier-Stokes term we have 
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Using forward finite differences we obtain: 
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