Introduction to Computational Fluid Dynamics

FINITE DIFFERENCES METHOQOD part |1
Parabolic equations - two (or three) spatial variables

The explicit method

Consider the heat equation in a square domain D =[0, X |x[0,Y]

ou o°u o«
— =0 >+ —— o>0
ot oxX® 0oy

along with the Dirichlet type boundary conditions, i.e. the values u(xy,t)., and

u(x, y,0), are known and o is a constant positive number.
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Consider also the mesh with the steps Ax and Ay in Ox and Oydirections:

AX:L, Ay:L
N, N,

where N, and N, represent the nodes number in Ox and Oydirections.
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We note the approximation of the initial solution in a point (i, j) of the mesh at the time
step n with

UM ~ulx,y;.t,), i=0L.,N,, j=0L1..,N,.
By using progressive finite differences for the temporal derivative and central finite
differences for the spatial derivatives the following explicit scheme is obtained:

Uir,]jﬂ—Uir,]j - Uil —2U +U +Uir,]j+1_2Uir,]j +U{

At NG Ay?
(0)
We observe that the
l?‘ '?" UI’H‘l
| | r,s unknown value
1 ? 1
Y7 : Ul U™ can  be
; : calculated because
n
U, Uf+1,s all values
U;; are known.
n
r,s—1
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We introduce the truncation error in similar way with the 1D case:
o, u(X,t
T(xt)= AU _ Foulx)  dulxt)
At (Ax) (Ay)
and using the Taylor expansion we get:

Au(x,t) = uAt + %uﬁ (ALY + %u (ALY + ..

SEU(X ) = Uy (AXP + Uy (AX) ..

1 1
T(x,t)= o Aty - 1—20[(Ax)2uXXXX + (Ay)zuyyyy]+

and the maximum convergence error:
1 1
E" < [EM M, +1—20(sz M, + Ay’ M w/)}tp
IS obtained if the bi-dimensional mesh satisfy the severe condition:

Lecture 5 —Finite Difference Method. Two (or three) spatial variables’ parabolic equations

4



Introduction to Computational Fluid Dynamics

In order to study the stability we will consider the von Neumann method where the

Fourier mode has the form:
U™~ A"Exp|l (kxx + kyy)] (**)

Substituting this form into the numerical explicit scheme the amplification factor is:

A= Ak, k ):1—4[vxsin2@kXAXj+VySin2(;kyAYH

X1y

from where the condition (*) for stability Is obtained.
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The implicit method
The implicit method is given by:

+1 +1 +1 +1 +1 +1 +1
Ui —Uq, gUn - 207 Ulnlj Ui — 2V +Ui

1+1, I, j+1

At AX? Ay*

(00)

and it leads to the following system:

n+1 n+1 n+1 n+1 n+l n
viUig; +viUis (21/ +2v +1)J +v Ui +v Ui =-U;; (00)

+1
U?’H—l 1 U;?’S+1

n+

r—1,s Ur,s
n+l
Ur+1,S
UI’H‘I
r,s—1
n
Ur,s
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It is worth mentioning that the structure of the system (00) does not allow us to solve it

easy.

The implicit scheme (00) is stable no matter the temporal and spatial steps’ dimensions.

In order to find the unknowns Ui”j+1 it 1S necessary to solve an algebraic sparse linear

system of dimension (N, —1)x (N, —1).

Example: Consider the implicit scheme:
(K. Hoffmann, S. Chiang, Computational Fluid Dynamics, 4™ ed, EES, Wichita, 2000)

uplt — ul, Y ui‘flla — 2ulT! 4+ ut) _u?g-*ﬁ, —2utt + u‘,"jll
(At) (Aﬂff)2 (Ay)2
d¢“?:11,; + dzu:ljllg (2d; + 2d, + 1) o+ dw?j L+ dyu:‘;:l = —U;
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where
ot _ alAt

dz = (Az)? b = (Ay)?
We note the coefficients with a, b, c, d, e and f:

n+1 n+l n+1 n+l n+l __
a‘dut+l..1 + b‘..?us-lg + cidu + d'.Jut.J 1 + e!ausg+1 — f::;

G2,2U32 + Caaling + €22Ua3 = fo2 — booti1o — daoUng

. az3u33 + C23uz3 + dosuz2 + €33Us s = fo3 — basuyg
™
4'\ Q2,4U34 + Coalizs + dogllos = fou — bagtiq — €34Ugg
3
N a32Ug2 + baguoa + CaaUsa + €32u3s = fag + d3ous;
2\ )
j= 11\ a33us3 + b3aug 3 + c3zuss + daatag + €asuss == fa3
j=
2
Q34U + b3 atiog + Caqlizg + d3stizz = fa4 — €34U35

bagus + Cagllan + €42Usz = fo2 — Qa2Usa — dyaltg
bsauss + Cs3uas + dastiag + €43Usq = fo3 — Qa3Uss

baata s + Coalisq + dagtia3 = faqa — Qaalss — €44Uss
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Matrix form
- C22 €22 0 aze
dy3 C23 €23 O
0 dyy 24 O
big 0 0 c3p
0 b3z 0 dss
0 0 by O
0 0 0 by
0O 0 0 O
0 0 0 0

0

az3

€3,2

C33

d34

bas

0

0
0

Q4

€33
Ca s
0
0
b4,4

0 O
0 0
0 0
aza 0
0 Q33
0 0
C42 €42
d4,3 C43
0 dyg

Ug2
U3
Uz4
U3z 2
U3z 3
U3 4
Us2

U4,3

| Uy

i f4,4 — G44Us,4 — C4aU4s |

-

fag — bogui g — dyouas
f2,3 - bz.aul,a

f: 24 — b2,4u1,4 — €24U25
Jao ~ dsgua;

fa3

f3,4 — €34U35

fa2 — aspus2 — dyaug

f4,3 — Q43U53

The coeflicient matrix is pentadiagonal. The solution procedure for a pentadi-
agonal system of equations is also very time-consuming.
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It should be noted that it is possible to obtain many implicit schemes depending on the
assumption made on the spatial derivatives. An example is the Crank-Nicolson method
(see Morega, 1998):

2

At (A X)2 (A Y)2
N ol Ui -2V +Uily _I_Uir,]j+1 U +U
2 (Ax)? (Ay)’
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Alternating direction implicit (ADI) method
Due to the fact that the explicit schemes are restrictive and the implicit schemes are

computationally costly, schemes implicit in one spatial direction and explicit in the other

directions were looked for.

An example of such a scheme is:

L (000)

Ui -Ui Y Uityj 207 + U LY —2055 +UE
At (Ax)* (Ay)
In order to calculate the solution we have to solve for each step in y direction a tri-

diagonal system of order N, —1. Using (**) into the scheme (000) the amplification factor

IS obtain:
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1-2v, sinz(; kXAx) —~ 4y, sinz(; kyAy)

Aky Ky )= .
1+2v, sinz(2 kXij

L <1, and for the term

As expected regarding the stability there is the restriction ( )2 <5
Ay

o At
(AxY

we have no restriction.

It is possible to obtain efficient methods by combining two such methods each of which
being implicit in one direction. This is the principle of the alternating direction implicit
methods. The first such scheme was proposed by Paceman and Rachford (1955) and was

used for solving partial differential equations that model the flow in oil tanks.
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We introduce an intermediary time step, n+1/2, and we get:

At 2 (Ax)’ (Ay)

Uit -uit?  o[Uln)® - 2002 U Ui 20T U
e ; 4 ; (ADL_y)
(Ax) (Ay)

n+1/2 n n+1/2 n+1/2 n+1/2 n n n
Ui, j —Ui,j_G[Um,j —Ui UL Ui — Ui+ U5

] (ADI_x)

At 2

U n+1/2

If the values U" are known from Eq. (ADI_x) it is possible to calculate and then

using (ADI_y) the values of U™ are found.
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In order to calculate U™Y2 we need the values of U™ but also the values from the

boundary marked with “O”, and for U """ we need the values of U 12 and the values
from the boundary marked with “[7”

|

O @ ® ® @ O

O L ©)

[] [] [ []
LT

| [} .
For a time step we have to solve N, -1 tri-diagonal systems (for the nodes marked with

“@”) of order N, —1, and then to solve N, —1 tri-diagonal systems (for the nodes marked
with “Il”) of order N, —1. This process needs less time than solving a system of order

(N, —1)x (N, —1) with a non tri-diagonal structure.

It is worth mentioning that it is possible to demonstrate, using a Fourier analysis, the ADI
scheme is unconditionally stable (see Morton and Mayers, 1994).
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Solving the heat equation using ADI method

Consider a square plate of length 1 having the boundary maintained at the dimensionless
temperature 0. We suppose that at the initial moment (t = 0) a region of the plate having a
cross form has the temperature T and the rest of the plate has the temperature 0. For the
sake of simplicity we to

The heat equation is discretized using the ADI method for a rectangular mesh with the

steps Ax and Ay and the Egs. (ADI) are obtained. These equations can be written in the

form:
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1 1 1
1 N+ 1 N+
_EVXUIH.] (1+VX)J| N vaui—l,zj :Cir,]j

1
1 1 1 1 ",
Tty 'nJ++1+(1+Vy)Jn+ —ovyia =D
At A
where v, vy = t and
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— current nodes — current nodes
e —updated nodes at (7+1/2) level e —updated nodes at (7+ 1) level
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Matlab program:

%3Solve the heat equation in a rectangular domain

%[0,X]x[0,Y] using ADI method

X=1;

Y=1;

dt=0.0001;
dx=0.01;
dy=0.01;

Nx=X/dx

Ny=Y/dy
a=-0.5*dt/dx"2;
b=dt/dx"2;
aa=-0.5*dt/dy"2;
bb=dt/dy"2;
A=InitA(a,b,Nx,Ny) ;

B=InitB (aa,bb,Nx,Ny) ;

U=InitU(Nx,Ny);
surfl (U);

view (=50, 60);
shading interp;
colormap (pink) ;
axis('off');
pause;

timp=0

while (timp<=0.01)

timp=timp+dt
C=InitC (U,Nx,Ny,aa,bb);
for j=1:Ny-1
U(:,3)=A\C(:,73);
end;
D=InitD(U,Nx,Ny,a,b);
for i=1:Nx-1
UU=B\D (i, :)";
U(i, :)=00"';
end;

end;

surfl (U) ;hold on;
view (=40, 60) ;
contour3(U,4);
view (=50, 060);
shading interp;
colormap (pink) ;
axis('off");

hold off;
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function A=InitA (a,b,Nx,Ny) function U=InitU (Nx,Ny)
A=zeros (Nx-1,Ny-1); T=0.5
for i=1:Nx-1 U=zeros (Nx-1,Ny-1);
A(i,1)=1+b; for 1=Nx/5:4*Nx/5
end; for j=2*Ny/5:3*Ny/5
for i=1:Nx-2 U(i,j)=T;
A(i+l,1)=a; end;
end; end;
for i=1:Nx-2 for 1=2*Nx/5:3*Nx/5
A(i,1i+41)=a; for j=Ny/5:4*Ny/5
end; U(i,3)=T;
end;
end;

function B=InitB (aa,bb,Nx,Ny)
B=zeros (Nx-1,Ny-1);

for i=1:Nx-1 function C=InitC (U,Nx,Ny,aa,bb)
B(i,1)=1+bb; C=zeros (Nx-1,Ny-1) ;
end; for i=1:Nx-1
for i=1:Nx-2 C(i,1)=-aa*U(i,2)+(1-bb)*U(i,1);
B(i+1l,1i)=aa; C(i,Ny-1)=-aa*U(i,Ny-2)+(1-
end; bb) *U(1,Ny-1);
for i=1:Nx-2 for J=2:Ny-2
B(i,1i+1)=aa; C(i,j)=—-aa*U(i,j+1)+(1-bb)*U(i,J) -
end; aa*U(i,J-1);
end;
end;
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function D=InitD(U,Nx,Ny,a,b)
D=zeros (Nx-1,Ny-1);
for j=1:Ny-1
for i=2:Nx-2
D(i,j)=-a*U(i+1l,J)+(1-b)*U(i,7) -
a*U(i-1,73);
end;
D(l,j)=—a*U(2,j)+(1—b)*U(l,j);
D(Ny-1,3)=-a*U(Ny-2,7)+ (1-b)*U(Ny-
llj);
end;

t=0.004 t=0.01
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Fractional step method

An approximation of multidimensional problems similar to ADI (or, in general,
approximate factorization schemes) is the method of fractional step. This method
splits the multidimensional equation into a series of one-space dimensional equations
and solves them sequentially. For the two-dimensional model equation

du  [0%u . 0%u
ot~ ¥ |22 Oy?

the method provides the following finite difference equations: (Note that the Crank-
Nicolson scheme is used.)

1 1 1 1
nty n nts nty nty n o _ oan n
Uig w — Uy L Uiy — P F Uty Ui 2ul; +ulyy
At 2 (Az)? (Az)?
and
1 1 1
n+1 ntg ntl __ o, nt+l n+1 Nty _ o, "1 nty
it i * RS W 03 e i R W B ¥ AL K25
& 2 (Ay)? (Ay)?

The scheme is unconditionally stable and is of order [(At)?, (Az)?, (Ay)?).
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Extensions to three-space dimensions

The ADI method just investigated for the unsteady two-space dimensional
parabolic equation can be extended to three-space dimensions, which is accom-
plished by considering time intervals of n, n + %, n+ %, and n+ 1. The resulting
equations for the model equation

ou [3211, 8%y 52u]

— = +
5 - %oz T o T 2
are:
+3 + n
u’::z',g - u?J,k = « 62 :_1,13 52 t,Jk 63“:’,3‘,!:
at (A-'fr)2 (-’-Sy)2 (Az)?
3 : +3 +
i =gk _ |8 il ewirt | stulpl
& By T By T (B
and n+t2 ; n+§ 1
u?,;‘,i - ui,j,g = o 62 Uy 5k 53“;,;‘,1: 52 ?} k
g Bay " By " (B2
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where

Bouij = Uir15 — Wiy + Ui
53’*&',;‘ = U; 41 — Ui + Ui

The method is of order [(At), (Az)?, (Ay)? (Az)? and is only conditionally stable
with the requirement of (d; + d, + d,) < (3/2). As a result of this requirement,
the method is not very attractive. A method that is unconditionally stable and
is second-order accurate uses the Crank-Nicolson scheme.

u:d,k - u?,j,k = "1 62 *J k + 62 :,_7 k 62 t,J k 6 utg k
At 27 (A7) (Ay)° (Az) |
u:,;-‘,k - u?,j,k = o 62 t] k + 62 t,J k 1 62 i,J k + 5:“:1;’,1: i ‘52 1,_1 k
At _2 (Az)? 2 (Ay)? (Az)? |’
and
u:‘.;.}: N u?,j,k = o [1 62 1»J k + 62 lJ k 62 “ Jik + 62 l,J k 52 n+i + 62 :,3 k
At 2 (Ax)? 2 (A.y)2 2 (Az)?
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Linearization
The investigated models until this moment were linear. However, the real phenomena are

not linear and in order to solve them some linearization methods must be used.

Further will give some examples for the non-linear term from Navier Stokes equations:
ou
u_

OX
Lagging method: (a intarzaierii) The non-linear term can be discretized in the following

way:

n n
n-1 Yi+1,j ~ Ui

" AX
where n -1 is the previous time step, and n is the time step for which the unknown must

u

be calculated.
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Iterations method: The linearized term obtained using the lagging method is corrected

using an internal iteration until the desired accuracy is reached.

k+1
k Uity j — Ui

i1+1, j AX

For k =1 the value for the previous step is used and then the iterative process continues

until a stop criteria is fulfilled:

k-+1 K
Uit1,j — Ui, j
k
Uit1, j

k+1 k

Ui+1’j—ui+1’j <& or <¢&
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Newton linearization method:

Consider the product A-B and the modification for two successive iterations:
A= A _ Ak and 6B = B* - B,
Thus:

AL gkt (aK 1 A BK + 0B )= AXBX + BXoA+ AKB + ASB
We suppose that sAB is small and we get:
For the Navier-Stokes term we have
k+1 k k
o] (2] (@
OX OX OX OX
Using forward finite differences we obtain:

k+1 k k

ou kK Yistj —Uij ke Yiegj—Uij k Uisgj Ui
u— u u

X Ji. |

e tUis,j A LT

L, k kel (K )2 k-+1
= &[Zuiﬂ,juiﬂ,j - (ui+1,j —Uj jUis1, |
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