Introduction to Computational Fluid Dynamics

Boundary Value Problems (BVP)

Introduction (BVP)
The general form of a BVP is:

%: f(x,y), f:[ab]xRY >R% d>2
X

along with the boundary conditions (BC) on [a,b]:
g(y(a) y(b))=0

where g:R% xR?% — RY is a function.
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Different kind of BC (for d = 2):

y(a)=A (Dirichlet)
%(a) =A (Neumann)

Y(@)+ay@)=A a<0  (Robin

where A iIs a constant.

Lecture 3 —Numerical Methods for BVVP



Introduction to Computational Fluid Dynamics
Example 1. Bending of a beam due to the gravitational force

A

IS described by:

d 2w S gx
d7(x): EW(X)+ E(X—U

where w(x) is the displacement, | is the beam length, ¢ is the load

Intensity, E is the elasticity modulus, S is the stress on the two ends, and
| is the bending moment of the beam. We have zero displacements on
the boundaries, thus:

w(0)=0; w(l)=0.
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Example 2: Mixed Convection in a Channel with Chemical Reaction
U"+10-a=0
6" +Ke’=0
U@)=0, 60)=rr, UD =0 6Q)=-r

where U is the fluid velocity, @ iIs

the temperature and A, «, K and r T“
are parameters depending on the
problem. T .
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In Fluid mechanics the mathematical model reduces to BVP in the boundary
layer approximation (L. Prandtl, 1904) and fully developed flow in channels,

plpeS, etC Transition

Laminar flow
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About existence and unicity

See the following examples (Agratini et al., 2002).

Let be the BVP:

y'-y=0, y(0)=0, y(b)=25
with the solution

sinh x
y(X)=ﬂsinhb, x €0,b]

We modify the above problem as follow
y'+y=0, y(0)=0, y(b)=4

Thus, for

b=kr, keN then y(x)= g3
sinb

b=kz, keN" and B =0 there is no solution

b=kz, keN and =0 then y(x)=csinx, ceR
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However, for the last case, we the number of solution is infinity, but the condition
y(b) =B cannot be satisfied becausey(b)= y(kz)=csin(kz)=0= B. Thus,

b=krz, ke N is a critical point.

One can see that a minor change in the problem leads to important changes in the
number and the form of the solutions.

Theorem: Let be the BVP

y'(x)=f(x,y,y), xelab]
ayy(a)-ay'(a)=«a
boY(b) by ()

If
i) f(x,uy,u,) iscontinuous on [a,b]x R xR

i) of /ou, and Of /Ou, are continuous an satisfy |Of /Ou;| <L, and
of /ou,| < Lyon [a,b]xRxR

iii) agay =0, byb, =0,

then the BVP has a unique solution.
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Shooting Metohod

BVP = incomplete I\VVP+other BC

Thus, it 1s possible to transform a BVP into an VP with some unknown
Initial conditions. These unknown conditions must be found using the
values on the boundary.

fr+ff =0 fr+ff =0

=)
f(0)=0,f'(0)=0,f'(7)=1 f(0)=0,f'(0)=0, f"(0)=s
How to find “s” in such a way that f '(7) = 1?

This method is called the shooting method because of its resemblance to the problem
faced by an artillery officer who is trying to hit a distant target. The right elevation of the
gun can be found if two shots are made of which one is short of the target and the other is
beyond. That means that an intermediate elevation will come closer.

(Gerald and Wheatley, Applied numerical analysis, California Polytechnic State University, Boston, 2006)
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Secant Method

A first approach is to transform the BVP into an initial value
problem (IVP), by guessing the missing initial conditions

and using the BC to refine the guess, until convergence is
FERCHE O T S i,

y(a)=0

BV
y(b) =y,
|
=
z(a) less v
W(a)=0
l Solve with RK4
y(x)
z(x)
y(b)
No
M=V, (b)- Y guess (5)  Is m small enough?
l Yes

_ write out solution
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Algorithm:
Consider the boundary conditions on the interval [a,b]:

y(@)=a, y'(a)=8y'b)=y
We have to find the value: y"(a)= ¢ insuch away thaty'(b)=y.
Choose two values y''(a)=S; and y'(a)=S, such that
y'(b)=r and y'(b)=r, and r, <y <r,.
Next, we solve the equation for y"'(a)=S, where S =(S; +S,)/2
and choose the next S; and S,

y"(a)=5, S:Sl + 5, y"(a)=5,
Stop when |y'(b,S)—y|< & no< ot < y<r
51: S,
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Example: Consider the Blasius equation (see Oroveanu, 1967), that

model the boundary layer flow on a plate:
f*(m) +1(n) 1"(m) =0
f(0)=0,f'(0)=0,f'(n,) =1, where 5, is large (e.g. 1, =7)
The equation is transform in the following system:

Yi=Yo Yo=Y, Y3 =—Y1V¥3
Y1(O):O; YZ(O):O; Y2(7700):1

We consider two starting values for the missing condition f "(0):
S1 = 0.1 (solving using RK one obtain f'(77,, S1) = 0.356604)

Sz = 0.7 (solving using RK one obtain f'(7,, S1) = 1.304993)
Thus, f'(n,, S1) =0.356604) <1< f'(n, S1) = 1.304993 => “shooting™
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Matlab program

a, b - solution interval;

S1, S, — aproximations for f£''(0);

\4e - value of £ ' in oo;

k — number of iterations;

A - matrix of results, A = [n,£f , £ ', £ "'];

function dy=fBlasius (t,yVy)
dy=[y(2),y(3),-y(3)*y (1) ];

function [x,y]=Kutta(f,a,b,N,y0)%odedd can be used
h=(b-a)/(N-1)% step
y=zeros (N, length(y0)); %solution initialization

y(1l,:)=y0;

t=a:h:b;

xX=t;

for 1i=2:N
Kl=feval (f,t(i-1),vy(1i-1,:));
K2=feval (f,t(i-1)+0.5*h,y(1-1,:)+0.5*h*K1);
K3=feval (f,t(i-1)+h,y(i-1, :)-h*K1+2*h*K2) ;
v(i,:)=y(i-1,:)+h/6* (K1+4*K2+K3) ;

end
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fmalin program
format long;
a=0; b=7;N=701;
S1=0.1; S2=0.7;
yp=2;
k=0; %Snumber of iterations
while abs(yp-1)>0.001
S=(S1+S2)/2;
y0=[0,0,8];
[x,y]=Kutta ('’ fBlasius’,a,b,N,vy0);
[m,n]=size(y);
if y(m,2)<1
S1=S;
else
S2=S;
end;
yp=y (m, 2)
k=k+1;
end;
A=[x"',v];
disp(' eta fsec fprim £ ")
disp (A) ;plot(x,y(:,2));
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Iterations f '(00) f"(0) Iterations f '(o0) f"(0)
1 0.898619238225 | 0.400000 6 0.994396542243 | 0.465625
2 1.111165796678 | 0.550000 / 1.001059313085 | 0.470312
3 1.007699998861 | 0.475000 8 0.997730706789 | 0.467968
4 0.953939187474 | 0.437500 9 0.999395702387 | 0.469140
5 0.981003550835 | 0.456250

Numerical solution lies
between the approximated
solutions. (Sandwich rule)
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Newton’s Method

Consider the equation

d3f ( df d?f
g x

df df
: f(0)=0, —(0)=0, —(L)=f"
> o dxz] ©=0 —(©=0 —(L)=f\

or

df
—=a
dx ,

4 @:b f(0) =0, ﬁ(O):a(O):O, u(O):b(O):s
dx dx dx? (1)

@: g(x, f,a,b)
| dx

where s is the initial unknown condition.
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In order to find s Is necessary that

a(lL,s)—f'L=¢(s)=0
Considering s" the value of s at the n™ iteration, one can use a Taylor

expansion of ¢:
0= ¢(Sn+l) _ ¢(Sn) _|_(Sn+1 _Sn)(:l_f(sn) 4+
and we get

n_ d@(Sn) or s"t—g"_ a(la—ai‘sn)_ L
dS(S ) 8S(L’S )

Sn+1 — g

Now the unknown is ?(L,s”) and in order to find it one can derive with
S

respect to s the initial system:.
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| dfof)_éa
dx\os/ 0©s
< dfoa)_db To=0 Poy=0, ®(0)-=1
dx\os/ 05 oS oS 0S
d (abj_ag of +6g aa+6g ob
\dx\os) of os ocacds obos
ByusingthenotationsF:q, Az@, B_ab we obtain:
0S oS oS
dF _ o
dx
) AA_g F(0)=0, A(0)=0, B(0)=1
X =0 A)=0, BO)=1 (7
dB ag 8g A9 g
dx Gf 8a
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Now, the (Newton) shooting algorithm can be given:

Step1: s=s"

Step 2:  solve (1) with b(0) = s
Pasul 3: solve (2) and keep the value A(L,s") = A(L)
a(L,s")—f',

Pasul 4: find s® =s! — ]
A(L,s")

Pasul 5: repeat steps 1. — 4. with s* = s until required accuracy is
obtained.
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Example: Consider again the Blasius equation (system form)

Yi=Y;
Y2'= Vs . ¥:(0)=0; y,(0)=0; y,(7,)=1
Y3 =—Y1Y3
By using the above algorithm we have to solve
Y1’ =Y, Ya'=VYs
Yo2'=VYs3 Y5'= Y
Y3'=—Y1Y3 Yo' =—Y3Ya —Y1Ys

¥1(0)=0; y,(0)=0; y3(0)=s  y,(0)=0; y5(0)=0; ys(0)=1

and in order to find s we use:

1 J—
52281_)’20—,5 )1 1
ys(L,s7)
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Matlab program

function dy=fBlasNewt (t, y)
dy=[y(2) ,v(3),-yv(3)*y (1), yv(5), yv(6), —-y(3)*y(4)-y(1)*y(6)];

format long;

a=0; b=5;N=251;

S=0.5;

yp=2;

k=0; %Snumber of iterations

while abs(yp-1)>0.0001

v0=70,0,5,0,0,17; lterations f'(c0) S=1"(0)
[x,y]=Kutta('fBlasNewt',a,b,N,vy0); 1 1.655190 0.406241
S=S—{y (W, 2)=1) /y (N, 5) 7 2 | 0907751 | 0.468075
yp=y (N, 2) ; : :
vt 3 | 0997769 | 0.469644
. 4 | 0999998 | 0.469645
disp([x',y]); There are necessary less iterations, but

plot(x,y(:,2)); _
the ODE system have 6 equations .
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Finite Difference Method

In order to solve BVP by using finite differences one have to follow the

steps:
- Choose a grid (mesh)

gra=X <Xy <Xg<..<XN <Xygp=Db
hi :Xi+1_Xi’ |:1, 2,...,N

- Approximate the derivatives and the boundary conditions using finite

difference and form an algebraic system of equations

- Solve the system and obtain the numerical approximations
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A scheme for a second order BVP

Consider the linear BVP
¥ ()= p(x)¥'(x)-r(x)¥(x)=a(x), xe[01]
yO0)=a, §)=w

We idefine the following uniform grid:

he L
N
xi =(i-1)h,i=i=1 2,..,N+1

then evaluate the 1% and 2" order derivatives using the Taylor expansion:
2 3

V(%) = Y05 +h) = Yx)+ hy )+ -y (x)+ 1y () + Ol

Y051)=¥05 -1 = Y0 )~y () 7y ()~ y )+ o)
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By adding and subtracting the above expansions we get:
y'(% )= Y(Xi+1)2_hY(Xi—1)+O(h2)
y'(x) = y(Xis1)— 23;](2)(i )+ Y(Xi—1)+ O(hz)
and using the notation y; = y(x; ) the differential equation is discretized as
follow:

1=«
Vit 2N Vit ()Yt I p(q)y, =), 1=2,3,..N
h 2h
YNt =@
or
1=«

ot =1 P06) [+ 2+ 10Ny 147 )=o), 1=2,3,..0
YN =@
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which form a tri-diagonal system of algebraic equations:

q G Y1 d
b, a, ¢ Yo d,
b3 az Cg y Y3 _ d3 (***)
by ay CN YN dy
i by ansa] [Ynsl [Onaa

where

g =ay;=1¢6=0 by;;=00d =, dy, =@

h h
b; =—1—§ p(xi), a =2+r(x)h?, c =—1+§ p(x;), d; =a(x;)h?
1=2,3,...,N
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The tri-diagonal system of equations can be solve efficiently by using
different methods, e.g. Thomas algorithm. Faires and Burden (2002)
stated:

Theorem: If p,g,r eC[0,]] and r(x)>0 on [0,1] then the system (***) has

a unique solution for h < L where L - max|p(x).
2 0<x<1

Example: Consider the linear BVP
y'(x)-y(x)=¢", y(0)=1/2, y(1)=¢e
The exact solution y(x)= %ex(1+ x) can be obtained using Mathematica.

IN[25]:= DSolve[{y''[x] =y[x] + Exp[x], y[0] =1/2,
v[1] =Exp[1l]}, y[x], x]

1
out[25]=  {{y[x] - o e® (1+x)}}
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Further, we solve the problem using finite differences on an equidistant

grid with N nodes:

. =2V + V. , i
Yiza h>;| y'+1_yi:ex', i=23,.., N-1
Yn =€

The system of algebraic equations is given by:

1 Y1 1/2

~1 2+h® -1 Yo —h%"
-1 2+h2 -1 YN-1 _hZG(N—Z)h

1 YN e
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Matlab program:

$Linear BVP

a=0,;b=1;
N=6;
h=(b-a)/ (N-1);
A=zeros (N,N) ;y=zeros (N,1);r=zeros (N, 1);
A(l,1)=1;r(1)=0.5; Sboundary wvalue in the point a
for 1=2:N-1
A(i,i-1)=-1;A(1i,1)=2+h*h;A(i,1+1)=-1;
r(i)=-h*h*exp((i-1) *h);
end

A(N,N)=1;r(N)=exp(l),; S%Sboundary value in the point b

y=A\r;%solve the system

x=a:h:b;
plot(x,vy,"'.r'");%plot the numerical solution
hold on

x=a:0.1*h:b;
plot (x,0.5* (1+x) .*exp(x), 'b"); %Splot the exact solution
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yix)

251

151

05

solutia numerica
solutia exacta

Y

y exact

‘y - yexact‘

0.0

0.500000

0.500000

0.000000

0.2

0.733839

0.732841

0.000998

0.4

1.045889

1.044277

0.001612

0.6

1.459447

1.457695

0.001752

0.8

2.004268

2.002986

0.001281

1.0

2.718281

2.718281

0.000000

0.2 0.4 0.6
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Consider the nonlinear BVP (it is supposed to have a unigue solution)

y'=f(x¥.7), xe[ab], ¥(@)=ya, ¥(b)=y,
We discretize the problem on an equidistant grid having the step hwith
N +2 nodes:

Yo = Ya

. =2V + V. 1 — Vi .

y|+1 hgl yl 1 = f(Xliylin_l yl 1)1 |:11 21"'1N
YN+ = Yb

or

2y1 — Yo + hzf(xb Y1, Y22—h)’aj_ Ya =

—VYia+2Yi —Viat hzf(xi,yi, Yi+12—th—1)’ 1=2,..,N-1

—YN-1+2YN +h2f(XN,yN,yb _ZzN_lj—yb =0
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This system has a general form of a nonlinear system

The Newton method can be used:

gl k) _ gy (DA (D)
or

g k) glk) gy (kD ko) _ ()

where F=(f,,....fy), and the components of the Jacobian

J= Ofy... fo) , in this case form a tri-diagonal matrix:
O(Yyreer Yn )
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J(yl’ y2""’yN )Ij =<

—1+2fy'[xi,yi,yi”z_hyi_lj, I=j-1 j=2,..,N
2+h2fy(xi,yi,y”lz_hyi‘lj, i=j, j=1..,N
—1+2fy.(xi,yi,y”lz_hyi—lj, i—j+1 j=1..N-1

Keller — Box Method

More general then the previous method, the Keller-Box method is also
based on the Newton method (Keller (1970) and Cebeci and Bradshaw
(1984)) used for boundary layer applications.

For one nonlinear equation having, the form f(x) = 0, the iteration for the

root finding Is:

Xn+1 = Xn T €n
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where X, IS the root approximation at the step n, and ¢, Is the error at the
same step. In order to find the value of g,, the usual Taylor expansion of
f(X) In Xq+1 1S usedf:
0 = f(Xn+1) = F(Xn + €n) = (X)) + enf “(Xn) +...

so that,

f'(x,)

Thus,

f(X,)
Xpup =X, +&, =X, —
f'(x,)

For a system of N equations we have:

(X1, X2, ..., XN)(n+l) = (X1, X2, -, XN)(n) + (&1, €2, ..., 8N)(n)

N 8f (n)
_ g [ (), (D) (1)) _g [y M O (n) j (n)
0_1‘1.(x1 XX )_fj(x1 XXy FZ(@T) €,
i=1 i

j=LN
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In order to find the unknowns &™,i=1, 2, ..., N, one have to solve:

of,

of,

OX,
of,

OX,
of,

OX,

of

OX,

of

OX,

OX,

of,
OX
o,
OX \

of
OX

(n)

- ()

e 7
fl

where the matrix of the system is the Jacobian J = O(fy. f)

a()’lv--’ YN).

The derivatives in the Jacobian can be numerically evaluated for
complicated functions (for a small & (e.g. ~ 10™)):

of .

J

fj(xl,...,xj_l,xj+6,x

Ingd
"~/

jrLoeee

XN)—f

J

(xl,...,xj_l,xj,xj+1,...,xN)

OX.
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Usually, a relaxation factor, o, (0 < ® < 1) is used to avoid possible
divergences:

(X1, X2, ..., XN)(n+1) = (X1, X2, -, XN)(n) + (e, €, ..., 8N)(n)

Example:
Consider the equation of the free convection from a permeable vertical
plate with heat generation placed in a porous medium.(Postelnicu et al.,
2000):
f"'+%ff"—kf'2+en =0
f0)=-1,,f0)=1,f(0)=0

where f,, Is the mass flux parameter (suction or injection), and A = const.
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The equation is transformed into a first order system of equation:
Wenote: a=f,b=f‘,c=1f*

a-b=0 (a(0)+f, =0
] b'—c =0 BC: 1+ b(0)-1=0
A+1 b(e0) =0

c'+7ac—kb2 +e =0

Consider the grid:

N1, N2, ---5 1IN (T]1 =0,nNn = T]oo),
hi = Ni+1 - M.

] ] ] 4n.
The unknowns are approximated in the points n = s = ; i
al ~ ai+1_a'i a ~ ai+1+ai
i+1/2 ~ i+1/2 "~
h. 2

Lecture 3 —Numerical Methods for BVVP
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Thus, the system becomes:

( 8y —8; Dby, +b, _0
h 2
) bi+1_b| Ciy TG -0
h 2
th_Ci + Kgl(am + ai)(Ci+1 +G; )_%(bm +b; )2 +e " =0

fori=1,2,..., N-1, 3N — 3 equations and 3N unknowns

BC complete the system: a; + f,=0,b; —1=0,by=0

To solve the system the Newton iteration is used:

keeping only the first order terms in o:
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oa.

1+ i i+1 i+1

h 2 h 2

,—8a, &b, +3b, _{aiﬂ—a b. +b}(“)

8b,,, —8b;, 8¢, +3¢, _ _[bm ~b, ¢t }‘”)
L h 2

+7\,+1(a

i+1+a‘i)(8 |+1+6C) %(Ciﬂ—i_ci)(6 |+1+6a)

+a,)c,

i+1 i+1 i+1 i+1 i+1

g(b +b, )b, +8b,)= {Cﬂh_cwk;l(a

BC:
0a;= -a (n)+fw, ob; =1 - bl(n) oby = bN(n)

In a matrix form the above system is given by:

Lecture 3 —Numerical Methods for BVVP
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0 _
1 0
_1 0 1 _1 0
2 h 2
21 21 0 1 21
h h 2
A A+l 1 A+1 A A+l 1
8 (C2+C1) _E(b2+bl) T(aeral)_H T(C2+C1) _E(b2+b1) T(az+a1)+ﬁ
_1 _1 0 1 _1 0
0 . L 0 ) L
h ’ h ?
A+l A A+l 1 A+l A A+l
T(CN CN—l) E(bN bN—l) T(aN +aN—1)_H T(CN +CN—1) _E(bN +bN—1) T(aN aN—1)+
0 1 0 |
(n)
, b, +b
l—bl (r] )] — _{al—v—lh a; l+|2 1:|
(rl)l
)
)1 _bm _b1 Ci, +C
() =] Dot St
é ;N—l (rx)l = CH]h - +;\‘;—l(am +a; e, +¢)-Z(b, +b) +e™ }
)N -
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By solving the system the unknowns
sa™, 8bi™, 8¢i™,i=1,2,...,N
are obtained and thus, one can calculate the next iterations:
3™ D ()

The procedure continues until the desired accuracy is obtained

Different methods for solving the system can be used.

Lecture 3 —Numerical Methods for BVVP
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The routine bv4c from Matlab

The bvp4c solver deals with BVVP problems defined as
ﬂ _ : d d
v f(x,y), f:]a,b]xR" ->R",d=>2
X

along with the BC:

g(y(a) y(b), p)=0

where pis a parameter that have to be determined.

Lecture 3 —Numerical Methods for BVVP
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The syntax of the bvp4c solver has the syntax:

sol = bvp4dc (odefun,bcfun,solinit)
sol = bvp4dc (odefun,bcfun,solinit, options)

sol = bvp4dc (odefun,bcfun,solinit,options,pl,p2...)
where

odefun - specify the right hand term of the system

bcfun — functia g(y(a), y(b), p) specifying the BC

dydx = odefun (x,v,p,prl,p2,...)

res = bcfun(ya,vyb,p,pl,p2,...)

where p is the unknown parameter specified in BC and p1, p2, ...
are parameters transmitted to odefun and bcfun, and ya, yb are

the vectors y(a) and y(b)
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solinit — IS a structure with the fields

solinit.x (a= solinit.x (1) andb = solinit.x(end))
and

solinit.y Where solinit.y(:, i) IS an initial approximation of the
solution in the nodes solinit.x (1).
solinit can be initialized using the function bvpinit.

options —permits the setting of some of the solver parameters using
(bvpset). After options values of the parameters p1, p2, ... sentto

odefun and bcfun can be specified.
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Example: Solve the equations of the heat transfer generated by catalytic

reactions in a channel.

9" +Ke’=0
00)=r.,0Q) =—r;

where K Is the Frank-Kamenetskii’s number.

The Matlab program:

function [X,T,Tp]l=ChimChannelBVP

a=0; %left limit of the channel

b=1; %right 1limit of the channel

K=3; %Frank-Kamenetskii’s number

rT=1; %value of the temperature in a(= 0);

Il w
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solinit.x=linspace(0,1,101);
solinit.y=[solinit.x*rT;solinit.x* (-rT)];%solution initialization

options=bvpset ('AbsTol', le-12);

sol = bvp4dc(@chim ode,@chim bc,solinit,options,K,rT);

X=so0l.x;T=sol.y (1, :);Tp=sol.y(2,:);

plot (X, T) 1
function dydx = chim ode (x,y,K, rT)
dydx = [ y(2) 05l
—K*exp (y (1)) 17

. , z iK=3
function res = chim bc(ya,yb,K, rT) OF re=1
res = [ ya(l) - rT

yb (1) +rT]; sl
T 02 04 06 e
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