
1.2.2 Newton-type methods

The next procedures gives an alternative form for the interpolation polynomial, as well as for the
remainder.

Newton’s divided difference formula

To better understand (and write) the transition from n to n + 1 nodes, we slightly change the no-
tations. For the monic polynomial of the nodes (“monic” means the leading coefficient is 1), pre-
viously denoted by “u(x)”, we introduce a new notation, one that also emphasizes the number of

nodes that it refers to. So, let

ψn(x) = (x− x0) . . . (x− xn−1)(x− xn),

ψn−1(x) = (x− x0) . . . (x− xn−1).

Then we have

ψn(x) = (x− xn)ψn−1(x),

ψ′
n(x) = ψn−1(x) + (x− xn)ψ

′
n−1(x).

Hence,
ψ′
n(xi) = (xi − xn)ψ

′
n−1(xi), i = 0, . . . , n− 1,

ψ′
n(xn) = ψn−1(xn).

(1.1)

With these new notations, we can write

Ln−1f(x) =
n−1∑
i=0

ψn−1(x)

(x− xi)ψ′
n−1(xi)

fi,

Lnf(x) =
n∑

i=0

ψn(x)

(x− xi)ψ′
n(xi)

fi.

(1.2)

Let us also recall one of the properties of divided differences (Theorem 5.1 a), in Lecture 2):

f [x0, . . . , xn] =
n∑

i=0

1

ψ′
n(xi)

fi. (1.3)

1

We want to derive a simple recursive formula from Ln−1f to Lnf , when adding a new node xn. Let

Q(x) = Lnf(x)− Ln−1f(x). (1.4)

Obviously, Q is a polynomial of degree (at most) n and for i = 0, . . . , n− 1,

Q(xi) = f(xi)− f(xi) = 0,

so its n roots are precisely the nodes x0, . . . , xn−1. Then Q is of the form

Q(x) = an(x− x0) . . . (x− xn−1) = anψn−1(x),

Q(xn) = anψn−1(xn), (1.5)

for some constant an ∈ R that we want to find.
On the other hand, the polynomial Lnf also interpolates f at the node xn, so Lnf(xn) =

f(xn) = fn and, thus,

Q(xn) = fn − Ln−1f(xn). (1.6)

By (1.5)–(1.6), it follows that

an =
fn − Ln−1f(xn)

ψn−1(xn)
.

Now using (1.1)–(1.3), we get:

an =
fn

ψn−1(xn)
− 1

ψn−1(xn)
Ln−1f(xn)

=
fn

ψn−1(xn)
− 1

ψn−1(xn)

n−1∑
i=0

ψn−1(xn)

(xn − xi)ψ′
n−1(xi)

fi

=
fn

ψn−1(xn)
+

n−1∑
i=0

fi
(xi − xn)ψ′

n−1(xi)

=
fn

ψ′
n(xn)

+
n−1∑
i=0

fi
ψ′
n(xi)

=
n∑

i=0

fi
ψ′
n(xi)

= f [x0, . . . , xn].

2

Thus,

Q(x) = f [x0, . . . , xn]ψn−1(x).

So, by (1.4)–(1.6), we have the following recurrence relation for the Lagrange polynomial:

Lnf(x) = Ln−1f(x) + f [x0, . . . , xn]ψn−1(x), n ≥ 1. (1.7)

Iteratively, we get

L0f(x) = f(x0),

L1f(x) = f(x0) + f [x0, x1](x− x0),

L2f(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1),

. . .

Lnf(x) = f(x0) + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) . . . (x− xn−1),

(1.8)

The expression on the right-hand-side of (1.8) is called Newton’s divided difference form of the
interpolation polynomial, or Newton’s interpolation polynomial and it is denoted by Nnf(x).
To be clear, by the uniqueness of the interpolation polynomial at n + 1 distinct nodes, the two
polynomials coincide, Lnf(x) = Nnf(x), they are just expressed (written) in different forms.

If we denote by

Di = f [x0, . . . , xi], i ≥ 0,

Newton’s polynomial Nnf can be written in the nested form

Nnf(x) = D0 + (x− x0)D1 + (x− x0)(x− x1)D2 + · · ·+ (x− x0) . . . (x− xn−1)Dn

= D0 + (x− x0)

[
D1 + (x− x1)

[
D2 + . . . (1.9)

+ (x− xn−2)
[
Dn−1 + (x− xn−1)Dn

]
. . .

]]
.

Writing it this way, we can see that the evaluation of Nnf(x) requires only n multiplications and
n additions (once the divided differences have been computed), so this is a more computationally
efficient formula for the interpolation polynomial.

Next, we also want to express the remainder in a new form. Let [a, b] denote the smallest interval

3

containing the distinct nodes {x0, . . . , xn} and let x ∈ [a, b] be fixed. We write recursively:

f [x, x0] =
f(x)− f(x0)

x− x0

f [x, x0, x1] =
f [x, x0]− f [x0, x1]

x− x1

f [x, x0, x1, x2] =
f [x, x0, x1]− f [x0, x1, x2]

x− x2
.

f [x, x0, . . . , xn−1] =
f [x, x0, . . . , xn−2]− f [x0, x1, . . . , xn−1]

x− xn−1

f [x, x0, x1, . . . , xn] =
f [x, x0, . . . , xn−1]− f [x0, x1, . . . , xn]

x− xn
.

(1.10)

Multiplying the first equation in (1.10) by (x − x0), the second by (x − x0)(x − x1), the third by
(x− x0)(x− x1)(x− x2), ..., the next to last by (x− x0)(x− x1) . . . (x− xn−1) and the last one by
(x− x0)(x− x1) . . . (x− xn), writing the right-hand-side first, we get

f(x)− f(x0) = (x− x0)f [x, x0]

(x− x0)
(
f [x, x0]− f [x0, x1]

)
= (x− x0)(x− x1)f [x, x0, x1]

(x− x0)(x− x1)
(
f [x, x0, x1]− f [x0, x1, x2]

)
= (x− x0)(x− x1)(x− x2)f [x, x0, x1, x2]

.

n−2∏
i=0

(x− xi)
(
f [x, x0, . . . , xn−2]− f [x0, x1, . . . , xn−1]

)
=

n−1∏
i=0

(x− xi)f [x, x0, . . . , xn−1]

n−1∏
i=0

(x− xi)
(
f [x, x0, . . . , xn−1]− f [x0, x1, . . . , xn]

)
=

n∏
i=0

(x− xi)f [x, x0, x1, . . . , xn] .

4

Now, adding all equations above, we obtain

f(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + . . .

+ f [x0, . . . , xn](x− x0) . . . (x− xn−1) + f [x, x0, . . . , xn]ψn(x)

= Nnf(x) + f [x, x0, . . . , xn]ψn(x),

from which we have

Rnf(x) = f [x, x0, . . . , xn](x− x0) . . . (x− xn). (1.11)

By the mean value formula for divided differences (Theorem 5.1 e), in Lecture 2), we find the
previous formula for the remainder:

Rnf(x) =
(x− x0) . . . (x− xn)

(n+ 1)!
f (n+1)(ξ), ξ ∈ (a, b).

Example 1.1. Given the data below, find N1(0.15) and N2(0.15), the linear and quadratic interpo-
lates evaluated at x = 0.15. Determine the remainders.

i xi f(xi)

0 0.1 0.2

1 0.2 0.24

2 0.3 0.3

Solution. First, we compute the divided differences:

x0 = 0.1 f [x0] = 0.2 −→ f [x0, x1] =
0.24− 0.2

0.2− 0.1
= 0.4 −→ f [x0, x1, x2] =

0.6− 0.4

0.3− 0.1
= 1

−→ −→

x1 = 0.2 f [x1] = 0.24 −→ f [x1, x2] =
0.3− 0.24

0.3− 0.2
= 0.6

−→

x2 = 0.3 f [x2] = 0.3

The linear interpolate at the nodes x0 = 0.1 and x1 = 0.2 is then

N1f(x) = f(x0) + f [x0, x1](x− x0) = 0.2 + 0.4(x− 0.1) = 0.4x+ 0.16,

5

so we have the approximation

f(0.15) ≈ N1(0.15) = 0.22.

The error of this approximation is

R1f(0.15) =
(0.15− 0.1)(0.15− 0.2)

2!
f ′′(ξ)

= −1.25 · 10−3 f ′′(ξ), ξ ∈ (0.1, 0.2).

Using all three nodes, we find the quadratic interpolate

N2f(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

= 0.2 + 0.4(x− 0.1) + 1 · (x− 0.1)(x− 0.2)

= x2 + 0.1x+ 0.18,

which yields the approximation

f(0.15) ≈ N2(0.15) = 0.2175,

with an error of

R2f(0.15) =
(0.15− 0.1)(0.15− 0.2)(0.15− 0.3)

3!
f ′′′(η)

= 6.25 · 10−5 f ′′′(η), η ∈ (0.1, 0.3).

Example 1.2. Find the polynomial of minimum degree that interpolates the data f(−1), f(0) and
f(2), for some function f ∈ C3[−1, 2]. Determine and discuss the remainder.

Solution. We find the divided differences table:

−1 f(−1) −→ f(0)− f(−1) −→
1

6

(
2f(−1)− 3f(0) + f(2)

)
−→ −→

0 f(0) −→ 1

2

(
f(2)− f(0)

)
−→

2 f(2)

6

Then the interpolation polynomial is

L2f(x) = f(−1) +
(
f(0)− f(−1)

)
(x+ 1) +

1

6

(
2f(−1)− 3f(0) + f(2)

)
x(x+ 1).

We can now write it as a linear combination of the given function values,

L2f(x) =
1

3
x(x− 2)f(−1)− 1

2
(x+ 1)(x− 2)f(0) +

1

6
x(x+ 1)f(2).

When written this way, it is very easy to check that L2f satisfies the interpolation conditions, i.e.

L2f(−1) = f(−1), L2f(0) = f(0), L2f(2) = f(2).

The coefficients of f(−1), f(0) and f(2) above are precisely the basis polynomials l0(x), l1(x) and
l2(x), as they satisfy li(xj) = δij , but the computations were much easier to do this way.
Alternatively, we can write the polynomial in the usual form,

L2f(x) =
1

6

(
2f(−1)− 3f(0) + f(2)

)
x2 +

1

6

(
− 4f(−1) + 3f(0) + f(2)

)
x+ f(0).

This second form will be more convenient when we also want to differentiate or integrate the poly-
nomial.

Now, the remainder can be written as

R2f(x) =
u(x)

3!
f ′′′(ξ) =

x(x+ 1)(x− 2)

3!
f ′′′(ξ), ξ ∈ (−1, 2).

If possible, we may try to find a bound for |u(x)| on [−1, 2] (but this may require Matlab ...).
In this case, we have

u(x) = x(x+ 1)(x− 2) = x3 − x2 − 2x,

u′(x) = 3x2 − 2x− 2.

The zeros of the derivative are
1±

√
7

3
, the smaller being a point of local maximum and the larger,

a point of local minimum for u(x) on [−1, 2]. For |u(x)|, we have:

max
x∈[0,2]

|u(x)| =

∣∣∣∣∣u
(
1 +

√
7

3

)∣∣∣∣∣ = 2

27
(10 + 7

√
7).

7

Thus, a bound for the error is

|R2f(x)| ≤ 2

27 · 3!
(10 + 7

√
7) |f ′′′(ξ)| ≈ 0.3521 |f ′′′(ξ)|, ξ ∈ (−1, 2).

Newton’s forward and backward difference formula

In the case where the interpolating nodes xi are not equally spaced, we use Newton’s divided differ-
ence formula presented above; however, when the nodes are equidistant, we can construct simpler
and less expensive algorithms, using finite differences. Historically, these algorithms were of great
importance in interpolating functions whose values were given in tables, but the availability of more
powerful computers diminished their relevance. However, with new processors (fpu’s), they have
made a comeback.

Assume the values of a function f are known at the h-step equidistant nodes

xi = x0 + ih, i = 0, 1, . . .

Recall the forward differences of the function f

∆1f(xi) = f(xi + h)− f(xi) = fi+1 − fi,

∆kf(xi) = ∆k−1f(xi + h)−∆k−1f(xi) = ∆k−1fi+1 −∆k−1fi

and the property (Proposition 5.6 in Lecture 2)

f [x0, x0 + h, . . . , x0 + ih] =
1

i!hi
∆if0.

The Newton form of the nth degree polynomial Lnf of f at the nodes xi = x0+ ih, i = 0, 1, . . . , n,
can be simplified. Denote by s = (x− x0)/h. Then

(x− x0) . . . (x− xi−1)f [x0, . . . , x0 + ih] =
(
sh
)
·
(
(s− 1)h

)
. . .
(
(s− i+ 1)h

) 1

i!hi
∆if0

=
s(s− 1) . . . (s− i+ 1)

i!
∆if0.

8

Using the notation

(s

k

)
=

s(s− 1) · · · (s− k + 1)

k!
, s ∈ R, k ∈ N

(the generalized binomial coefficient), we find Newton’s forward difference form of the interpolation
polynomial.

Lnf(x) =
n∑

i=0

(s

i

)
∆if0

= f0 +
(s

1

)
∆f0 +

(s

2

)
∆2f0 + · · ·+

(s

n

)
∆nf0, (1.12)

with s = (x− x0)/h.
The error after n iterations, for x = x0 + sh, is given by

f(x)− Lnf(x) = hn+1
(s

n+ 1

)
f (n+1)(ξx), (1.13)

where ξx lies in the smallest interval containing x0, . . . , xn and x.
Similarly, using backward differences ∇

∇0fi = fi,

∇1fi = fi − fi−1,

∇kfi = ∇k−1fi −∇k−1fi−1

and the change of variables t = (x− xn)/h, we obtain

Lnf(x) = fn +
t

1!
∇fn +

t(t+ 1)

2!
∇2fn + · · ·+ t(t+ 1) . . . (t+ n− 1)

n!
∇nfn,

which can be written as

Lnf(x) = fn +
(t

1

)
∇fn +

(t+ 1

2

)
∇2fn + · · ·+

(t+ n− 1

n

)
∇nfn (1.14)

This is called Newton’s backward difference formula.

9

In this case, the interpolation error is

f(x)− Lnf(x) = hn+1
(t+ n

n+ 1

)
f (n+1)(ηx), (1.15)

where ηx lies in the smallest interval containing x0, . . . , xn and x.

Example 1.3. Consider again the data in Example 1.1.

n xn fn

0 0.1 0.2

1 0.2 0.24

2 0.3 0.3

Let us find L2f(0.15) using finite differences.

Solution. By (1.12), we have

L2f(x) = f0 +
(s

1

)
∆f0 +

(s

2

)
∆2f0

= f0 +
s

1!
∆f0 +

s(s− 1)

2!
∆2f0

= f0 +
x− x0
h

∆f0 +
(x− x0)(x− x0 − h)

2h2
∆2f0,

where s = (x− x0)/h, h = 0.1.
We compute the forward differences:

x0 = 0.1 f0 = 0.2 −→ ∆f0 = 0.24− 0.2 = 0.04 −→ ∆2f0 = 0.06− 0.04 = 0.02

−→ −→

x1 = 0.2 f1 = 0.24 −→ ∆f1 = 0.3− 0.24 = 0.06

−→

x2 = 0.3 f2 = 0.3

So,

L2f(x) = 0.2 +
x− 0.1

0.1
· 0.04 + (x− 0.1)(x− 0.2)

0.02
· 0.02

= x2 + 0.1x+ 0.18

10

(as before) and
L2f(0.15) = 0.2175.

Using backward differences, by (1.14), we get

L2f(x) = f2 +
(t

1

)
∇f2 +

(t+ 1

2

)
∇2f2

= f2 +
t

1!
∇f2 +

(t+ 1)t

2!
∇2f2

= f2 +
x− x2
h

∇f2 +
(x− x2 + h)(x− x2)

2h2
∇2f2

with t = (x− x2)/h, h = 0.1.
The backward differences are found in the table

x0 = 0.1 f0 = 0.2

−→

x1 = 0.2 f1 = 0.24 −→ ∇f1 = 0.24− 0.2 = 0.04

−→ −→

x2 = 0.3 f2 = 0.3 −→ ∇f2 = 0.3− 0.24 = 0.06 −→ ∇2f2 = 0.06− 0.04 = 0.02

Hence,

L2f(x) = 0.3 +
x− 0.3

0.1
· 0.06 + (x− 0.2)(x− 0.3)

0.02
· 0.02

= x2 + 0.1x+ 0.18

and
L2f(0.15) = 0.2175.

Remark 1.4. Interpolation algorithms can be classified according to the “step” of the grid (the dis-
tance between two consecutive nodes, when sorted in increasing order). There are variable step

methods (the Lagrange form with fundamental polynomials, the barycentric formulas, Newton’s di-
vided difference formula) and constant step algorithms (Newton’s forward and backward formulas).
For variable step methods the precision is the same at any intermediate value in the interval covered
by the data (xi, fi). So these methods do not have so-called preferential precision zones. In contrast,

11

Newton’s forward formula is particularly useful (i.e. it has higher precision) for interpolating the
values of f(x) near the beginning of the set of values (closer to the first node, (x0, f0)), whereas the
backward formula is preferred when the value of f(x) is required near the end of the table (in the
vicinity of the last node, (xn, fn)).

1.2.3 Aitken-type methods

These are variable step iterative methods and they highlight another important aspect: in many
cases, the degree required to attain a certain desired accuracy in polynomial interpolation is not

known. It can be obtained from the remainder, but that assumes knowledge (or at least knowing a
bound) of ||f (n+1)||∞.

The idea behind these methods is to write an interpolation polynomial of degree n, iteratively,
in terms of two interpolation polynomials of degree n − 1, that only use a part of the n + 1 nodes.
Let us illustrate the idea for a simple case. For two nodes, x0 and x1, the polynomial of degree 1

interpolating these data, can be written successively (using Lagrange basis polynomials) as

P 01(x) = l0(x)f0 + l1(x)f1

=
x− x1
x0 − x1

f0 +
x− x0
x1 − x0

f1

=
(x− x0)f1 − (x− x1)f0

x1 − x0

=
(x− x0)P 1(x)− (x− x1)P 0(x)

x1 − x0
,

where P 0 denotes the polynomial that interpolates f at the node x0 (a polynomial of degree 0, hence,
a constant, f0), P 1, the polynomial of degree 0 that interpolates f at the node x1 (identically equal
to f1), and P 01 the polynomial of degree 1 that interpolates f at the nodes x0, x1. Similarly, if we
add another node, x2, we can define

P 12(x) =
(x− x1)P 2(x)− (x− x2)P 1(x)

x2 − x1
,

which is the polynomial of degree 1 that interpolates f at the nodes x1, x2. We proceed further and
define

P 012(x) =
(x− x0)P 12(x)− (x− x2)P 01(x)

x2 − x0
. (1.16)

12

Let us compute its values at the nodes.

P 012(x0) =
0− (x0 − x2)P 01(x0)

x2 − x0
= P 01(x0) = f0,

P 012(x1) =
(x1 − x0)P 12(x1)− (x1 − x2)P 01(x1)

x2 − x0
=

(x1 − x0)f1 − (x1 − x2)f1
x2 − x0

= f1,

P 012(x2) =
(x2 − x0)P 12(x2)− 0

x2 − x0
= P 12(x2) = f2.

Since P 012 is a polynomial of degree 2 and it interpolates f at the nodes x0, x1, x2, it follows by the
uniqueness of the Lagrange interpolation polynomial, that P 012 = L2f.

In a similar fashion, we can construct recursively the polynomials

P 123(x) =
(x− x1)P 23(x)− (x− x3)P 12(x)

x3 − x1
,

P 0123(x) =
(x− x0)P 123(x)− (x− x3)P 012(x)

x3 − x0
. . .

Proposition 1.5. Let x0, . . . , xk be distinct nodes and let fi, i = 0, . . . , k, be the values of a function

f at the nodes. Then the Lagrange polynomial interpolating f at these nodes is given by

P 01...k(x) =
1

xk − x0

∣∣∣∣∣ x− x0 P 01...k−1(x)

x− xk P 12...k(x)

∣∣∣∣∣
=

(x− x0)P 12...k(x)− (x− xk)P 01...k−1(x)

xk − x0
. (1.17)

Proof. Obviously, by its construction, the polynomial in (1.17) has degree k. Its values at the nodes
are

P 01...k(x0) =
−(x0 − xk)P 01...k−1(x0)

xk − x0
= P 01...k−1(x0) = f0,

P 01...k(xj) =
(xj − x0)P 12...k(xj)− (xj − xk)P 01...k−1(xj)

xk − x0
= fj, j = 1, k − 1,

P 01...k(xk) =
(xk − x0)P 12...k(xk)

xk − x0
= P 12...k(xk) = fk.

Hence, by the uniqueness of the Lagrange interpolation polynomial, it follows that P 01...k = Lkf.

13

Thus, we established a recurrence relation between a Lagrange interpolation polynomial of de-
gree k and two Lagrange interpolation polynomials of degree k − 1. The computations can be
organized in a table, illustrated below for 4 nodes.

x0 P 0

x1 P 1 P 01

x2 P 2 P 12 P 012

x3 P 3 P 23 P 123 P 0123

Now, if, for instance, P 0123 does not provide a desired approximation precision, we can consider a
new node and add a new line to the table:

x4 P 4 P 34 P 234 P 1234 P 01234

and we can compare neighboring elements on a row, column or diagonal to check if the desired
accuracy has been achieved.

The method described above is called Neville’s method.
The notations can be simplified. Notice that each polynomial P emphasizes which nodes it

interpolates, listing all their indices. Then, why not specify the starting node and how many nodes
down the polynomial interpolates? So, let

Pi,0 = P i

Pi,1 = P i−1,i

Pi,2 = P i−2,i−1,i

. . .

Pi,i = P 0,1,...,i.

In other words, Pi,j is the polynomial of degree j that interpolates the nodes xi, xi−1, . . . , xi−j, for
j = 0, 1, . . . , i. So, define the new polynomials P as follows:

Pi,j = P i−j,i−j+1,...,i−1,i, j = i, i− 1, . . . 0,

14

i.e., recursively,
Pi,0 := f(xi), i = 0, n,

Pi,j :=
(x− xi−j)Pi,j−1 − (x− xi)Pi−1,j−1

xi − xi−j

=
1

xi − xi−j

∣∣∣∣∣ x− xi−j Pi−1,j−1

x− xi Pi,j−1

∣∣∣∣∣ , i ≥ j > 0.

(1.18)

Then, we get a new table
x0 P00

x1 P10 P11

x2 P20 P21 P22

x3 P30 P31 P32 P33

and the Lagrange polynomial will be the one on the diagonal Lnf = Pnn.
If the interpolation converges, then the sequence {Pii}i≥0 also converges and we can use the

stopping criterion
|Pii − Pi−1,i−1| < ε.

Aitken’s method is similar to Neville’s method. We construct the table

x0 Q00

x1 Q10 Q11

x2 Q20 Q21 Q22

x3 Q30 Q31 Q32 Q33

defining recursively

Qi,0 := f(xi), i = 0, n,

Qi,j+1 :=
1

xi − xj

∣∣∣∣∣ x− xj Qj,j

x− xi Qi,j

∣∣∣∣∣ =
(x− xj)Qi,j − (x− xi)Qj,j

xi − xj
, i > j ≥ 0.

(1.19)

Again, the Lagrange polynomial will be the one on the diagonal Lnf = Qnn.

Example 1.6. Approximate
√
2 interpolating the function f(x) = 2x at the nodes −1, 0, 1, and then

at the nodes −1, 0, 1, 2.

15

Solution. With Neville’s method, we have the table

x0 = −1 P00 = 1/2

x1 = 0 P10 = 1 P11 = 5/4

x2 = 1 P20 = 2 P21 = 3/2 P22 = 23/16,

where, for x = 1/2,

P11 =
(x− x0)P10 − (x− x1)P00

x1 − x0
=

(1/2− (−1)) · 1− (1/2− 0) · 1/2
0− (−1)

= 5/4,

P21 =
(x− x1)P20 − (x− x2)P10

x2 − x1
=

(1/2− 0) · 2− (1/2− 1) · 1
1− 0

= 3/2,

P22 =
(x− x0)P21 − (x− x2)P11

x2 − x0
=

(1/2− (−1)) · 3/2− (1/2− 1) · 5/4
1− (−1)

= 23/16.

Thus, with quadratic interpolation, we get the approximation
√
2 ≈ 23/16 = 1.4375

and

|P22 − P11| = 3/16 = 0.1875.

We add a new node x3 = 2 and a new line to the table, to get

x0 = −1 P00 = 1/2

x1 = 0 P10 = 1 P11 = 5/4

x2 = 1 P20 = 2 P21 = 3/2 P22 = 23/16

x3 = 2 P30 = 4 P31 = 1 P32 = 11/8 P33 = 45/32,

with

P31 =
(x− x2)P30 − (x− x3)P20

x3 − x2
=

(1/2− 1) · 4− (1/2− 2) · 2
2− 1

= 1,

P32 =
(x− x1)P31 − (x− x3)P21

x3 − x1
=

(1/2− 0) · 1− (1/2− 2) · 3/2
2− 0

= 11/8

P33 =
(x− x0)P32 − (x− x3)P22

x3 − x0
=

(1/2− (−1)) · 11/8− (1/2− 2) · 23/16
2− (−1)

= 45/32.

The new approximation (using cubic interpolation) is

√
2 ≈ 45/32 = 1.4063,

16

with
|P33 − P22| = 1/32 = 0.0313.

Let us note that the exact value of
√
2 rounded to 4 correct decimals is 1.4142, so the actual errors

of the two approximations are

|
√
2− P22| = 0.0233 and |

√
2− P33| = 0.0079.

With Aitken’s algorithm, (1.19), we construct the table

x0 = −1 Q00 = 1/2

x1 = 0 Q10 = 1 Q11 = 5/4

x2 = 1 Q20 = 2 Q21 = 13/8 Q22 = 23/16

x3 = 2 Q30 = 4 Q31 = 9/4 Q32 = 3/2 Q33 = 45/32,

where

Q21 =
(x− x0)Q20 − (x− x2)Q00

x2 − x0
=

(1/2− (−1)) · 2− (1/2− 1) · 1/2
1− (−1)

= 13/8,

Q22 =
(x− x1)Q21 − (x− x2)Q11

x2 − x1
=

(1/2− 0) · 13/8− (1/2− 1) · 5/4
1− 0

= 23/16,

Q31 =
(x− x0)Q30 − (x− x3)Q00

x3 − x0
=

(1/2− (−1)) · 4− (1/2− 2) · 1/2
2− (−1)

= 9/4,

Q32 =
(x− x1)Q31 − (x− x3)Q11

x3 − x1
=

(1/2− 0) · 9/4− (1/2− 2) · 5/4
2− 0

= 3/2,

Q33 =
(x− x2)Q32 − (x− x3)Q22

x3 − x2
=

(1/2− 1) · 3/2− (1/2− 2) · 23/16
2− 1

= 45/32.

The two algorithms are very similar and they actually yield the same values on the main diagonal
of the table (the values Pnn = Qnn = Lnf), so the errors of quadratic/cubic interpolates are the same
as before.

17

	Newton-type methods
	Aitken-type methods

