
1.2 Factorization Based Methods - Continued

1.2.2 LUP Factorization

So, we can find an LU factorization for a matrix A, whenever row swaps are not necessary. What
if row interchanges (pivoting) are necessary? A row interchange is a permutation of two rows. We
keep track of those in a permutation matrix, which is simply a matrix obtained from the corre-
sponding identity matrix I by permuting rows. So, for a matrix A we find its LUP factorization
(decomposition), i.e., a triplet (L,U, P ), with L a lower triangular, U an upper triangular and P a
permutation matrix, such that

PA = LU. (1.1)

Remark 1.1.
1. Multiplication of a matrix A to the left by a permutation matrix P will yield the same row

interchanges on the matrix A as in P , while multiplication on the right will result in the same
column interchanges in A as in P .
2. Solving the system Ax = b is now equivalent to solving two triangular systems

Ly = Pb and
Ux = y.

(1.2)

3. The procedure for obtaining an LUP factorization is similar to the previous one, while keeping
track of the row interchanges in a permutation matrix P .

Example 1.2. Find an LUP factorization for the matrix

A =

 2 1 −2
1 1 −1
3 −1 1

 .

Solution. At the first step, we do partial pivoting and interchange (R1) ←→ (R3).

At each row interchange, instead of writing the entire matrix P , we only emphasize which rows are
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permuted. Other than that, we proceed as before. We have

A ∼

 3 −1 1

1 1 −1
2 1 −2

 =

 3 −1 1

1 1 −1
2 1 −2

 ∼
 3 −1 1

1/3

2/3

 ,

 3

2

1

 .

The Schur complement is[
1 −1
1 −2

]
− 1

3

[
1

2

]
[−1 1] =

[
1 −1
1 −2

]
−

[
−1/3 1/3

−2/3 2/3

]
=

[
4/3 −4/3
5/3 −8/3

]
,

so, at this point we have

A ∼

 3 −1 1

1/3 4/3 −4/3
2/3 5/3 −8/3

 ∼
 3 −1 1

2/3 5/3 −8/3
1/3 4/3 −4/3

 ,

 3

1

2

 ,

because we interchanged (R2) ←→ (R3). Further, we have

A ∼

 3 −1 1

2/3 5/3 −8/3
1/3 4/5

 ∼
 3 −1 1

2/3 5/3 −8/3
1/3 4/5 4/5

 ,

the last Schur complement being

−4

3
− 4

5
·
(
− 8

3

)
=

4

5
.

So, we obtained

L =

 1 0 0

2/3 1 0

1/3 4/5 1

 , U =

 3 −1 1

0 5/3 −8/3
0 0 4/5

 , P =

 0 0 1

1 0 0

0 1 0

 .

Check that PA = LU .

Remark 1.3.
1. The computational cost for LU (and LUP ) factorization is about the same as for Gaussian
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elimination, O(n3) flops. However, for tridiagonal matrices, that cost drops to O(n) operations.
The Thomas algorithm, based on LUP decomposition is an efficient way of solving tridiagonal
matrix systems. In addition, only three one-dimensional arrays for the three diagonals are needed
to store the matrix. This means that very large systems can be solved rapidly and efficiently, and
systems of order over n = 10, 000 are not unusual in some applications, for example, in solving
boundary value problems for differential equations.
2. More generally, a band or banded matrix is a sparse matrix whose non-zero entries are confined
to a diagonal band, comprising of the main diagonal and zero or more diagonals on either side.
If all matrix elements are zero outside a diagonally bordered band whose range is determined by
constants k1, k2 ≥ 0,

aij = 0, if j < i− k1 or j > i+ k2

then the quantities k1 and k2 are called the lower bandwidth and upper bandwidth, respectively. The
bandwidth of the matrix is then defined as

w = max {k1, k2},

i.e., it is the number w such that

aij = 0, if |i− j| > w.

It can be shown that LU factorization with partial pivoting for n×n banded matrices with bandwidth
w requires O(w2n) flops, while triangular solvers require O(wn) flops.

1.2.3 QR Factorization

Definition 1.4. A real square matrix Q is called orthogonal if

Q ·QT = QT ·Q = I. (1.3)

Theorem 1.5. Let A be a real square matrix. Then there exist unique matrices Q and R such that

A = QR, (1.4)

with Q orthogonal and R upper triangular with positive elements on the main diagonal, rii > 0, ∀i.
The pair (Q,R) is called the QR factorization of A.
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Remark 1.6.
1. If A = QR, then solving the system Ax = b is equivalent to solving the upper triangular systems

Rx = QT b. (1.5)

2. Relation (1.3) automatically implies that any orthogonal matrix is nonsingular with Q−1 = QT .
Orthogonal matrices are very useful in Numerical Analysis, as they preserve lengths, angles, and do
not magnify errors.

1.2.4 Cholesky Factorization

Definition 1.7. A real square matrix A is called positive definite, if

xTA x =
n∑

i,j=1

aijxixj > 0, ∀x ∈ Rn, x ̸= 0. (1.6)

Symmetric positive definite matrices can be decomposed into triangular factors twice as fast as
general matrices. The standard algorithm for this, Cholesky factorization, is a variant of Gaussian
elimination, which operates both on the left and the right of the matrix at once, preserving and
exploiting the symmetry. These matrices have many interesting properties. Among them, the fact
that a symmetric matrix is positive definite if and only if all its e-values are real and positive. Also,
the e-vectors corresponding to distinct e-values of such a matrix, are orthogonal. Systems having
symmetric positive definite matrices play an important role in Numerical Linear Algebra and its
applications. Many matrices that arise in physical systems are symmetric and positive definite
because of the fundamental physical laws.

Theorem 1.8. Let A be a symmetric positive definite matrix. Then A has a unique Cholesky fac-
torization

A = RTR, (1.7)

where R is an upper triangular matrix with positive elements on the main diagonal, rii > 0, ∀i.

Sketch of Proof. First off, let us use (1.6) for

x = e1 = [1 0 . . . 0 ]T .
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We get

xTAx = [1 0 . . . 0 ]


a11 . . . a1n

a21 . . . a2n
...

...
an1 . . . ann




1

0
...
0



= [1 0 . . . 0 ]


a11

a21
...

an1

 = a11.

So, any positive definite matrix A has a11 > 0 and we can set α =
√
a11. Then we proceed in a

similar way as with LU factorization, keeping in mind that A is also symmetric, so we work on the
left and on the right at the same time.

A =

[
a11 wT

w A′

]

=

[
α 0

w/α In−1

] [
1 0

0 A′ − wwT/a11

] [
α wT/α

0 In−1

]
= RT

1A1R1.

By induction, all matrices that appear during the factorization are positive definite and so, the pro-
cess cannot break down. This procedure is repeated until

A = RT
1R

T
2 . . . RT

n︸ ︷︷ ︸
RT

RnRn−1 . . . R1︸ ︷︷ ︸
R

= RTR.

The uniqueness follows from the fact that at each step, the value α =
√
a11 is uniquely determined

from the factorization and once α is determined, all the rest of the Ri’s are also uniquely determined.

Remark 1.9. This method requires only n(n + 1)/2 storage locations for R, rather than the usual
n2 locations. Since only half the matrix needs to be stored, it follows that half of the arithmetic

operations can be avoided and the number of operations is about O
(1
3
n3
)

, rather than the number

O
(2
3
n3
)

required for the usual LU decomposition.
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Example 1.10. Find the Cholesky factorization (if it exists) of the matrix

A =

 4 12 −16
12 37 −43
−16 −43 98

 .

Solution. The matrix is symmetric and its e-values are

0.0188, 15.5040, 123.4772,

real and positive. Therefore, A is positive definite and has a Cholesky decomposition. We will only
work on the lower triangular part, the other will follow by symmetry. We have

A =

 4

12 37

−16 −43 98

 ∼

√
4

6

−8

 .

The first Schur complement is

A′ − wwT/a11 =

[
37

−43 98

]
−

[
6

−8

]
[6 − 8]

=

[
37

−43 98

]
−

[
36

−48 64

]
=

[
1

5 34

]

and

A ∼

 2

6 1

−8 5 34

 ∼
 2

6
√
1

−8 5

 ∼
 2

6 1

−8 5
√
9

 =

 2

6 1

−8 5 3

 ,

with the last Schur complement being 34 − 5 · 5 = 9 and its square root 3. Then

RT =

 2 0 0

6 1 0

−8 5 3

 , R =

 2 6 −8
0 1 5

0 0 3

 and A = RTR.
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2 Iterative Methods

The linear systems Ax = b that occur in many applications can have very large orders (103, 105, 106).
For such systems, the Gaussian elimination method (and consequent factorization methods) of the
last section is often too expensive in either computation time or computer memory requirements, or
possibly both. Moreover, the accumulation of round-off errors can sometimes prevent the numer-
ical solution from being accurate. As an alternative, such linear systems are usually solved with
iteration methods. In an iterative method, a sequence of progressively accurate iterates is produced
to approximate the solution. Thus, in general, we do not expect to get the exact solution in a finite
number of iteration steps, even if the round-off error effect is not taken into account. In the study of
iteration methods, a most important issue is the convergence property. We will provide a framework
for the convergence analysis of a general iteration method.

2.1 Jacobi and Gauss-Seidel Methods

We begin with some numerical examples that illustrate two popular iteration methods. Following
that, we give a more general discussion of iteration methods.

Consider the linear system

9x1 + x2 + x3 = b1

2x1 + 10x2 + 3x3 = b2

3x1 + 4x2 + 11x3 = b3

(2.1)

We proceed as follows: in the equation numbered k, solve for xk in terms of the remaining un-
knowns. In the above case,

x1 = 1
9

[
b1 − x2 − x3

]
x2 = 1

10

[
b2 − 2x1 − 3x3

]
x3 = 1

11

[
b3 − 3x1 − 4x2

] (2.2)

Let
x(0) =

[
x
(0)
1 , x

(0)
2 , x

(0)
3

]T

7



be an initial guess of the true solution x. Then define an iteration sequence:

x
(k+1)
1 =

1

9

[
b1 − x

(k)
2 − x

(k)
3

]
x
(k+1)
2 =

1

10

[
b2 − 2x

(k)
1 − 3x

(k)
3

]
x
(k+1)
3 =

1

11

[
b3 − 3x

(k)
1 − 4x

(k)
2

]
(2.3)

for k = 0, 1, . . . . This is called the Jacobi iteration method or the method of simultaneous re-

placements (substitution).

k x
(k)
1 x

(k)
2 x

(k)
3 Error Ratio

0 0 0 0 2.00e+ 0
1 1.1111 1.9000 0 1.00e+ 0 0.500
2 0.9000 1.6778 −0.9939 3.22e− 1 0.322
3 1.0351 2.0182 −0.8556 1.44e− 1 0.448
4 0.9819 1.9496 −1.0162 5.06e− 2 0.349
5 1.0074 2.0085 −0.9768 2.32e− 2 0.462
6 0.9965 1.9915 −1.0051 8.45e− 3 0.364
7 1.0015 2.0022 −0.9960 4.03e− 3 0.477
8 0.9993 1.9985 −1.0012 1.51e− 3 0.375
9 1.0003 2.0005 −0.9993 7.40e− 4 0.489
10 0.9999 1.9997 −1.0003 2.83e− 4 0.382
30 1.0000 2.0000 −1.0000 3.01e− 11 0.447
31 1.0000 2.0000 −1.0000 1.35e− 11 0.447

Table 1: Jacobi iteration for solving system (2.1)

In Table 1, we give a number of the iterations for the case that b = [10, 19, 0]T , which yields
the true solution

x = [1, 2,−1]T

and where we started with the initial value x(0) = [0, 0, 0]T . In the table, the error is computed as

||x− x(k)|| = max
1≤i≤n

|xi − x
(k)
i |.

Notice that the errors decrease as k increases and the values of the ratio eventually approach a
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limiting constant of approximately 0.447 as k becomes much larger.

As another approach to the iterative solution of system (2.1) through the use of (2.2), we use all

the information we obtain in the calculation of each new component. Specifically, let us define

x
(k+1)
1 =

1

9

[
b1 − x

(k)
2 − x

(k)
3

]
x
(k+1)
2 =

1

10

[
b2 − 2x

(k+1)
1 − 3x

(k)
3

]
x
(k+1)
3 =

1

11

[
b3 − 3x

(k+1)
1 − 4x

(k+1)
2

]
(2.4)

for k = 0, 1, . . . . This is called the Gauss-Seidel iteration method or the method of successive

replacements (substitution). This method is usually more rapidly convergent than the Jacobi method.
In Table 2, we give a number of iterations for solving the system (2.1). Compare these results

to those in Table 1. The speed of convergence is much higher than with the Jacobi method (2.3).
The values of the ratio, however, do not appear to approach a limiting value, even when looking at
values of k larger than those in the table.

k x
(k)
1 x

(k)
2 x

(k)
3 Error Ratio

0 0 0 0 2.00e+ 0
1 1.1111 1.6778 −0.9131 3.22e− 1 0.161
2 1.0262 1.9687 −0.9958 3.13e− 2 0.097
3 1.0030 1.9981 −1.0001 3.00e− 3 0.096
4 1.0002 2.0000 −1.0001 2.24e− 4 0.074
5 1.0000 2.0000 −1.0000 1.65e− 5 0.074
6 1.0000 2.0000 −1.0000 2.58e− 6 0.155

Table 2: Gauss-Seidel iteration for solving system (2.1)

2.2 Iterative Methods – General Theory

To understand the behavior of iteration methods, it is best to put them into a vector-matrix format.
To this end, we recall some notions and results from Linear Algebra.

Definition 2.1. Let A ∈ Rn×n.

– The polynomial p(λ) = det (A− λIn) is called the characteristic polynomial of A and the equa-

9



tion p(λ) = 0 the characteristic equation of A.

– The roots of p(λ) are called eigenvalues (e-values) of A.

– If λ ∈ C is an e-value of A, a vector x ∈ Rn, x ̸= 0 satisfying (A − λIn)x = 0 is called an

eigenvector (e-vector) of A, corresponding to the e-value λ.

– The set of all e-values of A, denoted by λ(A) is called the spectrum of A.

– The value ρ(A) = max{|λ|
∣∣ λ ∈ λ(A)} is called the spectral radius of A.

– The value tr(A) = a11 + · · ·+ ann is called the trace of A.

Definition 2.2. A matrix norm is a function || · || : Rn×n → R satisfying the conditions: ∀A,B ∈
Rn×n,∀α ∈ R,

(i) ||A|| ≥ 0, ||A|| = 0⇔ A = 0n.

(ii) ||αA|| = |α| · ||A||.
(iii) ||A+B|| ≤ ||A||+ ||B||.
(iv) ||AB|| ≤ ||A|| · ||B||.

The first three conditions define any norm on a vector space. The fourth one is specific to matrix
norms and it is necessary due to the fact that matrix multiplication is not done component-wise.

The easiest way of obtaining a matrix norm is from a vector one.

Definition 2.3. Let || · || be a norm on Rn. Then

||A|| = sup
v ̸=0

||Av||
||v||

= sup
||v||≤1

||Av|| = sup
||v||=1

||Av|| (2.5)

is the natural (subordinate, induced) matrix norm associated with the vector norm || · ||.

Remark 2.4.
1. It can be easily checked that (2.5) satisfies the conditions of Definition 2.2 and is indeed a matrix
norm.
2. A subordinate matrix norm is just a particular case for the norm of a linear mapping A : Rn → Rn.
3. For any induced norm,

||I|| = 1. (2.6)
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Theorem 2.5. Let A ∈ Rn×n. Then

a)

||A||1 = sup
v ̸=0

||Av||1
||v||1

= max
1≤j≤n

n∑
i=1

|aij| (the Minkovski norm),

||A||∞ = sup
v ̸=0

||Av||∞
||v||∞

= max
1≤i≤n

n∑
j=1

|aij| (the Chebyshev norm), (2.7)

||A||2 = sup
v ̸=0

||Av||2
||v||2

=
√

ρ(ATA) (the Euclidean norm).

b) The mapping || · ||F : Rn×n → Rn given by

||A||F =

[ n∑
i=1

n∑
j=1

|aij|2
]1/2

=
√
tr(ATA) (2.8)

is a nonsubordinate (||In||F =
√
n) matrix norm, called the Frobenius norm.

Now, to solve the system Ax = b, for a nonsingular matrix A ∈ Rn×n, suppose there exist
T ∈ Rn×n and c ∈ Rn, such that I − T is invertible and the solution x of Ax = b is the unique
fixed point of the equation

x = Tx+ c. (2.9)

Let x∗ be the solution and x(0) be an arbitrary vector (the initial approximation). Then, we use (2.9)
to define an iterative method by

x(k+1) = Tx(k) + c, k ∈ N. (2.10)

The matrix T should be chosen such that the system Tx = f is “easily solvable” (diagonal,
triangular, tridiagonal, etc.)
Regarding the convergence of such methods, we have the following results from Calculus and Linear
Algebra:

Lemma 2.6 (Geometric Series). Let X ∈ Rn×n. If ρ(X) < 1, then (I −X)−1 exists and

(I −X)−1 = I +X + · · ·+Xk + . . . . (2.11)
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Conversely, if the series in (2.11) is convergent, then ρ(X) < 1.

Theorem 2.7. The following are equivalent:

a) The iteration method (2.10) is convergent;

b) ρ(T ) < 1;

c) ||T || < 1 for some matrix norm || · ||.

Theorem 2.8. If ||T || < 1 for some matrix norm || · ||, then the sequence {x(k)}k∈N defined in (2.10)
converges to the unique fixed point x∗, starting with any x(0) ∈ Rn, and the error bounds

||x∗ − x(k)|| ≤ ||T ||
1− ||T ||

||x(k) − x(k−1)|| (2.12)

and

||x∗ − x(k)|| ≤ ||T ||k

1− ||T ||
||x(1) − x(0)|| ≤ ||T ||

1− ||T ||
||x(1) − x(0)||, (2.13)

hold for every k ∈ N∗.

Remark 2.9.
1. By Theorem 2.8, for a given error ε, we compute iterations until

||x(k) − x(k−1)|| ≤ 1− ||T ||
||T ||

ε. (2.14)

2. In particular, if ||T || < 1/2, then

||x∗ − x(k)|| ≤ ||x(k) − x(k−1)||

and the stopping criterion can be

||x(k) − x(k−1)|| ≤ ε.

Now, how to actually find the matrix T and the scalar c, satisfying (2.9)? Suppose we can write
A as

A = M −N. (2.15)
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This is called a splitting of A. If M is easily invertible (diagonal, triangular, etc.), then we can write

Ax = b ⇐⇒ (M −N)x = b ⇐⇒ Mx = Nx+ b ⇐⇒ x = M−1Nx+M−1b,

which is of the form (2.9), with

T = M−1N = M−1(M − A) = I −M−1A,

c = M−1b.

We then define the iteration method by

x(k+1) = M−1Nx(k) +M−1b, k ∈ N, (2.16)

with x(0) an arbitrary vector.
Assume A is nonsingular, with aii ̸= 0, i = 1, n. We can write

A = D − L− U,

with

D =


a11 0

a22
. . .

0 ann

 , −L =


0 0

a21 0
... . . .

an1 an2 . . . 0

 , −U =


0 a12 . . . a1n

0 . . . a2n
. . . ...

0 0

 ,

the diagonal, the lower triangular (without the diagonal) and the upper triangular (without the diag-
onal) parts of A.

For Jacobi iteration, take

M = D, N = L+ U, so

TJ = D−1(L+ U), cJ = D−1b.

The method is defined by

x(k+1) = D−1(L+ U)x(k) +D−1b, k ∈ N, x(0) ∈ Rn, (2.17)
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or, component-wise,

x
(k+1)
i =

1

aii

[
bi −

n∑
j=1
j ̸=i

aijx
(k)
j

]
, i = 1, n. (2.18)

What can be said about the convergence of the method? By Theorem 2.7, we need a matrix norm
such that ||TJ || < 1. Using Theorem 2.5, we want

||TJ ||∞ = max
1≤i≤n

n∑
j=1

∣∣∣aij
aii

∣∣∣ < 1,

which means

|aii| >
n∑

j=1
j ̸=i

|aij|, i = 1, n,

so, a diagonally dominant matrix A. Thus, for any diagonally dominant system, the Jacobi itera-
tive method converges and the error estimates from Theorem 2.8 can be used. More generally, a
necessary and sufficient condition for the convergence of the Jacobi iteration is

ρ(TJ) < 1.

For Gauss-Seidel iteration, we take

M = D − L, N = U, so

TGS = (D − L)−1U, cGS = (D − L)−1b.

Then the method is defined by

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b, k ∈ N, x(0) ∈ Rn, (2.19)

and each component, by

x
(k+1)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
, i = 1, n. (2.20)

Although it is not so trivial, it can be shown that for a diagonally dominant matrix, ||TGS|| < 1 and
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so the Gauss-Seidel iterative method converges at least as fast as the Jacobi one.

Acceleration methods; SOR Method

Most iterative methods have a regular pattern in which the error decreases. This can often be used
to accelerate the convergence. Rather than giving a general theory for the acceleration of iteration
methods for solving Ax = b, we just describe an acceleration of the Gauss-Seidel method. This is
one of the main cases of interest in applications.
We introduce an acceleration parameter ω and consider the following modification of the method:

M =
D

ω
− L, N =

(1− ω

ω
D + U

)
, so

Tω =
(D
ω
− L

)−1(1− ω

ω
D + U

)
, cω =

(D
ω
− L

)−1

b.

The acceleration method is defined by

x
(k+1)
i =

ω

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
+ (1− ω)x

(k)
i , i = 1, n. (2.21)

This is called the relaxation method. We have the following cases:
– ω < 1 is called subrelaxation;
– ω = 1 is the Gauss-Seidel method;
– ω > 1 is called overrelaxation, the SOR method, an abbreviation for successive overrelaxation.

It can be shown that, if aii ̸= 0, i = 1, n, then ρ(Tω) ≥ |ω − 1|. Thus, by Theorem 2.7, a
necessary condition for the convergence of the SOR method is

0 < ω < 2. (2.22)

Also, the following holds:

Theorem 2.10 (Ostrowski-Reich). If A is a positive definite matrix and 0 < ω < 2, then the SOR

iteration method converges for any choice of the initial approximation x(0) ∈ Rn.

The parameter ω is to be chosen to minimize the error, in order to make x(k) converge to x as
rapidly as possible. It was found that the optimal value for ω is

ω∗ =
2

1 +
√

1−
(
ρ
(
TJ

))2 . (2.23)
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Remark 2.11. Iterative methods are rarely used for systems of small order, because they are inef-
ficient, since the time needed to get the desired precision exceeds the time required for Gaussian
elimination. But for large systems (n ≥ 103), especially for sparse matrices, they can really make
a huge difference in the implementation and computational cost.

3 Conditioning of a Linear System

Recall (from Lecture 1) the issue of stability (sensitivity to errors/perturbations) and conditioning

(a measure of that sensitivity) of a mathematical problem.
For a general problem of the type

y = f(x), f : Rm → Rn,

we define

γij = (condijf)(x) =
xi
∂fj
∂xi

fj(x)
, i = 1,m, j = 1, n

and

Γ(x) =
[
γij

]
=



x1
∂f1
∂x1

f1(x)
. . .

xm
∂f1
∂xm

f1(x)
...

...

x1
∂fn
∂x1

fn(x)
. . .

xm
∂fn
∂xm

fn(x)


, (3.1)

called the conditioning matrix. Then, the condition number of f at x is defined by

(cond f)(x) = ||Γ(x)||, (3.2)

for a matrix norm || · ||. If f is a linear function, then

(cond f)(x) =
||x||

∣∣∣∣∣∣∂f
∂x

∣∣∣∣∣∣
||f(x)||

. (3.3)
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Now, for a linear system, we have A ∈ Rn×n, nonsingular and b ∈ Rn given. The problem is
finding x ∈ Rn such that

Ax = b.

So, in this case, the input data consists of A and b and the output data is the vector x. Then, we can
regard this problem as

x = f(b) = A−1b, f : Rn → Rn. (3.4)

Since f is linear and
∂f

∂b
= A−1, the condition number is

(cond f)(b) =
||b|| ||A−1||
||A−1b||

=
||Ax|| ||A−1||
||x||

= ||A−1|| ||Ax||
||x||

.

Then

max
b∈Rn
b ̸=0

(condf)(b) = ||A−1|| max
x∈Rn
x ̸=0

||Ax||
||x||

= ||A−1|| ||A||.

This is the conditioning number of the matrix A (and of the system):

cond(A) = ||A|| ||A−1||. (3.5)

If the matrix A is singular, by convention, cond(A) = ∞.

The number cond(A) will vary with the norm being used, but it is always bounded below by
one, since

1 = ||I|| = ||AA−1|| ≤ ||A|| ||A−1|| = cond(A).

If the condition number is nearly 1, then small relative perturbations in b will lead to similarly small
relative perturbations in the solution x. But if cond(A) is large, then there may be small relative
perturbations of b that will lead to large relative perturbations in x.
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Example 3.1. (Ill-conditioned Matrices)

1. Hilbert Matrix

Hn =

[
1

i+ j − 1

]
i,j=1,n

=



1
1

2
. . .

1

n

1

2

1

3
. . .

1

n+ 1

...
...

1

n

1

n+ 1
. . .

1

2n− 1


. (3.6)

This is a symmetric and positive definite matrix, so it is nonsingular. However, it is very ill-
conditioned, and increasingly so as n increases.

n cond2(Hn)
10 1.6e+ 13
20 2.45e+ 28
40 7.65e+ 58

Table 3: Condition numbers of Hilbert matrix

2. Vandermonde Matrix

Vn =


1 1 . . . 1

t1 t2 . . . tn
...

... . . . ...
tn−1
1 tn−1

2 . . . tn−1
n

 . (3.7)

For ti =
1

i
, i = 1, n, it can be shown that

cond∞(Vn) > nn+1.

18


	Factorization Based Methods - Continued
	LUP Factorization
	QR Factorization
	Cholesky Factorization

	Iterative Methods
	Jacobi and Gauss-Seidel Methods
	Iterative Methods – General Theory

	Conditioning of a Linear System

