
5 Divided and Finite Differences - Continued

Properties of divided differences

Theorem 5.1. Divided differences have a number of special properties that can simplify work with

them:

a)

f [x0, x1, . . . , xn] =
n∑

i=0

f(xi)

u′(xi)
=

n∑
i=0

f(xi)

ui(xi)
, (5.1)

where u(x) = (x− x0)(x− x1) . . . (x− xn) and ui(x) =
u(x)

x− xi

.

b) For any permutation {i0, i1, . . . , in} of the integers {0, 1, . . . , n},

f [xi0 , xi1 , . . . , xin] = f [x0, x1, . . . , xn]. (5.2)

c)

f [x0, x1, . . . , xn] =
(Wf)(x0, x1, . . . , xn)

V (x0, x1, . . . , xn)
, (5.3)

where

Wf(x0, x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣
1 x0 x2

0 . . . xn−1
0 f(x0)

1 x1 x2
1 . . . xn−1

1 f(x1)
...

...
...

...
...

1 xn x2
n . . . xn−1

n f(xn)

∣∣∣∣∣∣∣∣∣∣
and

V (x0, x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣
1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
...

...

1 xn x2
n . . . xn

n

∣∣∣∣∣∣∣∣∣∣
=

∏
0≤j<i≤n

(xi − xj) is the Vandermonde determinant.

d) Let ek(x) = xk, k ≥ 0. Then

ek[x0, x1, . . . , xn] =

{
0, k < n

1, k = n
.

1

For a polynomial of degree k, Pk = a0 + a1x+ · · ·+ akx
k,

Pk[x0, x1, . . . , xn] =

{
0, k < n

an, k = n
. (5.4)

e) If f ∈ Cn[a, b], where [a, b] is the smallest interval containing the distinct nodes {x0, . . . , xn},
then there exists ξn ∈ (a, b) such that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξn), (5.5)

(the mean-value formula for divided differences).

Remark 5.2. As a consequence of part e), if f ∈ Cn[a, b] and α ∈ [a, b], then

lim
x0,...,xn→α

f [x0, x1, . . . , xn] = lim
ξn→α

f (n)(ξn)

n!
=

1

n!
f (n)(α),

the computational formula for divided differences with multiple nodes.

5.2 Finite Differences

Definition 5.3. Consider the equidistant nodes xi = x0 + ih, i = 0, 1, . . . , n, h > 0 and denote by

fi = f(xi). The quantity

∆1f(xi) = f(xi+1)− f(xi) = fi+1 − fi (5.6)

is called the first-order forward difference of f with step h at xi, and

∆kf(xi) = ∆k−1f(xi+1)−∆k−1f(xi) = ∆k−1fi+1 −∆k−1fi (5.7)

is the kth-order forward difference of f with step h, at xi.

Remark 5.4.
1. As a convention, we use ∆0f(xi) = f(xi) = fi.

2. For easy computation (and implementation) of forward differences, we construct a table of for-

ward differences, similar to the one used for divided differences, illustrated below for 4 nodes.

2

x0 f0 −→ ∆f0 −→ ∆2f0 −→ ∆3f0

−→ −→ −→

x1 f1 −→ ∆f1 −→ ∆2f1

−→ −→

x2 f2 −→ ∆f2

−→

x3 f3

In a similar way, we define the backward difference∇ by

∇0fi = fi,

∇1fi = fi − fi−1, (5.8)

∇kfi = ∇k−1fi −∇k−1fi−1,

and they can also be easily computed in a table.

x0 f0

−→

x1 f1 −→ ∇f1
−→ −→

x2 f2 −→ ∇f2 −→ ∇2f2

−→ −→ −→

x3 f3 −→ ∇f3 −→ ∇2f3 −→ ∇3f3

Remark 5.5. These differences are referred to collectively as finite differences. Usually, if nothing
is specified, by “finite” differences we mean “forward” differences.

Denote by

X = {xi | xi = x0 + ih, i = 0, n, x0, h ∈ R}

and for f : X → R, by fi = f(xi).

3

Let us write a few finite differences and notice a pattern.

∆1f(xi) = fi+1 − fi,

∆2f(xi) = ∆1fi+1 −∆1fi = fi+2 − fi+1 −
(
fi+1 − fi

)
= fi+2 − 2fi+1 + fi,

∆3f(xi) = ∆2fi+1 −∆2fi = fi+3 − 2fi+2 + fi+1 −
(
fi+2 − 2fi+1 + fi

)
= fi+3 − 3fi+2 + 3fi+1 − fi.

It can easily be proved (by induction) that

∆nf(xi) =
n∑

k=0

(−1)k
(n

k

)
fn−k+i,

or, equivalently, by the symmetry of combinations,

∆nf(xi) =
n∑

k=0

(−1)n−k
(n

k

)
fk+i.

In particular, we have

∆nf(x0) =
n∑

k=0

(−1)n−k
(n

k

)
fk. (5.9)

Finite and divided differences for equally spaced nodes are closely related.

Proposition 5.6. Let f : X → R. Then

f [a, a+ h, . . . , a+ nh] =
1

n!hn
∆nf(a). (5.10)

4

Chapter 2. Numerical Solution of Systems
of Linear Algebraic Equations

Systems of simultaneous linear equations occur in solving problems in a wide variety of dis-
ciplines, including Mathematics, Statistics, physical, biological and social sciences, engineering,
business and many more. They arise directly in solving real-world problems, and they also occur as
part of the solution process for other problems. Numerical solutions of boundary and initial value
problems for differential equations are a rich source of linear systems, especially large-size ones.

In this chapter, we will examine the following problem: given a matrix A ∈ Rn×n and a vector
b ∈ Rn, find x ∈ Rn such that

Ax = b.

There are two types of methods for the solution of algebraic linear systems:
• direct (exact) methods, that provide a solution in a finite number of steps (e.g., Cramer, Gaus-

sian elimination, factorizations);
• iterative methods, which approximate the solution by a sequence converging to it (e.g., Jacobi,

Gauss-Seidel, SOR).

1 Direct Methods

1.1 Gaussian Elimination

A linear system is easy to solve when the matrix of the system is triangular:

Definition 1.1. A matrix A = [aij]i,j=1,n is called

- upper triangular, if aij = 0,∀i > j,

A =


a11 a12 . . . a1n

a22 . . . a2n
.

0 ann

 , (1.1)

5

- lower triangular, if aij = 0,∀i < j,

A =


a11 0

a21 a22
... . . .

an1 an2 . . . ann

 , (1.2)

- diagonal, if it is both upper and lower triangular, aij = 0,∀i ̸= j,

A =


a11 0

a22
. . .

0 ann

 . (1.3)

Remark 1.2. The determinant of an upper or lower triangular matrix is equal to the product of its
diagonal elements

det (A) = a11a22 . . . ann.

So, an upper or lower triangular matrix is nonsingular if and only if all of its diagonal entries are
nonzero.

Example 1.3. Solve the triangular systems

a)  2 4 2

0 −1 1

0 0 −1

x =

 8

0

−1

 , (1.4)

b)  1 0 0

1/2 1 0

1/2 1 1

x =

 8

4

3

 . (1.5)

6

Solution.
a) The upper triangular system is

2x1 + 4x2 + 2x3 = 8

−x2 + x3 = 0

−x3 = −1

We start from the bottom (the last equation) and solve recursively for each unknown:

x3 =
−1
−1

= 1,

x2 =
1

−1
(
0− x3

)
= 1,

x1 =
1

2

(
8− 4x2 − 2x3

)
= 1.

We found the solution

x = [1 1 1]T .

b) For the lower triangular system:
x1 = 8

1/2x1 + x2 = 4

1/2x1 + x2 + x3 = 3

we start from the top and solve each equation going down:

x1 =
8

1
= 8,

x2 =
1

1

(
4− 1

2
x1

)
= 0,

x3 =
1

1

(
3− 1

2
x1 − x2

)
= −1.

So the solution is

x = [8 0 − 1]T .

7

So, in general, for a nonsingular upper triangular matrix U , the system Ux = b is easily solved
by backward substitution:

xn =
bn
unn

,

xi =
1

uii

(
bi −

n∑
j=i+1

uijxj

)
, i = n− 1, 1

(1.6)

and if the nonsingular matrix L is lower triangular, then the system Lx = b is solved by forward
substitution:

x1 =
b1
l11

,

xi =
1

lii

(
bi −

i−1∑
j=1

lijxj

)
, i = 2, n.

(1.7)

Gaussian elimination is a procedure for transforming a system into an equivalent (upper) trian-
gular one, by doing the following elementary row operations:

- multiplying a row (equation) by a constant λ ̸= 0,

(λRi) → (Ri),

- multiplying a row by a constant λ ̸= 0 and adding it to another row,

(Ri + λRj) → (Ri),

- interchanging (permuting) two rows,

(Ri) ←→ (Rj).

All these elementary operations are performed on the augmented (extended) matrix of the system

Ã = [A | b] =


a11 a12 . . . a1n a1,n+1

a21 a22 . . . a2n a2,n+1

...
...

...
an1 an2 . . . ann an,n+1

 , (1.8)

where ai,n+1 = bi, i = 1, n.
Gaussian elimination goes as follows:
Assuming a11 ̸= 0, at the first step, we eliminate (make 0) the coefficients of x1 from every row
below, i.e., every Rj, j = 2, n, using a11, i.e. by

8

(
Rj −

aj1
a11

R1

)
→ (Rj).

Then we proceed the same for the coefficients of each xi, i = 2, n− 1, j = i+ 1, n. This way we
obtain a finite sequence of augmented matrices

Ã(1), Ã(2), . . . , Ã(n),

where Ã(1) = Ã and (at step k) Ã(k) =
[
a
(k)
ij

]
obtained by

(
Ri −

a
(k−1)
i,k−1

a
(k−1)
k−1,k−1

Rk−1

)
→ (Ri).

Here, we denoted by a
(l)
ij the (i, j) entry at step l. . The quantities

mi,k−1 =
a
(k−1)
i,k−1

a
(k−1)
k−1,k−1

, i = k, . . . , n (1.9)

are called multipliers. For equations i = k, . . . , n, we subtract mi,k−1 times Ek−1 from Ei, elimi-
nating xk−1 from Ei. The new coefficients and the right-hand sides in equations Ek through En are
defined by

a
(k)
ij = a

(k−1)
ij −mi,k−1a

(k−1)
kj , i, j = k, . . . , n,

b
(k)
i = b

(k−1)
i −mi,k−1b

(k−1)
k , i = k, . . . , n.

At every step k, the system corresponding to the augmented matrix Ã(k) is equivalent to the orig-
inal linear system (meaning, it has the same solution) and in it, the variable xk−1 was eliminated
from the equations Ek, Ek+1, . . . , En. Then the system corresponding to Ã(n) is an equivalent upper
triangular one: 

a
(1)
11 x1 + a

(1)
12 x2 + . . . + a

(1)
1nxn = a

(1)
1,n+1

+ a
(2)
22 x2 + . . . + a

(2)
2nxn = a

(2)
2,n+1

.
a
(n)
nnxn = a

(n)
n,n+1

, (1.10)

which is solved by backward substitution (1.6).
Of course, in all this we need a

(i)
ii ̸= 0.The element a(i)ii is called pivot. If at any time during

the elimination process, we find a
(k)
kk = 0, then we look further down in that column for a pivot,

i.e., we interchange rows
(Rk) ←→ (Rp),

9

where p is the smallest integer k + 1 ≤ p ≤ n with a
(k)
pk ̸= 0. If the original system is nonsingular,

it can be shown that one of the equations following Ek must contain a term involving xk with a
nonzero coefficient, so it is always possible to find a pivot.

In fact, in practice, when implementing Gaussian elimination, pivoting is necessary even if the
pivot is not zero, but small, compared to the rest of the elements in that column. We should avoid
using coefficients that are nearly zero as pivot elements, because such a pivot can produce substantial
rounding errors and even cancellations. Instead, we can use several types of pivoting.

• We can choose the pivot to be the largest element (in absolute value) in that column, below
the main diagonal, i.e.

∣∣a(k)pk

∣∣ = max
k≤l≤n

∣∣a(k)lk

∣∣. (1.11)

In most instances, it decreases the propagated effects of rounding errors. With partial pivoting,
the multipliers mi,k in (1.9) will satisfy

|mi,k| ≤ 1, 1 ≤ k < i ≤ n.

This will help reduce loss-of-significance errors, because multiplications by mik will not lead
to much larger numbers.
This is called partial pivoting (maximal pivoting on columns) and it is the most popular
one in practice.

• We can do scaled pivoting on columns: First, we define a scaling factor for each row

si = max
j=1,n

|aij| or si =
n∑

j=1

|aij|, i = 1, n.

If there exists an i such that si = 0, then the matrix is singular. For a nonsingular matrix, we
use the scaling factor to choose the pivot. At each step i, we find the smallest p, i ≤ p ≤ n

such that

|api|
si

= max
1≤j≤n

|aji|
sj

(1.12)

and then interchange rows (Ri) ←→ (Rp) so that the pivot is api. This ensures the fact
that the maximal element in each column has the relative size 1, before we compare and
interchange rows. Also, dividing by the scaling factor does not produce any extra rounding

10

errors.

• The third method is total (maximal) pivoting. At each step k, we find

|apq| = max{|aij|, i, j = k, n} (1.13)

and interchange both the rows and the columns,

(Rk) ←→ (Rp), (Ck) ←→ (Cq).

But then we have to keep track of the columns (unknowns) interchanges.

Remark 1.4. If A is singular of rank p− 1, then at step p we get

Ã(p) =



a
(1)
11 a

(1)
12 . . . a

(1)
1,p−1 a

(1)
1p . . . a

(1)
1n a

(1)
1,n+1

0 a
(2)
22 . . . a

(2)
2,p−1 a

(2)
2p . . . a

(2)
2n a

(2)
2,n+1

...
...

...
...

... a
(p−1)
p−1,p−1 a

(p−1)
p−1,p a

(p−1)
p−1,n a

(p−1)
p−1,n+1

... 0 . . . 0 a
(p)
p,n+1

...
...

0 0 a
(n)
n,n+1


.

So, if a(i)i,n+1 = b
(i)
i = 0, for all i = p, p+1, . . . , n, then the system is compatible, but undetermined

(i.e., it has an infinite number of solutions), otherwise, the system is incompatible (no solution).
Thus, Gaussian elimination can also be used to discuss the solvability of the linear system.

Example 1.5. Solve the system
x1 − x2 + x3 = −1

−2x1 + 2x2 + x3 = 2

−3x1 − x2 + 5x3 = −5
,

by Gaussian elimination with different types of pivoting.

Solution. The augmented matrix of the system is

Ã =

 1 −1 1 −1
−2 2 1 2

−3 −1 5 −5

 ,

11

Partial pivoting
On the first column, the largest element in absolute value is −3, so that will be the pivot. Thus, first
we interchange (R1)←→ (R3). We get

Ã ∼

 −3 −1 5 −5
−2 2 1 2

1 −1 1 −1


(− 2

3
R1 +R2) → (R2)

(1
3
R1 +R3) → (R3)

∼

 −3 −1 5 −5
0 8/3 −7/3 16/3

0 −4/3 8/3 −8/3


Further, we have

Ã ∼

 −3 −1 5 −5
0 8/3 −7/3 16/3

0 −4/3 8/3 −8/3

 (1
2
R2 +R3) → (R3)

∼

 −3 −1 5 −5
0 8/3 −7/3 16/3

0 0 3/2 0


Now we solve by back substitution (1.6), to get

x = [1 2 0]T .

Scaled partial pivoting
We compute the scaling factors using sums on each row. At the first step k = 1, we get

s = [3, 5, 9][
|aj,1|
sj

]
= [1/3, 2/5, 3/9] = [5/15, 6/15, 5/15], j = 1, 2, 3.

The maximum of the three fractions is the second, so p = 2. We interchange (R1) ←→ (R2) and
make zeros below it.

Ã ∼

 −2 2 1 2

1 −1 1 −1
−3 −1 5 −5


(1
2
R1 +R2) → (R2)

(− 3
2
R1 +R3) → (R3)

∼

 −2 2 1 2

0 0 3/2 0

0 −4 7/2 −8


At step k = 2, obviously, p = 3, so we interchange (R2)←→ (R3) to get

Ã ∼

 −2 2 1 2

0 −4 7/2 −8
0 0 3/2 0


12

and we are done. By back substitution we get the (obviously, same) solution

x = [1 2 0]T .

Total pivoting
At step k = 1, since

max
i,j=1,3

|aij| = 5 = |a33|,

we interchange both rows and columns, (R1)←→ (R3), (C1)←→ (C3), to get

Ã =

 1 −1 1 −1
−2 2 1 2

−3 −1 5 −5

 ∼
 −3 −1 5 −5
−2 2 1 2

1 −1 1 −1

 ∼
 5 −1 −3 −5

1 2 −2 2

1 −1 1 −1

 ,

which is now a system for the new unknown x′ = [x3 x2 x1]
T . We proceed to make zeros on the

first column below the diagonal.

Ã ∼

 5 −1 −3 −5
1 2 −2 2

1 −1 1 −1


(− 1

5
R1 +R2) → (R2)

(− 1
5
R1 +R3) → (R3)

∼

 5 −1 −3 −5
0 11/5 −7/5 3

0 −4/5 8/5 0


At step k = 2,

max
i,j=2,3

|aij| =
11

5
= |a22|,

so no (row or column) interchanges are necessary. We have

Ã ∼

 5 −1 −3 −5
0 11/5 −7/5 3

0 −4/5 8/5 0

 (4
11

R2 +R3) → (R3)
∼

 5 −1 −3 −5
0 11/5 −7/5 3

0 0 12/11 12/11


By back substitution, we get

x′ = [0 2 1]T and (again) x = [1 2 0]T .

Remark 1.6.
1. The elements under the main diagonal (which become 0) need not be computed.

13

2. When pivoting, we do not need to physically interchange rows or columns. Just keep one (or
two) permutation vector(s) p (q) with p[i] (q[j]) meaning that the row (column) p (q) has been
interchanged with row (column) i (j). This is especially a good solution if matrices are stored row
by row or column by column.
3. Gaussian elimination can be used to find the inverse A−1 of a nonsingular matrix. For each
k = 1, n, column k of A−1 can be found by solving the system Ax = ek, where {ek} is the
canonical basis of Rn, ek = [0 0 . . . 0 1 0 . . . 0]T , with 1 on the kth slot. Alternatively, the
inverse of A can be found by Gaussian elimination on the matrix

[A | I] ∼ . . . ∼ [I | A−1].

Computational Complexity

Since the time required for a certain algorithm to run depends on the details of the hardware used,
it is more representative to count the number of some elementary operations, such as multiplica-
tions, divisions, additions, and subtractions. Strictly speaking, we should count separately addi-
tions/subtractions and multiplications/divisions, since the latter take slightly more time to be per-
formed, but we will count everything together. Let us assess the computational cost of Gaussian
elimination and compare it to other methods.

Gaussian elimination

At step k = 1, we perform n− 1 divisions, (n− 1)n multiplications and (n− 1)n additions, so
a total of 2n(n− 1) + (n− 1) flops. At step k = 2, there are 2(n− 1)(n− 2) + (n− 2) flops and
so on until step k = n− 1. So, the actual elimination process requires

n−1∑
k=1

[
2(n− k)(n− k + 1) + (n− k)

]
=

n−1∑
i=1

[
2i(i+ 1) + i

]
=

n(n− 1)(4n+ 7)

6

flops. Back substitution adds another

1 + 3 + · · ·+ 2n− 1 =
2n−1∑
i=1

i− 2
n−1∑
i=1

i = n2

flops, for a total of

n(4n2 + 9n− 7)

6
= O

(2
3
n3
)

operations.

14

Cramer’s rule

Assume the determinants in Cramer’s rule are computed using expansion by minors. That means
that to solve an n × n system, we have to calculate n + 1 determinants. If Dn denotes the number
of elementary operations needed to compute the determinant of an n× n matrix, then

D2 = 2 + 1 = 3 (two multiplications and one subtraction),
D3 = 3D2 + 3 + 2 (3D2, 3 multiplications and 2 additions/subtractions),
. . .

Dn = nDn−1 + n+ n− 1.

So,

Dn > nDn−1 > n(n− 1)Dn−2 > . . . > n(n− 1) . . . 2D1 = n!.

Then the operation count for Cramer’s rule is

O
(
(n+ 1)!

)
.

For example, for n = 10, Gaussian elimination uses about 805 operations, while Cramer’s rule uses
around 3, 628, 800 operations. This should emphasize the point that Cramer’s rule is not a practical
computational method, and that it should be considered as just a theoretical mathematics tool.

1.2 Factorization Based Methods

These are methods using the fact that the matrix of coefficients of a linear system being solved can
be factored (decomposed) into the product of two triangular matrices.

1.2.1 LU Factorization

Theorem 1.7. If no row interchanges are necessary in the Gaussian elimination process for solving

the system Ax = b, then A can be factored as

A = LU, (1.14)

where L and U are lower and upper triangular matrices, respectively. The pair (L,U) is called an

LU factorization (decomposition) of the matrix A.

Sketch of Proof. The first step is to partition A as

15

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

 =

[
a11 w∗

v A′

]
,

where v is a column vector of length n − 1, w∗ is a row vector of length n − 1 and A′ is an
(n− 1)× (n− 1) matrix. Then we can factor A as

A =

[
a11 w∗

v A′

]
=

[
1 0

v/a11 In−1

] [
a11 w∗

0 A′ − vw∗/a11

]
.

The matrix A′ − vw∗/a11 is called the Schur complement of A with respect to a11.
Then, we proceed recursively:

A′ − vw∗/a11 = L′U ′.

So

A =

[
1 0

v/a11 In−1

] [
a11 w∗

0 A′ − vw∗/a11

]

=

[
1 0

v/a11 In−1

] [
a11 w∗

0 L′U ′

]

=

[
1 0

v/a11 L′

] [
a11 w∗

0 U ′

]

until we get a scalar (a 1× 1 matrix) that can no longer be partitioned.

Remark 1.8. If A = LU , then solving the system Ax = b is reduced to solving two triangular
systems

Ly = b and
Ux = y.

(1.15)

Example 1.9. Use LU decomposition to solve the system
2x1 + 4x2 + 2x3 = 8

x1 + x2 + 2x3 = 4

x1 + x2 + x3 = 3

16

Solution. We have

A =

 2 4 2

1 1 2

1 1 1

 =

 2 4 2

1 1 2

1 1 1

 ,

so, at the first step,

a11 = 2, v =

[
1

1

]
, w∗ = [4 2], A′ =

[
1 2

1 1

]
,

 2 4 2

1/2

1/2

 .

The first Schur complement is

A′ − vw∗/a11 =

[
1 2

1 1

]
− 1

2

[
1

1

]
[4 2] =

[
1 2

1 1

]
−

[
2 1

2 1

]
=

[
−1 1

−1 0

]

and, for now, we have 2 4 2

1/2 −1 1

1/2 −1 0

 =

 2 4 2

1/2 −1 1

1/2 −1 0

 =

 2 4 2

1/2 −1 1

1/2 1

 ,

where 1 was obtained by dividing
−1
−1

.
The last Schur complement is

0− (−1)/(−1) · 1 = −1

and the final decomposition is  2 4 2

1/2 −1 1

1/2 1 −1

 .

We take the upper triangular part (including the main diagonal) for U and the lower triangular part
(without the main diagonal) for L (which will have all 1’s on the main diagonal), to get

L =

 1 0 0

1/2 1 0

1/2 1 1

 , U =

 2 4 2

0 −1 1

0 0 −1



17

and check that indeed A = LU .
Now, solve Ly = b = [8 4 3]T , which, from Example 1.3b) has solution y = [8 0 − 1]T

and then Ux = [8 0 − 1]T , which, from Example 1.3a), gives the solution

x = [1 1 1]T .

Check that Ax = b.

Remark 1.10.
1. If all that is required is that L be lower and U be upper triangular, then the LU decomposition
is not unique. We can make it unique by imposing more conditions. For instance, if we require
lii = 1, i = 1, n, we have Doolittle factorization and if we impose uii = 1, i = 1, n, we get
the Crout factorization. The procedure described in the proof of Theorem 1.7 leads to Doolittle
factorization.
2. The matrix U = [uij] in the Doolittle factorization is the upper triangular matrix obtained by
Gaussian elimination (without pivoting),

uij = a
(i)
i,j , i ≤ j, (1.16)

while L = [lij] is the matrix of the multipliers

lij = mij =
a
(j)
i,j

a
(j)
j,j

, i ≥ j. (1.17)

3. Examples of cases when no row interchanges are necessary:

- A is diagonally dominant on rows,

|aii| >
n∑

j=1
j ̸=i

|aij|, i = 1, n. (1.18)

- A is positive definite,

xTAx > 0, ∀x ̸= 0. (1.19)

18

	Divided and Finite Differences - Continued
	Finite Differences

	Direct Methods
	Gaussian Elimination
	Factorization Based Methods
	LU Factorization

