
Chapter 5. Numerical Solution of Nonlinear Equations

1 Introduction to Iterative Methods

Finding one or more roots of an equation

f(x) = 0, (1.1)

is one of the most commonly occurring problems in Applied Mathematics. Even the simplest of non-
linear equations – e.g., algebraic equations – are known to not admit solutions that are expressible
rationally in terms of the data. It is therefore impossible, in general, to compute roots of nonlinear
equations in a finite numbers of arithmetic operations.

The function f : Rm → Rn is a nonlinear function, which will be assumed to have a certain
degree of smoothness. If n > 1, then (1.1) represents a system of n equations (at least one nonlinear)
with m unknowns.

For now, we will restrict our discussion to the case m = n = 1, although many of the procedures
we describe can easily be generalized to the multidimensional case.

Definition 1.1. A number α ∈ C satisfying equation (1.1) is called a zero or a root of f .

As mentioned before, in most cases, explicit solutions of equation (1.1) are not available and
we must try to find a root to any specified degree of accuracy. The numerical methods for finding
the roots will be iterative methods and will require the knowledge of one (or more) initial value(s)
x0 (x1, . . . ). Then the method will produce a sequence {xn}n∈N of approximations of α, such that
lim
n→∞

xn = α. These initial values will be determined, in general, from the context of the problem or
from the graph of the function.
The analysis of an iterative method will include
– the proof of convergence, xn → α, as n → ∞;
– finding the interval of convergence, i.e. the set of values of the initial guess(es) x0 (x1, . . . ) for
which the method converges;
– determining the speed of convergence.

What makes an iterative method better than another is how fast it converges to the desired solu-
tion. Regarding the speed of convergence, we define the following:
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Definition 1.2. We say that a sequence of iterates {xn}n∈N converges to α with order of conver-
gence p ≥ 1, if

|xn+1 − α| ≤ c |xn − α|p, for all n ∈ N, (1.2)

where c > 0 is a constant independent of n.

If p = 1, the method is said to converge linearly to α, in which case we also require that c < 1.

Then the constant c is called the rate of linear convergence of xn to α.

For 1 < p < 2, we say that the convergence is superlinear.

Remark 1.3. If p = 1, then

|xn − α| ≤ c |xn−1 − α| ≤ . . . ≤ cn |x0 − α|,

which is why we require that c < 1.

2 Common Rootfinding Methods

We start with three simple methods and then give a general theory for one-point iteration methods.
We recall some known results from Analysis, that will be used in the sequel.

Theorem 2.1. [Intermediate Value Theorem]
If f : [a, b] → R is a continuous function, then it takes on any given value between f(a) and f(b)

at some point within the interval. As a consequence, if a continuous function has values of opposite

sign inside an interval [a, b], then it has at least one root in that interval.

Theorem 2.2. [Rolle’s Theorem]
If a function f is continuous on [a, b] and differentiable on (a, b), with f(a) = f(b), then there exists

a point c ∈ (a, b) such that f ′(c) = 0. As a consequence, between any two distinct real roots of f ,

there is a root of the derivative.

So, combining the two, we can find the number of real zeros of a function (satisfying the condi-
tions above) and locate them, by counting the number of sign changes of the function at the roots of
the derivative and endpoints of the domain of definition.

2.1 Bisection Method

Assume that f : R → R is continuous on an interval [a, b] ⊂ R and that

f(a)f(b) < 0. (2.1)
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Then, by the Intermediate Value Theorem, there exists α ∈ (a, b) such that f(α) = 0.
The simplest numerical procedure for finding a root is to repeatedly halve (bisect) the interval

[a, b], keeping the half on which f(x) changes sign. This procedure is called the bisection method.
Denoting by [a1, b1] = [a, b], the method will produce a sequence of embedded intervals [an, bn],
such that for every n ∈ N, α ∈ [an, bn], f(an)f(bn) < 0, and a sequence of approximations

cn =
an + bn

2
(2.2)

of the root α (see Figure 1).

a bc1c2

c3 c4

Fig. 1: Bisection method

Usually [a, b] is chosen to contain only one root α, but the following algorithm for the bisection
method will always converge to some root α ∈ [a, b], because of (2.1).

Algorithm 2.3. [Bisection method]
function α = Bisect(f, a, b, ε)

1. Define c = (a+ b)/2.
2. If b− c ≤ ε, then α = c and exit.
3. If sign(f(b)) · sign(f(c)) ≤ 0, then a = c; otherwise, b = c.
4. Return to step 1.
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The sequence {an}n∈N is monotonely increasing, sequence {bn}n∈N is monotonely decreasing and

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn = α.

Also, we have

|xn − α| ≤ bn − an =
b− a

2n
, (2.3)

|xn+1 − α| ≤ 1

2
|xn − α|,

which shows that the bisection method converges linearly (order of convergence p = 1) with a rate

of convergence of
1

2
.

Example 2.4. Find the largest root of

f(x) ≡ x6 − x− 1 = 0, (2.4)

with an error of ε = 0.001.

Solution. First, let us see how many real roots are there and where they are (approximately) located.
We have

f(x) = x6 − x− 1,

f ′(x) = 6x5 − 1.

The derivative f ′ has only one real root, namely
1
5
√
6

. Now,

f
( 1

5
√
6

)
=

1

6
· 1

5
√
6
− 1

5
√
6
− 1 = −5

6
· 1

5
√
6
− 1 < 0,

so the table of variation of f is

x −∞ 1
5
√
6

∞

f + − +
.

Thus, f has two real roots, one in
(
− ∞,

1
5
√
6

)
and one, α ∈

( 1
5
√
6
,∞

)
(which we want to

approximate).
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In fact, since

f(−1) = 1, f(0) = −1 and

f(1) = −1, f(2) = 61,

we have a more precise location: a negative root between (−1, 0) and the positive root that we seek,
α ∈ (1, 2). That also gives us the starting interval for the bisection method. Alternatively, we can
see from the graph the approximate location of the two real roots (see Figure 2).

-1 -0.5 0 0.5 1 1.5

-2

0

2

4

6

8

10

Fig. 2: Function f(x) = x6 − x− 1

So, we start with the interval [a1, b1] = [1, 2]. How many iterations are needed for precision
ε = 0.001? We find n from (2.3):

b− a

2n
≤ ε, which means

n ≥ log2

(b− a

ε

)
, i.e., in our example,

n ≥ log2

( 1

10−3

)
= 9.9658.

The results of the bisection method are shown in Table 1. Indeed, after n = 10 iterations, we
obtain the desired precision.
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n an bn cn bn − cn f(cn)
1 1.0000 2.0000 1.5000 0.5000 8.8906
2 1.0000 1.5000 1.2500 0.2500 1.5647
3 1.0000 1.2500 1.1250 0.1250 −0.0977
4 1.1250 1.2500 1.1875 0.0625 0.6167
5 1.1250 1.1875 1.1562 0.0312 0.2333
6 1.1250 1.1562 1.1406 0.0156 0.0616
7 1.1250 1.1406 1.1328 0.0078 −0.0196
8 1.1328 1.1406 1.1367 0.0039 0.0206
9 1.1328 1.1367 1.1348 0.0020 0.0004
10 1.1328 1.1348 1.1338 0.00098 −0.0096

Table 1: Bisection Method for x6 − x− 1 = 0

Remark 2.5. The bisection method is a two-point method, since two approximate values are needed
to obtain an improved value. There are several advantages to the bisection method. The principal
one is that the method is guaranteed to converge, as long as the function f is continuous and (2.1)
is satisfied. In addition, the error bound given in (2.3) is guaranteed to decrease by one half with
each iteration. This relation can also be used as a stopping criterion, as was done in the previous
example. The principal disadvantage of the bisection method is that it generally converges slowly
(only linearly), more slowly than most other methods. Also, it only approximates real roots.

The next two methods follow the same idea: approximate f by a linear interpolation polynomial
and find the root of that polynomial. In other words, the graph of y = f(x) is approximated by a
straight line and the x-intercept of that line is approximating the root of f .

2.2 Secant Method

Assume that two initial guesses to α are known and denote them by x0 and x1. We approximate f

by its Lagrange polynomial at the nodes x0 and x1. So the graph of y = f(x) is approximated by
the secant line determined by the points (x0, f(x0)) and (x1, f(x1)). The root α of f is then approx-
imated by x2, the x-intercept of the secant line. We hope x2 will be an improved approximation of
α. This is illustrated in Figure 3.

Let us find the value of x2. The equation of the secant line is

y − f(x1) =
f(x1)− f(x0)

x1 − x0

(x− x1).
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x0 x1x2 x3

Fig. 3: Secant method

We find its point of intersection with the x-axis by letting y = 0 and solving for x. We get

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)

Having found x2, we use x1 and x2 as a new set of approximate values for α. This leads to an
improved value x3. Recursively, we obtain a sequence of iterates given by

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
, n = 1, 2, . . . , (2.5)

called the secant method.

Example 2.6. We solve again the equation

f(x) ≡ x6 − x− 1 = 0,

which was used previously as an example for the bisection method.

Solution. We start with
x0 = 1, x1 = 2.

The results are given in Table 2, including the quantities xn − xn−1 as an estimate of α− xn−1. The
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iterate x8 equals α rounded to nine significant digits.

n xn f(xn) xn − xn−1 α− xn−1

0 2.0 61.0
1 1.0 −1.0 −1.0
2 1.01612903 −9.15e− 1 1.61e− 2 1.35e− 1
3 1.19057777 6.57e− 1 1.74e− 1 1.19e− 1
4 1.11765583 −1.68e− 1 −7.29e− 2 −5.59e− 2
5 1.13253155 −2.24e− 2 1.49e− 2 1.71e− 2
6 1.13481681 9.54e− 4 2.29e− 3 2.19e− 3
7 1.13472365 −5.07e− 6 −9.32e− 5 −9.27e− 5
8 1.13472414 −1.13e− 9 4.92e− 7 4.92e− 7

Table 2: Secant Method for x6 − x− 1 = 0

The secant method is also a two-point iterative method. Unlike the bisection method, it does not

always converge. For a convergence and error analysis, let us compute, from (2.5),

xn+1 − α = xn − α− f(xn)
xn − xn−1

f(xn)− f(xn−1)

= xn − α− f(xn)

f(xn)− f(xn−1)

xn − xn−1

= xn − α− f(xn)− f(α)

f(xn)− f(xn−1)

xn − xn−1

, since f(α) = 0.

Further, we make use of divided differences and obtain

xn+1 − α = xn − α− (xn − α)
f [xn, α]

f [xn−1, xn]

= (xn − α)

[
1− f [xn, α]

f [xn−1, xn]

]
= (xn − α)

f [xn−1, xn]− f [xn, α]

f [xn−1, xn]

= (xn − α)(xn−1 − α)
f [xn−1, xn, α]

f [xn−1, xn]
,
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so, assuming f is smooth enough,

xn+1 − α = (xn − α)(xn−1 − α)
f ′′(ξn)

2f ′(ζn)
, (2.6)

with ζn between xn and xn−1, and ξn between the smallest and the largest of the numbers α, xn and
xn−1. Using (2.6) and a limiting argument, we have the following convergence result.

Theorem 2.7. Assume f , f ′ and f ′′ are continuous on an interval Iε = (α − ε, α + ε) containing

the simple root α (f ′(α) ̸= 0). Then, for starting values x0 and x1 sufficiently close to α, the iterates

in (2.5) converge to α, with order of convergence

p = r =
1 +

√
5

2
≈ 1.618033 . . . , (2.7)

known as the golden ratio.

Thus, the secant method converges superlinearly.

Remark 2.8.
1. To understand what “sufficiently close” means in the theorem above, let

Mε =
max
Iε

|f ′′(x)|

2min
Iε

|f ′(x)|
, e0 = |x0 − α|, e1 = |x1 − α|. (2.8)

Then the method above will converge if x0, x1 ∈ Iε, with ε > 0 chosen so that

max{Mεe0,Mεe1} < 1. (2.9)

2. It is clear now that the secant method does not always converge, but when it does, it does so faster

than the bisection method (its order of convergence is higher). That was obvious in our example.
3. Another advantage is that the secant method can be used to approximate complex roots, as well,
if the initial values x0 and x1 are taken to be complex numbers satisfying the conditions above.
4. It can be shown that

lim
n→∞

|xn+1 − xn|
|xn − α|

= 1 and, thus,

|xn − α| ≈ |xn+1 − xn|, for sufficiently large n,
(2.10)

which can be used as a stopping criterion.
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2.3 Newton’s Method

In a similar fashion, now we start with one initial value, x0 and approximate f by its linear Taylor
polynomial at the double node x0. In other words, the graph of y = f(x) is approximated by the
line tangent to the graph of f at the point (x0, f(x0)). The root α of f is then approximated by x1,
the point of intersection of the tangent line with the x-axis. If x0 is close enough to α, then the root
of the Taylor polynomial should be close to α.

The tangent line at x0 has equation

y − f(x0) = f ′(x0)(x− x0),

so, for x1, we find

x1 = x0 −
f(x0)

f ′(x0)
.

Repeat the process to further improve the estimate of α. Recursively, we get

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, . . . . (2.11)

This is called Newton’s (tangent) method and it is illustrated in Figure 4.

x0 x1

x2

Fig. 4: Newton’s method

10



Example 2.9. Let us approximate the positive solution of

f(x) ≡ x6 − x− 1 = 0,

using Newton’s method.

Solution. An initial guess x0 can be taken from the graph of y = f(x) in Figure 2. The iterative
method is given by

xn+1 = xn −
x6
n − xn − 1

6x5
n − 1

, n ≥ 0.

Table 3 shows the results of Newton’s method with initial value x0 = 1.5.

n xn f(xn) xn − xn−1 α− xn−1

0 1.5 8.89e+ 1
1 1.30049088 2.54e+ 1 −2.00e− 1 −3.65e− 1
2 1.18148042 5.38e− 1 −1.19e− 1 −1.66e− 1
3 1.13945559 4.92e− 2 −4.20e− 2 −4.68e− 2
4 1.13477763 5.50e− 4 −4.68e− 3 −4.73e− 3
5 1.13472415 7.11e− 8 −5.35e− 5 −5.35e− 5
6 1.13472414 1.55e− 15 −6.91e− 9 −6.91e− 9

Table 3: Newton’s Method for x6 − x− 1 = 0

As seen from the table, the convergence is very rapid. The iterate x6 is accurate (almost) to the
machine precision of around 16 decimal digits.

As before, we can compute

xn+1 − α = (xn − α)2
f [xn, xn, α]

f [xn, xn]

= (xn − α)2
f ′′(ξn)

2f ′(xn)
, (2.12)

with ξn between α and xn. Then we have the following convergence result.

Theorem 2.10. Assume f , f ′ and f ′′ are continuous on an interval Iε = (α− ε, α + ε) containing

the simple root α (f ′(α) ̸= 0). Then, if the initial value x0 is sufficiently close to α, the iterates in

11



(2.11) converge to α and

lim
n→∞

xn+1 − α

(xn − α)2
=

f ′′(α)

2f ′(α)
, (2.13)

which shows that the order of convergence of Newton’s method is p = 2.

Remark 2.11.
1. Similarly with Remark 2.8, “sufficiently close” means x0 ∈ Iε, where ε is chosen so that Mεe0 <

1, with Mε and e0 defined in (2.8).
2. Again, as before, Newton’s method does not always converge, but when it does, it does so faster
(p = 2) than the bisection method (p = 1) and the secant method (p = (1 +

√
5)/2 ≈ 1.618).

3. Also, Newton’s method can be used to approximate complex roots, as well, if the initial value x0

is a complex number satisfying the conditions above.
4. Again, for sufficiently large n,

|xn − α| ≈ |xn+1 − xn|,

which can be used as a stopping criterion.
5. Unlike the bisection and secant methods, Newton’s method is a one-step iterative method, as it
only requires one initial value. Later on, we will give a more comprehensive analysis of one-step
iterative methods.

2.4 Comparison Between Newton’s and Secant Methods

As we have seen, Newton’s method and the secant method are closely related. If the approximation

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

is used in Newton’s formula (2.11), we obtain the secant formula (2.5).
The conditions for convergence are almost identical and the error formulas are similar. Nonethe-

less, there are two major differences. Newton’s method requires two function evaluations per iterate,
those of f(xn) and f ′(xn), whereas the secant method requires only one function evaluation per it-
erate, that of f(xn) (provided that the value of f(xn−1) is retained from the last iteration). So,
Newton’s method is generally more expensive per iteration. On the other hand, it converges more
rapidly (order p = 2 versus p = r ≈ 1.62) and consequently, it will require fewer iterations to
attain a given desired accuracy. A comparison of the expenditure of computational time needed to
approximate a root α within a desired tolerance, can be made.
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To simplify the analysis, we assume that the initial guesses are quite close to the desired root,
so both methods converge. Let t be the time needed to evaluate f(x), and s · t the time required to
evaluate f ′(x). By writing the operations involved in the two methods, it can be then shown that the
minimum time to obtain the desired accuracy with Newton’s method is

TN =
(1 + s)tK

log 2
,

while, for the secant method, a similar calculation shows that the minimum time necessary to obtain
the desired accuracy is

TS =
tK

log r
,

where K is a positive constant that depends on ε, x0 and c =

∣∣∣∣ f ′′(α)

2f ′(α)

∣∣∣∣. Thus,

TS

TN

=
log 2

(1 + s) log r
.

The secant method is faster than Newton’s method if the ratio is less than one, i.e.

TS

TN

< 1

s >
log 2

log r
− 1 ≈ 0.44.

In conclusion, if the time needed to evaluate f ′(x) is more than 44% of that necessary to evaluate
f(x), then the secant method is more efficient. In practice, many other factors will affect the relative
costs of the two methods, so that the .44 factor should be used with caution.

3 One-Point Iteration Methods – General Theory

3.1 Fixed Point Iteration

A classical approach is to reformulate equation f(x) = 0 as

x = g(x) (3.1)
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and find a fixed point for g. Let us first note that the form (3.1) is not restrictive in any way. In fact,
any equation can be written in the form (3.1) in a multitude of ways.

Example 3.1. Consider the equation

x2 − 3 = 0.

It can be rewritten, for instance, as

(a) x = x2 + x− 3,

(b) x =
3

x
,

(c) x =
1

2

(
x+

3

x

)
,

(d) x = x+ c(x2 − 3), for some constant c ∈ R,

and many other ways.

Now we can employ fixed point theory to discuss the solvability of equation (3.1). In what
follows, the notation

g
(
[a, b]

)
⊆ [a, b]

means
x ∈ [a, b] =⇒ g(x) ∈ [a, b].

Lemma 3.2. Let g ∈ C[a, b], such that g
(
[a, b]

)
⊆ [a, b]. Then g has at least one fixed point in [a, b].

Proof. This follows immediately from the Intermediate Value Theorem applied to the function

G(x) = g(x)− x.

Since G is continuous and G(a) ≥ 0, G(b) ≤ 0, G must have at least one zero in [a, b], which
is, obviously, a fixed point of g.

Theorem 3.3. [Banach] Let g ∈ C[a, b], with g
(
[a, b]

)
⊆ [a, b]. Assume that there exists 0 < λ < 1

such that

∣∣g(x)− g(y)
∣∣ ≤ λ |x− y|, ∀x, y ∈ [a, b] (i.e., g is a contraction). (3.2)
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Then g has a unique fixed point α ∈ [a, b]. Furthermore, the iterates

xn+1 = g(xn), n ≥ 0, (3.3)

converge to α, for any choice of x0 ∈ [a, b] and the following error estimates hold:

|xn − α| ≤ λ |xn−1 − α|, n ≥ 1,

|xn − α| ≤ λn

1− λ
|x1 − x0|.

(3.4)

Proof. The existence of the fixed point is guaranteed by Lemma 3.2.
To prove its uniqueness, assume there are two fixed points, α = g(α), β = g(β), α ̸= β. Then

|α− β| =
∣∣g(α)− g(β)

∣∣ (3.2)

≤ λ |α− β|

and, so,

(1− λ)|α− β| ≤ 0,

which is a contradiction. Thus, α = β.
To prove the convergence, let us note that

x0 ∈ [a, b] =⇒ x1 = g(x0) ∈ [a, b] =⇒ · · · =⇒ xn ∈ [a, b], ∀n ≥ 0.

Then,

|xn − α| =
∣∣g(xn−1)− g(α)

∣∣ ≤ λ
∣∣xn−1 − α

∣∣ = λ
∣∣g(xn−2)− g(α)

∣∣
≤ λ2

∣∣xn−2 − α
∣∣ ≤ . . . ≤ λn |x0 − α|.

Letting n → ∞, since λn → 0, it follows that xn → α and the first bound in (3.4) holds.
For the second bound, we write

|x0 − α| ≤ |x0 − x1|+ |x1 − α| ≤ |x0 − x1|+ λ |x0 − α|,

|x0 − α| ≤ 1

1− λ
|x1 − x0|.

Combining this with the previous relation, we get the second bound in (3.4).

Remark 3.4.
1. The first bound shows that {xn}n∈N converges linearly, with a rate of convergence bounded by
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the contraction constant λ.
2. From the proof of Theorem 3.3, we can also show that

|xn − α| ≤ 1

1− λ
|xn+1 − xn| and, hence,

|xn+1 − α| ≤ λ |xn − α| ≤ λ

1− λ
|xn+1 − xn|,

which gives a stopping criterion

|xn+1 − xn| ≤ 1− λ

λ
ε. (3.5)

3. If g is also differentiable on (a, b), then, by the MVT, there exists c ∈ (a, b) such that

g(x)− g(y) = g′(c)(x− y),∀x, y ∈ [a, b].

Letting λ = max
x∈[a,b]

∣∣g′(x)∣∣, it follows that

∣∣g(x)− g(y)
∣∣ ≤ λ |x− y|, ∀x, y ∈ [a, b].

Then, we can restate the convergence result.

Theorem 3.5. Let g ∈ C1[a, b], such that g
(
[a, b]

)
⊆ [a, b] and

λ := max
x∈[a,b]

∣∣g′(x)∣∣ < 1. (3.6)

Then:

a) Function g has a unique fixed point α ∈ [a, b].

b) For any initial choice x0 ∈ [a, b], the sequence xn+1 = g(xn) converges to α, as n → ∞.

c) |xn − α| ≤ λn|x0 − α| ≤ λn

1− λ
|x1 − x0|, n ≥ 1.

d)

lim
n→∞

xn+1 − α

xn − α
= g′(α), (3.7)

so, if g′(α) ̸= 0, the iterative method xn+1 = g(xn) is linearly convergent to the root α with rate

of convergence bounded by λ.

The conditions of Theorem 3.5 can be relaxed and imposed only locally, near the root α.
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Theorem 3.6. Assume α is a fixed point of g and that g is continuously differentiable in a neighbor-

hood of α, with

|g′(α)| < 1. (3.8)

Then the conclusions of Theorem 3.5 still hold, provided that x0 is chosen sufficiently close to α.

Example 3.7. Refer back to the equation x2 − 3 = 0 in Example 3.1, with α =
√
3. Let us see

which of the four iterative methods are convergent, for x0 sufficiently close to α.

Solution.
(a)

g(x) = x2 + x− 3, g′(x) = 2x+ 1, g′(α) = 2
√
3 + 1 > 1,

so this method does not converge.
(b)

g(x) =
3

x
, g′(x) = − 3

x2
, g′(α) = −1,

so this method does not converge, either.
(c)

g(x) =
1

2

(
x+

3

x

)
, g′(x) =

1

2

(
1− 3

x2

)
, g′(α) = 0.

This method will converge at least linearly.
(d)

g(x) = x+ c(x2 − 3), g′(x) = 1 + 2cx, g′(α) = 1 + 2c
√
3.

For convergence, pick c such that |g′(α)| < 1, i.e., − 1√
3

< c < 0.

For a good rate of linear convergence, pick c such that 1+2c
√
3 ≈ 0, or c ≈ − 1

2
√
3

, for example,

c = −1

4
.
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Example 3.8. How many real roots does the equation

x− 1− arctanx = 0 (3.9)

have? Will the iterative method

xn+1 = 1 + arctanxn (3.10)

converge? For what starting values x0? Find a bound for the error.

Solution. First, let us recall that the function arctanx is defined on the entire R, but takes values
only in the interval

(
− π

2
,
π

2

)
(see its graph below). That means that

−π

2
< arctanx <

π

2
, ∀x ∈ R.

Fig. 5: Function arctanx

Now, to find the number of real roots, let

f(x) = x− 1− arctanx.
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Then

f ′(x) = 1− 1

1 + x2
=

x2

1 + x2
≥ 0

and is 0 only for x = 0. The table of variation of f is

x −∞ 0 ∞
f − − +

.

So there is only one real root α > 0. To locate it better, compute a few more values:

f(1) = 1− 1− π

4
= −π

4
< 0,

f
(
1 +

π

2

)
= 1 +

π

2
− 1− arctan

(
1 +

π

2

)
=

π

2
− arctan

(
1 +

π

2

)
> 0,

so α ∈
(
1, 1 +

π

2

)
.

To study the iterative method (3.10), let

g(x) = 1 + arctanx.

Now equation (3.9) can be written in the fixed-point form x = g(x) and the iteration (3.10) is given
by xn+1 = g(xn).

Let us see if we can use Theorem 3.5, a global result, i.e., find an interval [a, b] such that
g
(
[a, b]

)
⊆ [a, b]. Since arctanx ≤ π

2
, it follows that g(x) = 1 + arctanx ≤ 1 +

π

2
, for

all x ∈ R. Also,

g′(x) =
1

1 + x2
,

which is strictly positive for all x ∈ R. That means that g is strictly increasing on R. So, for
x ∈

[
1, 1 +

π

2

]
, we have

g(1) ≤ g(x) ≤ g
(
1 +

π

2

)
.

But

g(1) = 1 +
π

4
> 1 and

g
(
1 +

π

2

)
= 1 + arctan

(
1 +

π

2

)
< 1 +

π

2
.
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Thus,

g

([
1, 1 +

π

2

])
⊆

[
1, 1 +

π

2

]
.

Now, g′′(x) = − 2x

(1 + x2)2
, which is strictly negative on

[
1, 1 +

π

2

]
, so g′ is strictly decreasing on

that interval. Then, for all x ∈
[
1, 1 +

π

2

]
,

g′(x) ≤ g′(1) =
1

2
< 1.

So, by Theorem 3.5 with λ =
1

2
, the iteration (3.10), xn+1 = g(xn) = 1 + arctan xn converges

to α, for any starting value x0 ∈
[
1, 1 +

π

2

]
and we have the error estimate

|xn − α| ≤ 1

2n−1
|x1 − x0|.

The exact solution with 10 correct decimals is α = 2.1322679602. Indeed, the convergence of the
iteration (3.10) is quite fast, as seen in Table 4, for various values of x0 ∈

[
1, 1 +

π

2

]
.

x0 = 1 x0 = 1 + π/4 x0 = 1 + π/2
n xn |xn − α| xn |xn − α| xn |xn − α|
1 1.78540 3.47e− 1 2.06023 7.20e− 2 2.19982 6.76e− 2
2 2.06023 7.20e− 2 2.11891 1.34e− 2 2.14414 1.19e− 2
3 2.11891 1.34e− 2 2.12985 2.42e− 3 2.13440 2.13e− 3
4 2.12985 2.42e− 3 2.13183 4.37e− 4 2.13265 3.84e− 4
5 2.13183 4.37e− 4 2.13219 7.90e− 5 2.13234 6.89e− 5
6 2.13219 7.90e− 5 2.13225 1.44e− 5 2.13228 1.22e− 5
7 2.13225 1.44e− 5 2.13227 2.80e− 6 2.13227 2.01e− 6
8 2.13227 2.80e− 6 2.13227 6.97e− 7 2.13227 1.70e− 7

Table 4: Example 3.8
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