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Introduction

Let X and Y be two nonempty sets and F,G : X → P(Y ) be multi-

valued operators. An operatorial inclusion is, by definition, a problem of

the following type:

(1) Find x ∈ X satisfying the relation : F (x) ∩G(x) 6= ∅.
Such elements x are called coincidence points for F and G.

Examples:

i) If G : X → Y is defined by G(x) = {f(x)}, where f : X → Y is a

single-valued map, then (1) becomes a coincidence problem for f and F

or a f -fixed point problem for F :

(1i) Find x ∈ X such that f(x) ∈ F (x)

ii) If G : X → P (X) is defined by G(x) = {x}, then we get a fixed

point problem for the multi-valued operator F :

(1ii) Find x ∈ X such that x ∈ F (x)

Moreover, a special type of fixed point problem is the following:

(1∗ii) Find x ∈ X such that {x} = F (x)

An element x having this property is called a strict fixed point for F .

iii) If G : X → P (Y ) is defined by the constant operator G(x) = {y},
for each x ∈ X, then (1) is a surjectivity problem for the multi-function

F :

(1iii) Given y ∈ Y find x ∈ X such that y ∈ F (x).

iii



iv INTRODUCTION

iv) If Y is a linear space and G : X → P (Y ) is defined by the zero

constant operator G(x) = {0}, for each x ∈ X, then (1) is a zero point

problem or an equilibrium problem for the multi-function F :

(1iv) Find x ∈ X such that 0 ∈ F (x).

By definition, an operatorial anti-inclusion is the following problem:

(2) Find x ∈ X satisfying the relation F (x) ∩G(x) = ∅.
An element x ∈ X having this property is called an anti-coincidence

point for F and G.

Examples:

i) If F = G (that means F (x) = G(x), for each x ∈ X), then (2)

becomes a maximal element problem for F :

(2i) Find x ∈ X such that F (x) = ∅

ii) If G : X → P (Y ) is defined by G(x) = {f(x)}, for each x ∈ X,

where f : X → Y is a single-valued operator, then we obtain the following

non-selection problem:

(2ii) Find x ∈ X such that f(x) /∈ F (x)

Let us remark that if problem (2ii) has no solutions, then the mapping

f is a selection for F , i.e. f(x) ∈ F (x), for each x ∈ X.

iii) If G : X → P (X) is defined by G(x) = {x}, then we get a

non-fixed point problem for the multi-valued operator F :

(2iii) Find x ∈ X such that x /∈ F (x)

Let us remark that (2iii) is equivalent with the following operator

inclusion: find x ∈ X such that x ∈ CY (F (x)).

Similarly, we can consider the strict non-fixed point problem, the non-

surjectivity problem or the non-zero point problem.

Selections, fixed points, coincidence points, zero points for multi-

functions, integral and differential inclusions are several keywords and
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phrases which characterize this course. In fact, there are two impor-

tant purposes of it. First, some abstract operatorial inclusions with focus

on fixed points, coincidence points and selections are presented. Second,

some applications of the abstract theory to integral and differential in-

clusions, dynamical systems and the theory of self-similar sets are con-

sidered.

Adrian Petruşel
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Chapter 1

Multi-valued analysis

The purpose of this chapter is to report the basic theory of multi-

valued operators between metric spaces. More precisely, basic properties

of the Pompeiu-Hausdorff generalized metric, continuity and measurabi-

lity concepts and results for multi-functions are reported. (many of them,

being already classical theorems, are presented without proofs.)

1.1 Pompeiu-Hausdorff metric

The aim of this section is to present the main properties of some

(generalized) functionals defined on the space of all subsets of a metric

space. A special attention is paid to gap functional, excess functional and

to Pompeiu-Hausdorff functional.

Let (X, d) be a metric space. Recall that a metric d for a

nonempty set X is a functional d : X ×X → R+ satisfying the following

axioms:

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x) for every x, y ∈ X
(iii) d(x, y) ≤ d(x, z) + d(z, y), for every x, y, z ∈ X.

In what follows, sometimes we will need to consider infinite-valued

1



2 CHAPTER 1. MULTI-VALUED ANALYSIS

metrics, also called generalized metrics d : X × X → R+ ∪ {+∞}, see

Luxemburg [136] and Jung [116].

Throughout this book, we denote by P(X) the space of all sub-

sets of a nonempty set X. If X is a metric space, x ∈ X and R > 0, then

B(x,R) and respectively B̃(x,R) denote the open, respectively the closed

ball of radius R centered in x. If X is a topological space and Y is a sub-

set of X, then we will denote by Y the closure and by intY the interior

of the set Y . Also, if X is a normed space and Y is a nonempty subset of

X, then convY respectively convY denote the convex hull, respectively

the closed convex hull of the set Y .

We consider, for the beginning, the diameter generalized functional

defined on the space of all subsets of a metric space X.

Definition 1.1.1. Let (X, d) be a metric space. The diameter gene-

ralized functional, diam : P(X)→ R+ ∪ {+∞} is defined by:

diam(Y ) =

{
sup{d(a, b)| a ∈ Y, b ∈ Y }, if Y 6= ∅
0, if Y = ∅

Definition 1.1.2. The subset Y of X is said to be bounded if and

only if diam(Y ) <∞.

Lemma 1.1.3. Let (X, d) be a metric space and Y, Z nonempty

bounded subsets of X. Then:

i) diam(Y ) = 0 if and only if Y = {y0}.
ii) If Y ⊂ Z then diam(Y ) ≤ diam(Z).

iii) diam(Y ) = diam(Y ).

iv) If Y ∩ Z 6= ∅ then diam(Y ∪ Z) ≤ diam(Y ) + diam(Z).

v) If X is a normed space then:

a) diam(x+ Y ) = diam(Y ), for each x ∈ X.

b) diam(αY ) = |α|diam(Y ), where α ∈ R.

c) diam(Y ) = diam(conv Y ).
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d) diam(Y ) ≤ diam(Y + Z) ≤ diam(Y ) + diam(Z).

Proof. iii) Because Y ⊆ Y we have diam(Y ) ≤ diam(Y ). For

the reverse inequality, let consider x, y ∈ Y . Then there exist (xn)n∈N,

(yn)n∈N ⊂ Y such that xn → x and yn → y as n → ∞. It follows that

d(xn, yn)
R→ d(x, y). Because d(xn, yn) ≤ diam(Y ), for all n ∈ N we get

by passing to limit d(x, y) ≤ diam(Y ). Hence diam(Y ) ≤ diam(Y ).

iv) Let u, v ∈ Y ∪ Z. We have the following cases:

a) If u, v ∈ Y then d(u, v) ≤ diam(Y ) ≤ diam(Y ) + diam(Z) a̧nd so

diam(Y ∪ Z) ≤ diam(Y ) + diam(Z).

b) If u, v ∈ Z then by an analogous procedure we have d(u, v) ≤
diam(Z) ≤ diam(Y ) + diam(Z) and so diam(Y ∪ Z) ≤ diam(Y ) +

diam(Z).

c) If u ∈ Y and v ∈ Z then choosing t ∈ Y ∩ Z we have that

d(u, v) ≤ d(u, t) + d(t, v) ≤ diam(Y ) + diam(Z). Hence, diam(Y ∪Z) ≤
diam(Y ) + diam(Z).

v) c) Let us prove that diam(convY ) ≤ diam(Y ). Let x, y ∈ convY .

Then there exist xi, yj ∈ Y , λi, µj ∈ R+, such that

x =
n∑
i=1

λixi, y =
m∑
j=1

µjyj,
n∑
i=1

λi = 1,
m∑
j=1

µj = 1.

From these relations we have:

‖x− y‖ =

∥∥∥∥∥
n∑
i=1

λixi −
m∑
j=1

µjyj

∥∥∥∥∥ =

∥∥∥∥∥
(

m∑
j=1

µj

)
n∑
i=1

λixi −

(
n∑
i=1

λi

)
m∑
j=1

µjyj

∥∥∥∥∥
≤

m∑
j=1

n∑
i=1

λiµj‖xi − yj‖ ≤

(
m∑
j=1

n∑
i=1

λiµj

)
diam(Y ) = diam(Y ).

�

Let us consider now the following spaces of subsets of a metric space

(X, d):

P (X) = {Y ∈ P(X)| Y 6= ∅}; Pb(X) = {Y ∈ P (X)| diam(Y ) <∞};
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Pop(X) = {Y ∈ P (X)| Y is open }; Pcl(X) = {Y ∈ P (X)| Y is closed };

Pb,cl(X) = Pb(X) ∩ Pcl(X); Pcp(X) = {Y ∈ P (X)| Y is compact };

Pcn(X) = {Y ∈ P (X)| Y is connex}.

If X is a normed space, then we denote:

Pcv(X) = {Y ∈ P (X)| Y convex}; Pcp,cv(X) = Pcp(X) ∩ Pcv(X).

Let us define the following generalized functionals:

(1) D : P(X)× P(X)→ R+ ∪ {+∞}

D(A,B) =


inf{d(a, b)| a ∈ A, b ∈ B}, if A 6= ∅ 6= B

0, if A = ∅ = B

+∞, if A = ∅ 6= B or A 6= ∅ = B.

the so-called distance between the sets A and B or the gap functional.

In particular, D(x0, B) = D({x0}, B) (where x0 ∈ X) is called the

distance from the point x0 to the set B.

(2) δ : P(X)× P(X)→ R+ ∪ {+∞},

δ(A,B) =

{
sup{d(a, b)| a ∈ A, b ∈ B}, if A 6= ∅ 6= B

0, otherwise

(3) ρ : P(X)× P(X)→ R+ ∪ {+∞},

ρ(A,B) =


sup{D(a,B)| a ∈ A}, if A 6= ∅ 6= B

0, if A = ∅
+∞, if B = ∅ 6= A

the so-called excess functional.

(4) H : P(X)× P(X)→ R+ ∪ {+∞},

H(A,B) =


max{ρ(A,B), ρ(B,A)}, if A 6= ∅ 6= B

0, if A = ∅ = B

+∞, if A = ∅ 6= B or A 6= ∅ = B.
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the so-called Pompeiu-Hausdorff generalized functional.

Let us prove now that the functional H is a metric on the space

Pb,cl(X). First we will prove the following auxiliary result:

Lemma 1.1.5. D(b, A) = 0 if and only if b ∈ A.

Proof. We shall prove that A = {x ∈ X| D(x,A) = 0}. For this

aim, let x ∈ A be arbitrarily. It follows that for each r > 0 and for each

B(x, r) ⊂ X we have A ∩ B(x, r) 6= ∅. Then for each r > 0 there exists

ar ∈ A such that d(x, a) < r. It follows that for each r > 0 we have

D(x,A) < r and hence D(x,A) = 0. �

Lemma 1.1.6. Let (X, d) be a metric space. Then the pair

(Pb,cl(X), H) is a metric space.

Proof. We shall prove that the axioms of the metric hold:

a) H(A,B) ≥ 0, for all A,B ∈ Pb,cl(X) is obviously.

H(A,B) = 0 is equivalent with ρ(A,B) = 0 and ρ(B,A) = 0, that

means sup
a∈A

D(a,B) = 0 and sup
b∈B

D(b, A) = 0. Hence D(a,B) = 0, for each

a ∈ A and D(b, A) = 0, for each b ∈ B. Using Lemma 1.1.5. we obtain

that a ∈ B, for all a ∈ A and b ∈ A, for all b ∈ B, proving that A ⊆ B

and B ⊆ A.

b) H(A,B) = H(B,A) is quite obviously.

c) For the third axiom of the metric, let consider A,B,C ∈ Pb,cl(X).

For each a ∈ A, b ∈ B and c ∈ C we have d(a, c) ≤ d(a, b) + d(b, c).

It follows that inf
c∈C

d(a, c) ≤ d(a, b) + inf
c∈C

d(b, c), for all a ∈ A and b ∈
B. We get D(a, C) ≤ d(a, b) + D(b, C), for all a ∈ A, b ∈ B. Hence

D(a, C) ≤ D(a,B)+H(B,C), for all a ∈ A and so D(a, C) ≤ H(A,B)+

H(B,C), for all a ∈ A. In conclusion, we have proved that ρ(A,C) ≤
H(A,B)+H(B,C). Similarly, we get ρ(C,A) ≤ H(A,B)+H(B,C), and

so H(A,C) ≤ H(A,B) +H(B,C). �

Remark 1.1.7. H is called the Pompeiu-Hausdorff metric induced by
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the metric d. Occasionally, we will denote by Hd the Pompeiu-Hausdorff

functional generated by the metric d of the space X.

Remark 1.1.8. H is a generalized metric on Pcl(X).

Lemma 1.1.9. Let (X, d) a metric space. Then we have:

i) D(·, Y ) : (X, d)→ R+, x 7→ D(x, Y ), (where Y ∈ P (X)) is nonex-

pansive.

ii) D(x, ·) : (Pcl(X), H) → R+, Y 7→ D(x, Y ), (where x ∈ X) is

nonexpansive.

Proof. i) We shall prove that for each Y ∈ P (X) we have

|D(x1, Y )−D(x2, Y )| ≤ d(x1, x2), for all x1, x2 ∈ X.

Let x1, x2 ∈ X be arbitrarily. Then for all y ∈ Y we have

d(x1, y) ≤ d(x1, x2) + d(x2, y). Then inf
y∈Y

d(x1, y) ≤ d(x1, x2) +

inf
y∈Y

d(x2, y) and so D(x1, Y ) ≤ d(x1, x2) +D(x2, y). We have proved that

D(x1, y)−D(x2, Y ) ≤ d(x1, x2). Interchanging the roles of x1 and x2 we

obtain D(x2, Y )−D(x1, Y ) ≤ d(x1, x2), proving the conclusion.

ii) We shall prove that for each x ∈ X we have:

|D(x,A)−D(x,B)| ≤ H(A,B), for all A,B ∈ Pcl(X).

Let A,B ∈ Pcl(X) be arbitrarily. Let a ∈ A and b ∈ B. Then we have

d(x, a) ≤ d(x, b)+d(b, a). It followsD(x,A) ≤ d(x, b)+D(b, A) ≤ d(x, b)+

H(B,A) and hence D(x,A)−D(x,B) ≤ H(A,B). By a similar procedure

we get D(x,B) − D(x,A) ≤ H(A,B) and so |D(x,A) − D(x,B)| ≤
H(A,B), for all A,B ∈ Pb,cl(X). �

Lemma 1.1.10. Let (X, d) be a metric space. Then the generalized

functional diam : (Pcl(X), H)→ R+ ∪ {+∞} is continuous.

Lemma 1.1.11. Let (X, d) be a metric space. Then we have:
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i) D(Y , Z) = D(Y, Z), for all Y, Z ∈ P (X).

ii) D(Y, Z) ≤ D(Y,W ) + D(W,Z) + diam(W ), for all Y, Z,W ∈
P (X).

iii) D(Y, Z ∪W ) = min{D(Y, Z), D(Y,W )}, for all Y, Z,W ∈ P (X).

iv) If Y, Z ∈ P (X) such that Y ⊂ Z ⊂ Y then

D(x0, Y ) = D(x0, Z) = D(x0, Y ), for all x0 ∈ X.

Proof. i) Because Y ⊆ Y and Z ⊆ Z the inequality D(Y , Z) ≤
D(Y, Z) is obviously. For the reverse inequality let us consider u ∈ Y , v ∈
Z. Then there exists (xn)n∈N ⊂ Y and (yn)n∈N ⊂ Z such that lim

n→∞
xn = u,

lim
n→∞

yn = v. Because D(Y, Z) ≤ d(xn, yn) ≤ d(xn, u)+d(u, v)+d(v, yn) it

follows, for n→∞, that: D(Y, Z) ≤ d(u, v), for all u ∈ Y , v ∈ Z. Hence

D(Y, Z) ≤ D(Y , Z).

ii) We have d(y, z) ≤ d(y, w1) +d(w1, w2) +d(w2, z), for all y ∈ Y, z ∈
Z, and for all w1, w2 ∈ W . We get D(y, Z) ≤ d(y, w1) + d(w1, w2) +

D(w2, Z), for all y ∈ Y,w1, w2 ∈ W . Then D(Y, Z) ≤ D(y, Z) ≤
d(y, w1) + d(w1, w2) +D(w2, Z), for all y ∈ Y and w1, w2 ∈ W . We have

now D(Y, Z) ≤ d(y, w1)+diam(W )+D(w2, Z), for all y ∈ Y,w1, w2 ∈ W .

So D(Y, Z) ≤ D(y,W ) + diam(W ) + D(W,Z), for all y ∈ Y . Finally

D(Y, Z) ≤ D(Y,W ) +D(W,Z) + diam(W ). �

Let us define now the notion of neighborhood for a nonempty set.

Definition 1.1.12. Let (X, d) be a metric space, Y ∈ P (X) and

ε > 0. An open neighborhood of radius ε for the set Y is the set denoted

V 0(Y, ε) and defined by V 0(Y, ε) = {x ∈ X| D(x, Y ) < ε}. We also

consider the closed neighborhood for the set Y , defined by V (Y, ε) =

{x ∈ X| D(x, Y ) ≤ ε}.

Remark 1.1.13. From the above definition we have that, if (X, d) is

a metric space, Y ∈ P (X) then:
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a)
⋃
{B(y, r) : y ∈ Y } = V 0(Y, r), where r > 0.

b)
⋃
{B̃(y, r) : y ∈ Y } ⊂ V (Y, r), where r > 0.

c)V 0(Y, r + s) ⊃ V 0(V 0(Y, s), r), where r, s > 0.

d) diam(V 0(Y, r)) ≤ diam(Y ) + 2r, for all Y ∈ Pb(X) and for all

r > 0.

e) If (X, d) is a normed space, then:

i) V 0(Y, r + s) = V 0(V 0(Y, s), r), where r, s > 0

ii) V 0(Y, r) = Y + int(rB̃(0, 1)).

Proof. d) Let ε > 0 and x, y ∈ V (Y, r). From the definition of

V 0(Y, r) there exist u, v ∈ Y such that d(x, u) < r + ε, d(x, v) < r + ε.

Hence we have d(x, y) ≤ d(x, u) + d(u, v) + d(v, x) ≤ δ(Y ) + 2r + 2ε,

for all x, y ∈ Y .

Hence diam(V (Y, r)) ≤ diam(Y ) + 2r + 2ε, for all ε > 0. 2

Remark 1.1.14. If (X, d) is a metric space and Y, Z ∈ P (X) then

D(Y, Z) = inf{ε > 0| Y
⋂
V (Z, ε) 6= ∅}.

Lemma 1.1.15. a) Let (X, d) be a metric space and Y, Z ∈ P (X).

Then D(Y, Z) = inf
x∈X

D(x, Y ) +D(x, Z).

b) Let (X, d) be a metric space and (Ai))i∈I , B nonempty subsets of

X. Then D(
⋃
i∈I
Ai, B) = inf

i∈I
D(Ai, B)

c) Let X be a normed space and A,B,C ∈ P (X). If A is a convex

set, then we have:

D(λB + (1− λ)C,A) ≤ λD(B,A) + (1− λ)D(C,A), for each λ ∈ [0, 1].

Proof. a) We denote by u = inf{D(x, Z) + D(x, Y ) : x ∈ X}. Because

D(Y, Z) = inf{D(x, Y ) + D(x, Z) : x ∈ Y } we have that u ≤ D(Y, Z).

For the reverse inequality, let x ∈ X and y ∈ Y, z ∈ Z having the

property d(x, y) ≤ D(x, Y ) + ε and d(x, z) ≤ D(x, Z) + ε. Then we have:

D(Y, Z) ≤ d(y, z) ≤ D(x, Y )+D(x, Z)+2ε. But ε was arbitrarily chosen,

and so D(Y, Z) ≤ u. �



1.1. POMPEIU-HAUSDORFF METRIC 9

Lemma 1.1.16. Let (X, d) a metric space. Then we have:

i) If Y, Z ∈ P (X) then δ(Y, Z) = 0 if and only if Y = Z = {x0}
ii) δ(Y, Z) ≤ δ(Y,W ) + δ(W,Z), for all Y, Z,W ∈ Pb(X).

iii) Let Y ∈ Pb(X) and q ∈]0, 1[. Then, for each x ∈ X there exists

y ∈ Y such that qδ(x, Y ) ≤ d(x, y).

Proof. ii) Let Y, Z,W ∈ Pb(X). Then we have:

d(y, z) ≤ d(y, w) + d(w, z), for all y ∈ Y, z ∈ Z,w ∈ W . Then

sup
z∈Z

d(y, z) ≤ d(y, w) + sup
z∈Z

d(w, z), for all y ∈ Y,w ∈ W . So δ(y, Z) ≤

δ(y, w) + δ(w,Z) ≤ δ(y,W ) + δ(W,Z) and hence δ(Y, Z) ≤ δ(Y,W ) +

δ(W,Z).

iii) Suppose, by absurdum, that there exists x ∈ X and there exists

q ∈]0, 1[ such that for all y ∈ Y to have qδ(x, Y ) > d(x, y). It follows

that qδ(x, Y ) ≥ sup
y∈Y

d(x, y) and hence qδ(x, Y ) ≥ δ(x, Y ). In conclusion,

q ≥ 1, a contradiction. �

Lemma 1.1.17. Let (X, d) be a metric space, Y, Z,W ∈ P (X). Then:

i) ρ(Y, Z) = 0 if and only if Y ⊂ Z

ii) ρ(Y, Z) ≤ ρ(Y,W ) + ρ(W,Z)

iii) If Y, Z ∈ P (X) and ε > 0 then:

a) ρ(Y, Z) ≤ ε if and only if Y ⊂ V (Z; ε).

b) ρ(Y, Z) = inf{ε > 0| Y ⊂ V 0(Z, ε)}. (we consider inf ∅ =∞)

c) If Y is closed, then ρ(Y, Z) = sup
x∈X

D(x, Z)−D(x, Y )

d) ρ(Y, Z) = ρ(Y , Z)

iv) Let ε > 0. If Y, Z ∈ P (X) such that for each y ∈ Y there exists

z ∈ Z such that d(y, z) ≤ ε then ρ(Y, Z) ≤ ε.

v) Let ε > 0 and Y, Z ∈ P (X). Then for each y ∈ Y there exists

z ∈ Z such that d(y, z) ≤ ρ(Y, Z) + ε.

vi) Let q > 1 and Y, Z ∈ P (X). Then, for each y ∈ Y there exists

z ∈ Z such that d(y, z) ≤ qρ(Y, Z).

Proof. i) Suppose that ρ(Y, Z) = 0 and let y ∈ Y be arbitrary. Then
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0 ≤ inf{d(y, z)| z ∈ Z} = D(y, Z) ≤ ρ(Y, Z) = 0 implies that there

exists a sequence (zn)n∈N ⊂ Z such that d(y, zn) → 0, when n → ∞. It

follows zn → y when n→∞ and so y ∈ Z ⇒ Y ⊂ Z.

Reversely, suppose that Y ⊂ Z with α =
1

2
ρ(Y, Z) > 0. Then there

exists y0 ∈ Y with D(y0, Z) > α. For y0 ∈ Y ⊂ Z we find a sequence

(zn)n∈N ⊂ Z such that zn → y0, when n→∞. Hence there exists n0 ∈ N
such that d(zn, y0) ≤ α, for all n ≥ n0, a contradiction with: for all

n ≥ n0 : α ≥ d(zn, y0) ≥ inf{d(z, y0)| z ∈ Z} = D(y0, Z) > α.

ii) Let ε > 0 and y ∈ Y . Because D(y,W ) = inf{d(y, w)| w ∈ W}
we have that there exists w ∈ W such that d(y, w) < D(y,W ) + ε. For

each z ∈ Z we have: D(y, Z) ≤ d(y, z) ≤ d(y, w) + d(w, z) < d(w, z) +

D(y,W ) + ε.

So D(y, Z) − D(y,W ) − ε < d(z, w), for all z ∈ Z proving that

D(y, Z)−D(y,W )− ε ≤ D(w,Z).

Hence D(y, Z) ≤ ρ(W,Z) + ρ(Y,W ) + ε, for all y ∈ Y.
Finally, ρ(Y, Z) ≤ ρ(Y,W ) + ρ(W,Z) + ε and so we get the desired

conclusion.

iii) a) ρ(Y, Z) ≤ ε is equivalent with: for all y ∈ Y D(y, Z) ≤ ε and

equivalent with Y ⊂ V (Z, ε).

If Z is compact, then Y ⊂ V (Z, ε) is equivalent with the fact that for

all y ∈ Y we have D(y, Z) ≤ ε and equivalent with: for all y ∈ Y there

exists z0 ∈ Z such that d(y, z0) ≤ ε, meaning that for all y ∈ Y there

exists z0 ∈ Z ∩ B̃(y; ε) and hence for all y ∈ Y : Z ∩ B̃(y, ε) 6= ∅.
c) Denote u = sup

x∈X
D(x, Z)−D(x, Y ). We shall prove that ρ(Y, Z) ≤ u.

If u = ∞ then the inequality is obviously. Let us consider u < ∞. Let

y ∈ Y and v > u. We have: D(y, Z) = D(y, Z) − D(y, Y ) ≤ u < v and

so y ∈ V 0(Z, v). Hence we have proved that Y ⊆ V 0(Z, v) and so we

get that ρ(Y, Z) ≤ u. We will prove now that ρ(Y, Z) ≥ u. Let ε > 0

and x ∈ X. We can choose y ∈ Y such that d(x, y) < D(x, Y ) + ε.

Let z ∈ Z be such that d(y, z) < D(y, Z) + ε ≤ ρ(Y, Z) + ε. We have
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D(x, Z) ≤ d(x, z) ≤ d(x, y) + d(y, z) < D(x, Y ) + ρ(Y, Z) + 2ε and so

D(x, Z) −D(x, Y ) ≤ ρ(Y, Z) + 2ε. Because x was arbitrarily we obtain

that supx∈X D(x, Z) − D(x, Y ) ≤ ρ(Y, Z) + 2ε. For ε ↘ 0, we have

u ≤ ρ(Y, Z). �

Lemma 1.1.18. Let (X, d) be a metric space, A,B ∈ P (X) and

(Ai))i∈I a family of nonempty subsets of X. Then:

a) ρ(
⋃
i∈I

Ai, B) = sup
i∈I

ρ(Ai, B)

b) If A ∈ Pcl(X) then:

i) ρ(A, ·) : (Pcl(X), H)→ R+ is nonexpansive.

ii) ρ(·, A) : (Pcl(X), H)→ R+ is nonexpansive.

Proof. b) ii) Let us consider B,C ∈ Pcl(X) with H(B,C) < +∞.

Then ρ(B,A) ≤ ρ(B,C) + ρ(C,A) and ρ(C,A) ≤ ρ(C,B) + ρ(B,A).

Since ρ(C,B) < +∞ it is clear that ρ(B,A) = +∞ if and only

if ρ(C,A) = +∞. If both are finite then |ρ(C,A) − ρ(B,A)| ≤
max{ρ(B,C), ρ(C,B)} = H(B,C). �

Lemma 1.1.19. Let X be a normed space, A,B,C be nonempty

bounded, convex subsets of X and r ∈ [0, 1]. Then:

a) ρ(convA,B) = ρ(A,B)

b) ρ(rB + (1− r)C,A) ≤ rρ(B,A) + (1− r)ρ(C,A)

c) ρ(A, rB + (1− r)C) ≤ rρ(A,B) + (1− r)ρ(A,C)

If (X, d) is a metric space, we have defined the Pompeiu-Hausdorff

generalized functional H : P(X) × P(X) → R+ ∪ {+∞} and we have

shown that H is a generalized metric on Pcl(X). Other important pro-

perties of the functional H are as follows.

Lemma 1.1.20. Let (X, d) be a metric space and Y, Z, V,W ∈ P (X).

Then we have:

i) H(Y, Z) = 0 if and only if Y = Z
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ii) H(Y, Z) = H(Y, Z) = H(Y , Z) = H(Y , Z).

iii) H(Y
⋃
V, Z

⋃
W ) ≤ max{H(Y, Z), H(V,W )}.

Proof. iii) From the definition of ρ we have:

ρ(Y ∪ V, Z ∪W ) = sup{D(x, Z ∪W )| x ∈ Y ∪ V } =

= max{ρ(Y, Z ∪W ), ρ(V, Z ∪W )} ≤ max{ρ(Y, Z), ρ(V,W )}.

By a similar procedure we also get:

ρ(Z ∪W,Y ∪ V ) ≤ max{ρ(Z, Y ), ρ(W,V )}.

Hence

H(Y ∪ V, Z ∪W ) ≤ max{ρ(Y, Z), ρ(V,W ), ρ(Z, Y ), ρ(W,V )}

= max{H(Y, Z), H(V,W )}. �

Lemma 1.1.21. Let (X, d) be a metric space. Then we have:

i) Let Y, Z ∈ P (X). Then H(Y, Z) = sup
x∈X

D(x, Y )−D(x, Z)

ii) The operator I(x) = {x} is an isometry of (X, d) into (Pcl(X), Hd)

iii) Let Y, Z ∈ P (X) and ε > 0.Then for each y ∈ Y there exists

z ∈ Z such that d(y, z) ≤ H(Y, Z) + ε.

iv) Let Y, Z ∈ P (X) and q > 1. Then for each y ∈ Y there exists

z ∈ Z such that d(y, z) ≤ qH(Y, Z).

v) If Y, Z ∈ Pcp(X) then for each y ∈ Y there exists z ∈ Z such that

d(y, z) ≤ H(Y, Z).

vi) If Y, Z ∈ P (X) then H(Y, Z) ≤ ε is equivalent with the following

assertion: for each y ∈ Y there exists z ∈ Z such that d(y, z) ≤ ε and

for each z ∈ Z there exists y ∈ Y with d(y, z) ≤ ε.

vii) Let ε > 0. If Y, Z ∈ P (X) are such that H(Y, Z) < ε then for

each y ∈ Y there exists z ∈ Z such that d(y, z) < ε.

Proof. iii) Supposing contrary, there exists ε > 0 and exists y ∈ Y
such that for all z ∈ Z we have d(y, z) > H(Y, Z) + ε. It follows that
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D(y, Z) ≥ H(Y, Z)+ε and so H(Y, Z) ≥ D(y, Z) ≥ H(Y, Z)+ε, proving

that ε ≤ 0, a contradiction.

iv) Supposing again contrary: there exists q > 1 and there exists

y ∈ Y such that for all z ∈ Z we have d(y, z) > qH(Y, Z). Then we have:

D(y, Z) ≥ qH(Y, Z). But H(Y, Z) ≥ D(Y, Z) ≥ qH(Y, Z). Hence q ≤ 1,

a contradiction. �

Remark 1.1.22. Using the above result (vi) it follows that the Pom-

peiu-Hausdorff functional can be also defined by the following formula:

H(A,B) = inf{ε > 0| A ⊂ V (B, ε) and B ⊂ V (A, ε)},

for all A,B ∈ P (X).

Lemma 1.1.23. Let X be a Banach space. Then:

i) H(Y1 + · · ·+ Yn, Z1 + · · ·+Zn) ≤ H(Y1, Z1) + · · ·+H(Yn, Zn), for

all Yi, Zi ∈ P (X), i = 1, 2, . . . , n (n ∈ N∗)
ii) H(Y + Z, Y +W ) ≤ H(Z,W ), for all Y, Z,W ∈ P (X)

iii) H(Y + Z, Y + W ) = H(Z,W ), for all Y ∈ Pb(X) and for all

Z,W ∈ Pb,cl,cv(X)

iv) H(conv Y, conv Z) ≤ H(Y, Z), for all Y, Z ∈ Pb(X)

v) H(conv Y, conv Z) ≤ H(Y, Z), for all Y, Z ∈ Pb,cl(X)

vi) H(A, rB + sC)) ≤ rH(A,B) + sH(A,C), for each A,B.C ∈
Pb,cv(X).

Proof. i) Let ε > 0. From the definition of H it follows that there

exists (y1+· · ·+yn) ∈ Y1+· · ·+Yn such thatD(y1+· · ·+yn, Z1+· · ·+Zn) ≥
H(Y1 + · · ·+Yn, Z1 + · · ·+Zn)−ε or exists (z1 + · · ·+ zn) ∈ Z1 + · · ·+Zn

such that D(z1+· · ·+zn, Y1+· · ·+Yn) ≥ H(Y1+· · ·+Yn, Z1+· · ·+Zn)−ε.
Let us consider the first situation.

For y1, . . . , yn we get z1 ∈ Z1, . . . , zn ∈ Zn such that ‖y1 − z1‖ ≤
H(Y1, Z1) + ε

4
, . . . , ‖yn − zn‖ ≤ H(Yn, Zn) + ε

4
. Then

‖(y1 + · · ·+ yn)− (z1 + · · ·+ zn)‖ ≤ ‖y1 − z1‖+ · · ·+ ‖yn − zn‖ ≤
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≤ H(Y1, Z1) + · · ·+H(Yn, Zn) + ε.

Because

H(Y1 + · · ·+ Yn, Z1 + · · ·+ Zn)− ε ≤ D(y1 + · · ·+ yn, z1 + · · ·+ zn) ≤

≤ ‖(y1 + · · ·+ yn)− (z1 + · · ·+ zn)‖

we obtain that

H(Y1 + · · ·+ Yn, Z1 + · · ·+ Zn)− ε ≤ H(Y1, Z1) + · · ·+H(Yn, Zn) + ε,

proving the desired inequality.

iii) From ii) we have H(Y +Z, Y +W ) ≤ H(Z,W ). For the equality,

let us suppose contrary: H(Y + Z, Y +W ) < H(Z,W ). Let t ∈ R∗+ such

that H(Y + Z, Y +W ) < t < H(Z,W ). Then

Y + Z ⊂ Y +W +BX(0; t) ⊂ Y +W +BX(0; t)

Y +W ⊂ Y + Z +BX(0; t) ⊂ Y + Z +BX(0; t).

Because W +BX(0; t), Z +BX(0; t) ∈ Pcl,cv(X) and Y ∈ Pm(X) it

follows from Lemma 4.1.7(i) that

Z ⊂ W +BX(0; t) and W ⊂ Z +BX(0; t).

On the other side,

W +BX(0; t) =
n⋂
n=1

[(W +BX(0; t) + 2−nBX(0; 1)]

Z +BX(0; t) =
n⋂
n=1

[(Z +BX(0; t) + 2−nBX(0; 1)]

and choosing n such that t+ 2−n < H(Z,W ) we get

Z ⊂ W + (t+ 2−n)BX(0; 1) and W ⊂ Z + (t+ 2−n)BX(0; 1).
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Hence we obtain H(Z,W ) ≤ t+ 2−n, a contradiction.

iv) Because Y ⊆ conv Y it follows that D(z, conv Y ) ≤ D(z, Y ), for

all z ∈ Z. Let A = {a ∈ X| D(a, conv Y ) ≤ H(Y, Z)}. Of course A

is convex and A ⊇ Z. we can write conv Z ⊂ A and hence for all v ∈
conv Z we have D(v, conv Y ) ≤ H(Y, Z). A similar procedure produces

that for all u ∈ conv Y we have D(u, conv Z) ≤ H(Y, Z). In conclusion:

H(conv Y, conv Z) ≤ H(Y, Z).

v) Let Y, Z ∈ Pm,cl(X) and ε > 0. Let p ∈ conv Y . Then there exist

y1, y2, . . . , yn ∈ Y and λ1, . . . , λn ∈ [0, 1] with
n∑
i=1

λi = 1 such that

∥∥∥∥∥p−
n∑
i=1

λiyi

∥∥∥∥∥ < ε

2
.

For each i = 1, 2, . . . , n and y1, . . . , yn ∈ A there exist (see Lemma 1.1.21.

iii)) z1, . . . , zn ∈ Z such that ‖yi − zi‖ ≤ H(Y, Z) + ε
2
. Let q =

n∑
i=1

λizi.

Obviously q ∈ conv Z and we also have:

‖p− q‖ ≤

∥∥∥∥∥p−
n∑
i=1

λigi

∥∥∥∥∥+

∥∥∥∥∥
n∑
i=1

λiyi −
n∑
i=1

λizi

∥∥∥∥∥ <
<
ε

2
+

n∑
i=1

λi‖yi − zi‖ < H(Y, Z) + ε.

Hence

p ∈ V (conv Z;H(Y, Z) + ε) ⇒ conv Y ⊆ V (conv Z,H(Y, Z) + ε).

Similarly, we can be prove conv Z ⊆ V (conv Y,H(Y, Z) + ε). In con-

clusion we obtain that H(conv Y, conv Z) ≤ H(Y, Z) + ε, proving the

conclusion.

vi) By the definition of Pompeiu-Hausdorff metric, it suffices to prove

that for any ε > 0 with B ⊂ V 0(A, ε), any µ > 0 with A ⊂ V 0(B, µ) and

C ⊂ V 0(A, µ) and A ⊂ V 0(C, µ) we have that:

A ⊂ V 0(rB + sC, rε+ sµ) and rB + sC ⊂ V 0(A, rε+ sµ).
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For any a ∈ A there exist b ∈ B and c ∈ C such that d(a, b) < ε and

d(a, c) < µ. Since r + s = 1 it follows that

d(a, rb+ sc) = ‖a− rb− sc‖ ≤ r ‖a− b‖+ s ‖a− c‖ ≤ rε+ sµ.

This implies that A ⊂ V 0(rB + sC, rε + sµ). By the convexity of B

and C and the similar argument used above, we can also prove that

rB + sC ⊂ V (A, rε+ sµ). �

Remark 1.1.24. Let X be a normed space and A ∈ Pcp(X). We

denote ‖A‖ = H(A, {0}).

Example 1.1.25. a) H([a1, a2], [b1, b2]) = max{|b1 − a1|, |b2 − a2|}
(where a1, a2, b1, b2 ∈ R).

b) If B(xi, ri) are two ball in Rn (where x1, x2 ∈ Rn and r1, r2 ∈ R∗+),

then H(B(x1, r1), B(x1, r2)) = ||x1 − x2||+ |r1 − r2|.

Let us recall that a metric space (X, d) is said to be ε-chainable (where

ε > 0 is fixed) if and only if given a, b ∈ X there is an ε-chain from a

to b, that is a finite set of points x0, x1, . . . , xn in X such that x0 = a,

xn = b and d(xi−1, xi) < ε, for all i ∈ {1, 2, . . . , n}.

Some very important properties of the metric space (Pcl(X), Hd) are

contained in the following result:

Theorem 1.1.26. i) If (X, d) is a complete metric space, then

(Pcl(X), Hd) is a complete metric space.

ii) If (X, d) is a totally bounded metric space, then (Pcl(X), Hd) is a

totally bounded metric space.

iii) If (X, d) is a compact metric space, then (Pcl(X), Hd) is a compact

metric space.

iv) If (X, d) is a separable metric space, then (Pcp(X), Hd) is a sepa-

rable metric space.

v) If (X, d) is a ε-chainable metric space, then (Pcp(X), Hd) is also

an ε-chainable metric space.
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Proof. i) We will prove that each Cauchy sequence in (Pcl(X), Hd)

is convergent. Let (An)n∈N be a Cauchy sequence in (Pcl(X), Hd). Let us

consider the set A defined as follows:

A =
∞⋂
n=1

(
∞⋃
m=n

Am

)
.

We have two steps in the proof:

1) A 6= ∅.
In this respect, consider ε > 0. Then for each k ∈ N there is Nk ∈ N

such that for all n,m ≥ Nk we have H(An, Am) <
ε

2k+1
. Let (nk)k∈N

be an increasing sequence of natural numbers such that nk ≥ Nk. Let

x0 ∈ An0 . Let us construct inductively a sequence (xk)k∈N having the

following properties:

α) xk ∈ Ank , for each k ∈ N
β) d(xk, xk+1) <

ε

2k+1
, for eachk ∈ N.

Suppose that we have x0, x1, . . . , xk satisfying α) and β) and we will

generate xk+1 in the following way.

We have:

D(xk, Ank+1
) ≤ H(Ank , Ank+1

) <
ε

2k+1
.

It follows that there exists xk+1 ∈ Ank+1
such that d(xk, xk+1) <

ε

2k+1
.

Hence, we have proved that there exist a sequence (xk)k∈N satisfying

α) and β).

From β) we get that (xk)k∈N is Cauchy in (X, d). Because (X, d) is

complete it follows that there exists x ∈ X such that x = lim
k→∞

xk. We

need to show now that x ∈ A. Since (nk)k∈N is an increasing sequence it

follows that for n ∈ N∗ there exists kn ∈ N∗ such that nkn ≥ n. Then

xk ∈
⋃
m≥n

Am, for k ≥ kn, n ∈ N∗ implies that x ∈
⋃
m≥n

Am, n ∈ N∗. Hence

x ∈ A.
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2) In the second step of the proof, we will establish that H(An, A)→ 0

as n→∞.

The following inequalities hold:

d(xk, xk+p) ≤ d(xk, xk+1) + · · ·+ d(xk+p−1, xk+p) <

<
ε

2k+1
+

ε

2k+2
+ · · ·+ ε

2k+p
< ε

(
1 +

1

2
+ · · ·+ 1

2k
+ . . .

)
=

= ε
1

1− 1

2

= 2ε, for all p ∈ N∗.

If in d(xk, xk+p) < 2ε we are letting p → ∞ we obtain d(xk, x) <

2ε, for each k ∈ N. In particular d(x0, x) < 2ε. So, for each n0 ∈ N,

n0 ≥ N0 and for x0 ∈ An0 there exists x ∈ A such that d(x0, x) ≤ 2ε,

which imply

ρ(An0 , A) ≤ 2ε, for all n0 ≥ N0 (1).

On the other side, because the sequence (An)n∈N is Cauchy, it follows

that there exists Nε ∈ N such that for m,n ≥ Nε we have H(An, Am) <

ε. Let x ∈ A be arbitrarily. Then x ∈
∞⋃
m=n

Am, for n ∈ N∗, which implies

that there exist n0 ∈ N, n0 ≥ Nε and y ∈ An0 such that d(x, y) < ε.

Hence, there exists m ∈ N, m ≥ Nε and there is y ∈ Am such that

d(x, y) < ε.

Then, for n ∈ N∗, with n ≥ Nε we have:

D(x,An) ≤ d(x, y) +D(y, An) ≤ d(x, y) +H(Am, An) < ε+ ε = 2ε.

So,

ρ(A,An) < 2ε, for each n ∈ N with n ≥ Nε. (2)

From (1) and (2) and choosing nε := max{N0, Nε} it follows that

H(An, A) < 2ε, for each n ≥ nε. Hence H(An, A)→ 0 as n→∞.

v) (X, d) being an ε-chainable metric space (where ε > 0) it follows, by

definition, that for all x, y ∈ X there exists a finite subset (the so-called
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ε-net) of X, let say x = x0, x1, . . . , xn = y such that d(xk−1, xk) < ε, for

all k = 1, 2, . . . , n.

Let y ∈ X arbitrary and Y = {y}. Obviously, Y ∈ Pcp(X). Because

the ε-chainability property is transitive, it is sufficient to prove that for

all A ∈ Pcp(X) there exist an ε-net in Pcp(X) linking Y with A. We have

two steps in our proof:

a) Let suppose first that A is a finite set, let say A = {a1, a2, ..., an}
We will use the induction method after the number of elements of A. If

n = 1 then A = {a} and the conclusion follows from the ε-chainability of

(X, d). Let suppose now that the conclusion holds for each subsets of X

consisting of at most n elements. Let A be a subset of X with n+1 points,

A = {x1, x2, . . . , xn+1}. Using the ε-chainability of the space (X, d) it

follows that there exist an ε-net in X, namely x1 = u0, u1, . . . , um = x2

linking the points x1 and x2. We obtain that the following finite set: A,

{u1, x2, . . . , xn+1}, . . . , {um−1, x2, . . . , xn+1, {x2, . . . , xn+1} is an ε-net in

Pcp(X) from A to B := {x2, . . . , xn+1}. But, from the hypothesis B is

ε-chainable with Y , and hence A is ε-chainable with Y in Pcp(X).

b) Let consider now A ∈ Pcp(X) be arbitrary.

A being compact, there exists a finite family of nonempty compact

subsets of A, namely {Ak}nk=1, having diam(Ak) < ε such that A =
n⋃
k=1

Ak. For each k = 1, 2, . . . n we can choose xk ∈ Ak and define C =

{x1, . . . , xn}. Then for all z ∈ A there exists k ∈ {1, 2, . . . , n} such that

D(z, C) ≤ δ(Ak). We obtain:

H(A,C) = max

{
sup
z∈A

D(z, C), supy∈CD(y, A)

}
=

= sup
z∈A

D(z, C) ≤ max
i≤k≤n

δ(Ak) < ε,

meaning that A is ε-chainable by C in Pcp(X). Using the conclusion a)

of this proof, we get that C is ε-chainable by Y in Pcp(X) and so we have

proved that A is ε-chainable by Y in Pcp(X). �
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v) (X, d) being an ε-chainable metric space (where ε > 0) it follows, by

definition, that for all x, y ∈ X there exists a finite subset (the so-called

ε-net) of X, let say x = x0, x1, . . . , xn = y such that d(xk−1, xk) < ε, for

all k = 1, 2, . . . , n.

Let y ∈ X arbitrary and Y = {y}. Obviously, Y ∈ Pcp(X). Because

the ε-chainability property is transitive, it is sufficient to prove that for

all A ∈ Pcp(X) there exist an ε-net in Pcp(X) linking Y with A. We have

two steps in our proof:

a) Let suppose first that A is a finite set, let say A = {a1, a2, ..., an}
We will use the induction method after the number of elements of A. If

n = 1 then A = {a} and the conclusion follows from the ε-chainability of

(X, d). Let suppose now that the conclusion holds for each subsets of X

consisting of at most n elements. Let A be a subset of X with n+1 points,

A = {x1, x2, . . . , xn+1}. Using the ε-chainability of the space (X, d) it

follows that there exist an ε-net in X, namely x1 = u0, u1, . . . , um = x2

linking the points x1 and x2. We obtain that the following finite set: A,

{u1, x2, . . . , xn+1}, . . . , {um−1, x2, . . . , xn+1, {x2, . . . , xn+1} is an ε-net in

Pcp(X) from A to B := {x2, . . . , xn+1}. But, from the hypothesis B is

ε-chainable with Y , and hence A is ε-chainable with Y in Pcp(X).

b) Let consider now A ∈ Pcp(X) be arbitrary.

A being compact, there exists a finite family of nonempty compact

subsets of A, namely {Ak}nk=1, having diam(Ak) < ε such that A =
n⋃
k=1

Ak. For each k = 1, 2, . . . n we can choose xk ∈ Ak and define C =

{x1, . . . , xn}. Then for all z ∈ A there exists k ∈ {1, 2, . . . , n} such that

D(z, C) ≤ δ(Ak). We obtain:

H(A,C) = max

{
sup
z∈A

D(z, C), supy∈CD(y, A)

}
=

= sup
z∈A

D(z, C) ≤ max
i≤k≤n

δ(Ak) < ε,

meaning that A is ε-chainable by C in Pcp(X). Using the conclusion a)
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of this proof, we get that C is ε-chainable by Y in Pcp(X) and so we have

proved that A is ε-chainable by Y in Pcp(X). �

1.2 Basic concepts for multi-valued opera-

tors

In this section, we describe some basic concepts and results for multi-

valued operators.

Let X and Y two nonempty sets. A multi-valued operator (or a multi-

function) from X into Y is a correspondence which associates to each

element x ∈ X a subset F (x) of Y . We will denote this correspondence by

the symbol: F : X → P(Y ) or occasionally by: F : X ( Y . Throughout

this book we denote single-valued operators by small letters and multi-

valued operators by capital letters.

Multi-valued operators arises in various branches of pure and applied

mathematics, as we can see from the following examples:

i) The metric projection multi-function. Let (X, d) be a metric

space and Y ∈ P (X). Then the metric projection on Y is the multi-

function PY : X → P(Y ) defined by:

PY (x) = {y ∈ Y | D(x, Y ) = d(x, y)}.

If X is a Hilbert space, for example, then PY becomes a single-valued

operator.

ii) Implicit differential equations. Consider the implicit differ-

ential equation:

f(t, x, x′) = 0, x(0) = x0.

This problem may be reduced to a multi-valued initial value problem:

x′(t) ∈ F (t, x(t)), x(0) = x0
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involving the multi-valued operator F (t, x) = {v|f(t, x, v) = 0}.

iii) Differential inequalities. The differential inequality:

‖x′(t)− g(t, x)‖ ≤ f(t, x), x(0) = x0

may be recast into the form:

x′(t) ∈ F (t, x(t)), x(0) = x0

with F (t, x) = B̃(g(t, x), f(t, x)).

iv) Control theory. If f : R × Rn × Rm → Rn determines the

dynamics of a control system having the equations of motion given by:

x′(t) = f(t, x(t), u(t)), x(0) = x0,

where the control function u may be chosen as any measurable func-

tion from U(t, x(t)). (denote by U : R × Rn → P (Rm) the feedback

multi-function), then the description of this system can be presented in

a differential inclusion form:

x′(t) ∈ F (t, x(t)), x(0) = x0,

where F (t, x) = {f(t, x(t), u(t))| u ∈ U(t, u(t)}.

v) Variational inequalities. Let E be a Banach space, f : E →
Rn be a differentiable function and C ∈ Pcv(E). Consider the following

problem (called a (differential) variational inequality):

Find x0 ∈ C such that (∇f(x0), x− x0) ≥ 0, for each x ∈ C.

If we denote by NC(x0) the normal cone for the set C at x0 (i.e.

NC(x0) = {w ∈ Rn|(w, x0 − x) ≥ 0,∀ x ∈ C}), then the above problem

can be written as follows:

Find x0 ∈ X such that 0 ∈ F (x0), where F (x0) = ∇f(x0) + NC(x0)

is a multi-valued operator.
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More generally, if K := Rn
+ is the convex cone of nonnegative vectors

in Rn and g : K → Rn, then a variational inequality means the following

problem:

Find x0 ∈ K such that (g(x0), x− x0) ≥ 0, for each x ∈ K
or, equivalently

Find x0 ∈ K such that 0 ∈ F (x0), where F (x0) = g(x0) +NK(x0).

vi) Mathematical economies. Let us consider now the Arrow-

Debreu model of an economy. Let Rn be the commodity space. A vector

x ∈ Rn specifies a list of quantities of each commodity. A price p is also

an element of Rn, because p lists the value of an unit of each commodity.

The main ”actors” in a economy are the consumers. We assume that

there is a given finite number of consumers. If M is the income of the

consumer, then his budget set is B = {x ∈ X|p · x ≤ M}, where X

denotes the consumption set (i.e. the set of all admissible consumption

vectors of the consumer). The problem faced by a consumer is to choose

a consumption vector or a set of them from the budget set. In order

to do this, the consumer must have some criterion for choosing. Let us

denote by U the preferences multi-valued operator for our consumer:

U : X → P(X), U(x) = {y ∈ X| y is strictly prefered to x}.

An element x∗ ∈ X is an optimal preference for the consumer if

U(x∗) = ∅. This is the so-called consumer’s problem.

Another important question from mathematical economies is the equi-

librium price problem. The set of sums of demand vectors minus sums

of supply vectors is, by definition, the excess-demand multi-function, de-

noted by E(p). A Walrasian equilibrium price problem means the follow-

ing:

find a price p∗ ∈ Rn such that 0 ∈ E(p∗).

Let us recall now some basic notions in the analysis of multi-valued

operators.
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Definition 1.2.1. Let X, Y be two nonempty sets. For the multi-

valued operator F : X → P(Y ) we define:

i) the effective domain: DomF := {x ∈ X| F (x) 6= ∅}
ii) the graphic: Graf F := {(x, y) ∈ X × Y | y ∈ F (x)}
iii) the range: F (X) :=

⋃
x∈X

F (x)

iv) the image of the set A ∈ P (X): F (A) :=
⋃
x∈A

F (x)

v) the inverse image of the set B ∈ P (Y ):

F−(B) := {x ∈ X| F (x) ∩B 6= ∅}

vi) the strict inverse image of the set B ∈ P (Y ):

F+(B) := {x ∈ DomF | F (x) ⊂ B}.

vii) the inverse multi-valued operator, denoted F−1 : Y → P(X) and

defined by F−1(y) := {x ∈ X| y ∈ F (x)}. The set F−1(y) is called the

fibre of F at the point y.

Remark 1.2.2. We consider, by convention: F−(∅) = ∅ and F+(∅) =

∅.

Definition 1.2.3. Let F,G : X → P(Y ) be multi-valued operators.

Then:

i) If ⊗ defines a certain operation between sets, then we will use the

same symbol ⊗ for the corresponding operation between multi-functions,

namely: F⊗G : X → P(Y ), (F⊗G)(x) := F (x)⊗G(x), ∀ x ∈ X. (where

⊗ could be ∩, ∪, +, etc.)

iii) If η : P(Y ) → P(Y ), then we define η(F ) : X → P(Y ) by

η(F )(x) := η(F (x)), for all x ∈ X. In such way, we are able to define

in topological spaces, for example, F : X → P(Y ), F (x) = F (x), for all

x ∈ X or conv F : X → P(Y ), (conv F )(x) := conv(F (x)), for all x ∈ X
in linear spaces, etc.
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Definition 1.2.4. Let X, Y, Z be nonempty sets and F : X ( Y ,

G : Y ( Z be multi-valued operators. The composite of G and F is the

multi-valued operator H = G ◦ F , defined by the relation H : X ( Z,

H(x) :=
⋃

y∈F (x)

G(y).

If X is a nonempty set, then Y ∈ P (X) is said to be invariant with

respect to a multi-valued operator F : X → P (X) if F (Y ) ⊂ Y . The

family of all invariant subsets of F will be denoted by I(F ). Also, if

f : X → R, then Zf denotes the set of all zero point of f , i. e. Zf = {x ∈
X|f(x) = 0}.

Definition 1.2.5. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ). Then, F is called:

i) a-Lipschitz if a ≥ 0 and H(F (x1), F (x2)) ≤ ad(x1, x2), for all

elements x1, x2 ∈ X.

ii) a-contraction if it is a-Lipschitz, with a < 1.

iii) contractive ifH(F (x1), F (x2)) < d(x1, x2), for all x1, x2 ∈ X, x1 6=
x2.

Lemma 1.2.6. Let (X, d), (Y, d′) and (Z, d′′) be metric spaces. Then:

i) If F : X → Pb,cl(Y ) is a-Lipschitz and G : X → Pb,cl(Y ) is b-

Lipschitz, then F ∪G is max{a, b}-Lipschitz.

ii) If F : X → Pcp(Y ) is a-Lipschitz and G : Y → Pcp(Z) is b-

Lipschitz, then G ◦ F is ab-Lipschitz.

Lemma 1.2.7. Let X be a Banach space and F : X → Pb,cl(X)

be a-Lipschitz. Then conv F : X → Pb,cl(X) defined by (conv F )(x) =

conv(F (x)), for all x ∈ X is a-Lipschitz. Moreover, if F : X → Pcp(X)

then conv F : X → Pcp(X).

Let us remark now that, if (X, d) is a metric space and Y is a Banach

space, then a multi-function F : X → P(Y ) is said to be α -Lipschitz on
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the set K ∈ P (X) if α ≥ 0 and

F (x1) ⊆ F (x2) + αd(x1, x2)B̃(0; 1), for all x1, x2 ∈ K.

It is quite obviously that, if there exists a > 0 such that F is a-Lipschitz

in the sense of Definition 1.2.5., then F is α-Lipschitz in the above men-

tioned sense with any α > a and also reversely.

1.3 Continuity of multi-valued operators

Let us consider, for the beginning, the notion of upper semi-continuity

of a multi-function.

Definition 1.3.1. Let X, Y be Hausdorff topological spaces and F :

X → P (Y ). Then F is said to be upper semi-continuous in x0 ∈ X

(briefly u.s.c.) if and only if for each open subset U of Y with F (x0) ⊂ U

there exists an open neighborhood V of x0 such that for all x ∈ V we

have F (x) ⊂ U .

F is u.s.c. on X if it is u.s.c. in each x0 ∈ X.

Remark 1.3.2. If x0 ∈ X has the property F (x0) = ∅ then F is

u.s.c. in x0 if and only if there exists a neighborhood V of x0 such that

F (V ) = ∅.

Remark 1.3.3. If X, Y are metric spaces, then F : X → P (Y ) is

u.s.c. in x0 ∈ X if and only if for all U ⊂ Y open, with F (x0) ⊂ U there

exists η > 0 such that for all x ∈ B(x0; η) we have F (x) ⊂ U .

Definition 1.3.4. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ). Then F is called H-upper semi-continuous in x0 ∈ X (briefly H-

u.s.c.) if and only if for all ε > 0 there exists η > 0 such that for all

x ∈ B(x0; η) we have F (x) ⊂ V (F (x0); ε).

F is H-u.s.c. on X if it is H-u.s.c. in each x0 ∈ X.
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Remark 1.3.5. If F : X → Pb,cl(Y ) then F is H-u.s.c. in x0 ∈ X if

and only if for all ε > 0 there exists η > 0 such that for all x ∈ B(x0; η)

we have ρd′(F (x), F (x0)) ≤ ε.

The connection between Definition 1.3.1 and Definition 1.3.4 is given

by:

Lemma 1.3.6. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ). If F is u.s.c. in x0 ∈ X then F is H-u.s.c. in x0 ∈ X.

For a reverse implication, we have:

Lemma 1.3.7. Let (X, d), (Y, d′) be metric spaces. If F : X → Pcp(Y )

is H-u.s.c. in x0 ∈ X then F is u.s.c. in x0 ∈ X.

Remark 1.3.8. F : X → Pb,cl(X) is H-u.s.c. in x0 ∈ X if and

only if for each sequence (xn)n∈N∗ ⊂ X such that lim
n→∞

xn = x0 we have

lim
n→∞

ρ(F (xn), F (x0)) = 0.

For Hausdorff topological spaces, we have the following characteriza-

tion of global upper semi-continuity:

Theorem 1.3.9. Let X, Y be Hausdorff topological spaces and F :

X → P (Y ). The following assertions are equivalent:

i) F is u.s.c. on X

ii) F+(V ) = {x ∈ X| F (x) ⊂ V } is open, for each open set V ⊂ Y .

iii) F−(W ) = {x ∈ X| F (x) ∩W 6= ∅} is closed, for each closed set

W ⊂ Y .

Lemma 1.3.10. a) Let X, Y, Z be Hausdorff topological spaces and

F : X → P (Y ), G : Y → P (Z) be u.s.c. on X respectively on Y . Then

G ◦ F : X → P (Z) is u.s.c. on X.

b) If X, Y are Hausdorff topological spaces and F : X → Pcl(Y ) is

u.s.c. on X, then Graf F is a closed set in X × Y .

Lemma 1.3.11. Let (X, d), (Y, d′) be metric spaces, f : X → Y be

a continuous operator and F : X → Pb,cl(Y ) be a multi-valued operator
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H-u.s.c. on X. then the functional p : X → R+, defined by p(x) :=

D(f(x), F (x)), for all x ∈ X is lower semi-continuous (briefly l.s.c.) on

X.

Proof. Let x ∈ X be a fixed point and (xn)n∈N ⊂ X convergent

to x. It follows that for all ε > 0 there exists Nε ∈ N such that

d(f(x), f(xn)) <
ε

2
, for all n ≥ Nε. From the H-u.s.c. of F in x we

have that ρ(F (xn), F (x)) <
ε

2
, for all n ≥ Nε. Hence, for each n ≥ Nε

we have: p(x) = D(f(x), F (x)) ≤ d(f(x), f(xn)) + D(f(xn), F (xn)) +

ρ(F (xn), F (x)) < ε+ p(xn). In conclusion, p(x) ≤ lim infn→∞ p(xn) + ε ,

for all ε > 0. It follows p(x) ≤ lim infn→∞ p(xn) proving that p is l.s.c. in

x. �

Lemma 1.3.12. Let (X, d) be a metric space, Y be a Banach space

and F : X → Pcp(Y ) be u.s.c. on X. Then, the multi-valued operator

conv F : X → P (Y ) is u.s.c. on X.

Proof. From Mazur’s theorem (see Dugundji [83]) conv F (x) is com-

pact, for all x ∈ X and hence conv F has compact values. Using Lemma

1.3.7. it is sufficient to prove that conv F is H-u.s.c. on X. Let x ∈ X be

an arbitrary point and (xn)n∈N ⊂ X which converges to x. From

ρ(conv F (xn), conv F (x)) ≤ ρ(F (xn), F (x)), for all n ∈ N∗

and using the hypothesis that F is H-u.s.c. on X we got the desired

conclusion.�

Lemma 1.3.13. Let X, Y be Hausdorff topological spaces and F :

X → Pcp(Y ) be u.s.c. on X. Then, for each compact subset K of X,

F (K) is a compact set in Y .

Lemma 1.3.14. a) Let X, Y be Hausdorff topological spaces, Fi :

X → Pcp(Y ) be u.s.c. on X for each i ∈ I such that
⋂
i∈I

Fi(x) 6= ∅ for
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each x ∈ X and Hj : X → Pcp(Y ), be u.s.c. for each j ∈ {1, 2, . . . , n}.
Then:

i) F :=
⋂
i∈I

Fi is u.s.c. on X and has compact values.

ii) H :=
n⋃
j=1

Hj is u.s.c. on X and has compact values.

b) If Y is a normed spaces and F1, F2 : X → Pcp(Y ) are u.s.c. then,

T : X → Pcp(Y ), T = F1 + F2 is u.s.c. on X.

Another continuity notion for a multi-function is defined as follows:

Definition 1.3.15. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ). Then F is said to be closed in x0 ∈ X if and only if for all

(xn)n∈N∗ ⊂ X such that lim
n→∞

xn = x0 and for all (yn)n∈N∗ ⊂ Y , with

yn ∈ F (xn), for all n ∈ N∗ and lim
n→∞

yn = y0 we have y0 ∈ F (x0).

F is closed on X if it is closed in each point x0 ∈ X.

Remark 1.3.16. An equivalent definition is the following: F : X →
P (Y ) is said to be closed in x0 ∈ X if and only if for each y0 6∈ F (x0)

there exist a neighborhood V of x0 and a neighborhood U of y0 such that

for all x ∈ V it follows that F (x) ∩ U = ∅.

Lemma 1.3.17. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ) closed on X. Then:

i) F (x) ∈ Pcl(Y ), for all x ∈ X
ii) Graf F is a closed set with respect to the Pompeiu-Hausdorff topol-

ogy from X × Y . Moreover, the condition ii) implies that F is closed on

X.

Lemma 1.3.18. Let X, Y be Hausdorff topological spaces, Fi : X →
P (Y ), i ∈ I be closed on X such that

⋂
i∈I

Fi(x) 6= ∅ for each x ∈ X and

Hj : X → P (Y ), j ∈ {1, . . . , n} be closed on X. Then:

i) F :=
⋂
i∈I

Fi is closed on X.
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ii) H :=
n⋃
j=1

Hj is closed on X.

The relation between an upper semi-continuous and a closed multi-

valued operator are given by the following results:

Lemma 1.3.19. Let (X, d), (Y, d′) be metric spaces and F : X →
Pb,cl(Y ) be H-u.s.c. on X. Then F is closed on X.

Proof. Let x ∈ X and ((xn, yn))n∈N ⊂ X × Y such that (xn, yn) →
(x, y) as n → ∞ with yn ∈ F (xn), for all n ∈ N. F is H-u.s.c. in

x and hence lim
n→∞

ρ(F (xn), F (x)) = 0. On the other side, D(y, F (x)) ≤
d(y, yn)+D(yn, F (xn))+ρ(F (xn), F (x)), for all n ∈ N. If we take n→∞
it follows that D(y, F (x)) ≤ 0 and so y ∈ F (x) = F (x). �

For a reverse proposition, we have:

Theorem 1.3.20. Let (X, d), (Y, d′) be metric spaces, F1 : X → P (Y )

closed and F2 : X → Pcp(Y ) u.s.c.. Suppose that F1(x) ∩ F2(x) 6= ∅ for

each x ∈ X. Then, the multi-valued operator F = F1 ∩F2 is u.s.c. and it

has compact values.

Corollary 1.3.21. Let (X, d) be a metric space, (Y, d′) be a compact

metric space and F : X → P (Y ) closed on X. Then F is u.s.c. on X

and it has compact values.

Definition 1.3.22. Let X, Y be topological spaces. A multi-function

F : X → P (Y ) is said to be compact if its range F (X) is relatively

compact in Y .

Lemma 1.3.23. Let X, Y be metric spaces and F : X → Pcp(Y ) be

a closed and compact multi-function. Then F is u.s.c.

Lemma 1.3.24. Let X, Y be metric spaces and F : X → Pcl(Y ) be

a closed multi-function. Then for each compact subset K of X its image

F (K) is closed in Y .
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Let us consider now the concept of lower semi-continuous multi-

function.

Definition 1.3.25. Let X, Y be Hausdorff topological spaces and

F : X → P(Y). Then, F is said to be lower semi-continuous (briefly l.s.c.)

in x0 ∈ X if and only if for each open subset U ⊂ Y with F (x0)∩U 6= ∅
there exists an open neighborhood V of x0 such that F (x) ∩ U = ∅, for

all x ∈ V .

F is l.s.c. on X if it is l.s.c. in each x0 ∈ X.

Remark 1.3.26. If (X, d), (Y, d′) are metric spaces and F : X →
P (Y ), then F is l.s.c. in x0 ∈ X if and only if for all (xn)n∈N∗ ⊂ X

such that lim
n→∞

xn = x0 and for all y0 ∈ F (x0) there exists a sequence

(yn)n∈N∗ ⊂ Y such that yn ∈ F (xn), for all n ∈ N∗ and lim
n→∞

yn = y0.

Another lower semi-continuity notion is given by:

Definition 1.3.27. Let (X, d) and (Y, d′) be metric spaces and F :

X → P (Y ). Then, F is called H-lower semi-continuous (briefly H-l.s.c.)

in x0 ∈ X if and only if for each ε > 0 there exists η > 0 such that

F (x0) ⊂ V (F (x); ε), for all x ∈ B(x0; η).

F is H-l.s.c. on X if it is l.s.c. in each point x0 ∈ X.

Remark 1.3.28. F : X → Pb,cl(Y ) is H-l.s.c. in x0 ∈ X if and only

if for each ε > 0 there exists η > 0 such that ρd′(F (x0), F (x)) ≤ ε, for all

x ∈ B(x0; η).

Lemma 1.3.29. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ) be H-l.s.c. in x0 ∈ X. Then F is l.s.c. in x0 ∈ X.

Regarding the reverse implication we have:

Lemma 1.3.30. Let (X, d), (Y, d′) be metric spaces and F : X →
Pcp(Y ) be l.s.c. in x0 ∈ X. then F is H-l.s.c. in x0 ∈ X.

A characterization result for l.s.c. multi-functions is:
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Theorem 1.3.31. Let X, Y be Hausdorff topological spaces and F :

X → P (Y ). Then, the following assertions are equivalent:

i) F is l.s.c. on X

ii) F+(V ) := {x ∈ X| F (x) ⊂ V } is closed, for each closed set

V ⊂ Y .

iii) F−(W ) := {x ∈ X| F (x) ∩W 6= ∅} is open, for each open set

W ⊂ Y .

Lemma 1.3.32. Let (X, d) be a metric space, Y be a Banach space

and F : X → P (Y ) be l.s.c.. Then, the multi-valued operators conv F

and conv F are l.s.c..

Lemma 1.3.33. Let X, Y, Z be Hausdorff topological spaces. Then:

i) If F : X → P (Y ) and G : Y → P (Z) are l.s.c. on X respectively

on Y then G ◦ F : X → P (Z) is l.s.c. on X.

ii) If Fi : X → P (Y ), are l.s.c. on X, for each i ∈ I, then F :=
⋃
i∈I

Fi

is l.s.c. on X.

An useful result is:

Lemma 1.3.34. Let (X, d), (Y, d′) be metric spaces. If F1 : X →
P (Y ) is l.s.c. and F2 : X → P (Y ) has open graph, such that F1(x) ∩
F2(x) 6= ∅ for each x ∈ X, then the multi-valued operator F1 ∩ F2 is

l.s.c..

Definition 1.3.35. Let X, Y be Hausdorff topological spaces and

F : X → P (Y ). Then F is said to be continuous in x0 ∈ X if and only

if it is l.s.c. and u.s.c. in x0 ∈ X.

Definition 1.3.36. Let (X, d), (Y, d′) be metric spaces and F : X →
P (Y ). Then F is called H-continuous in x0 ∈ X (briefly H-c.) if and only

if it is H-l.s.c. and H-u.s.c. in x0 ∈ X.

Remark 1.3.37. If (X, d), (Y, d′) are metric spaces, then F : X →
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Pb,cl(Y ) is H-c. in x0 ∈ X if and only if for each ε > 0 there exists η > 0

such that x ∈ B(x0; η) implies Hd′(F (x), F (x0)) < ε.

Theorem 1.3.38. Let (X, d) and (Y, d′) be metric spaces. Then F :

X → Pcp(Y ) is continuous on X if and only if F is H-c. on X.

The relations between H-continuity and lower semi-continuity is given

in:

Lemma 1.3.39. Let (X, d), (Y, d′) be metric spaces and F : X →
Pb,cl(Y ) be H-c. on X. Then F is l.s.c. on X.

Further on, we will present some properties of multi-valued Lipschitz-

type operators.

Lemma 1.3.40. Let (X, d) be a metric space and F : X → Pb,cl(X)

be a-Lipschitz. Then:

a) F is closed on X

b) F is H-l.s.c. on X

c) F is H-u.s.c. on X

Proof. a) Let (xn, yn)n∈N ⊂ X ×Y such that (xn, yn)→ (x, y), when

n → ∞ and yn ∈ F (xn), for all n ∈ N. It follows that D(y, F (x)) ≤
d(y, yn)+D(yn, F (x)) ≤ d(y, yn)+H(F (xn), F (x)) ≤ d(y, yn)+ad(xn, x),

for all n ∈ N. Let us consider n → ∞ and we obtain D(y, F (x)) ≤ 0,

proving that y ∈ F (x) = F (x).

b) Let x ∈ X such that xn → x. We have: ρ(F (x), F (xn)) ≤
H(F (x), F (xn)) ≤ ad(x, xn)→ 0. In conclusion, F is H-l.s.c. on X.

c) Using the relation: ρ(F (xn), F (x)) ≤ H(F (xn), F (x)) ≤
ad(x, xn)→ 0, the conclusion follows as before. �

Lemma 1.3.41. Let (X, d) be a metric space and F : X → Pcp(X)

be contractive. Then F is u.s.c. on X.

Proof. Let H ⊂ Y be a closed set. We will prove that F−(H) is

closed in X. Let x ∈ F−(H)\F−(H) and (xn)n∈N ⊂ X such that xn → x,
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when n → ∞, xn 6= x, for all n ∈ N and xn ∈ F−(H), for all n ∈ N.

It follows F (xn) ∩ H 6= ∅, for all n ∈ N. Let yn ∈ F (xn) ∩ H, n ∈
N. Then D(yn, F (x)) ≤ H(F (xn), F (x)) < d(xn, x). If n → ∞ we got

that limn→∞D(yn, F (x)) = 0. But D(yn, F (x)) = infy∈F (x) d(yn, y) =

d(yn, y
′
n) (using the compactness of the set F (x)). When n→∞ we have

d(yn, x
′
n) → 0, n → ∞. Because (x′n)n∈N ⊂ F (x) we obtain that there

exists a subsequence (x′nk)k∈N which converges to an element x̃ ∈ F (x).

Then:

d(ynk , x̃) ≤ d(ynk , x
′
nk

) + d(x′nk , x̃)→ 0 când k →∞

Hence, ynk → x̃ ∈ F (x), as n → ∞. Because, (ynk)k∈N ⊂ H and H is

closed, we got that x̃ ∈ H. So F (x) ∩H 6= ∅, which implies x ∈ F−(H),

a contradiction. In conclusion, F−(H) = F−(H) and hence F−(H) is

closed in X. �

1.4 Measurability of multi-valued opera-

tors

Let (T,A) be a measurable space and S be a family of subsets of T .

Definition 1.4.1. The σ-algebra generated by S is the intersection

of all σ-algebras containing S.

Remark 1.4.2. If T is a topological space, then the Borel σ-algebra,

denoted by B(T ), is the σ-algebra generated by the family of all open

sets from T .

Remark 1.4.3. If T = Rn or T ⊂ Rn then the σ-algebra A is the

family L(T ) of all measurable Lebesgue subsets of T .

Remark 1.4.4. If (T1,A1), (T2,A2) are measurable spaces, then the

σ-algebra generated by the family of sets of the form A1 × A2, with
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A1 ∈ A1 and A2 ∈ A2 and which will be denoted by A1⊗A2 is called the

product σ-algebra ofA1 withA2. The measurable space (T1×T2,A1⊗A2)

is said to be the product space of (T1,A1) and (T2,A2). In particular, if

T1, T2 are topological spaces, then B(T1)⊗ B(T2) = B(T1 × T2).

Definition 1.4.5. Let (T,A) be a measurable space. Then, the func-

tion µ : A → R ∪ {+∞} is said to be a positive measure if for each

sequence of disjoint sets An ∈ A, n ∈ N∗ we have: µ
(⋃

n∈N∗ An
)

=∑
n∈N∗ µ(An).

Definition 1.4.6. Let (T,A) be a measurable space. A positive mea-

sure µ is called σ-finite, if T can be represented as a countable reunion

of measurable sets having finite measures.

Definition 1.4.7. Let (T,A) be a measurable space and µ a positive

measure. Then, the σ-algebra A is called µ-complete if for each A ∈ A
with µ(A) = 0 and for each A1 ⊂ A, we have that A1 ∈ A.

Remark 1.4.8. If T ⊂ Rn is open (or closed), then L(T ) is complete

with respect to the Lebesgue measure. Moreover, the Lebesgue measure

is σ-finite.

Definition 1.4.9. (T,A, µ) is said to be a complete space with σ-

finite measure if µ is a positive and σ-finite measure, while A is µ-

complete.

Definition 1.4.10. Let (T,A) be a measurable space, (X, d) be a

separable metric space. Then f : T → X is called A-measurable (or

measurable) if and only if f−1(A) ∈ A, for each A ∈ Pop(X) (or each

A ∈ Pcl(X).

Definition 1.4.11. Let (T,A) be a measurable space, (X, d) be a

separable metric space and F : T → P (X). Then F is called weak

measurable (respectively measurable, respectively β-measurable) if and
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only if F−(E) := {t ∈ T | F (t) ∩ E 6= ∅} ∈ A, for each E ⊂ X open

(respectively closed, respectively Borel).

Remark 1.4.12. The β-measurability implies the measurability,

which implies the weak measurability of a multi-function.

Some equivalences between these concepts are included in the follow-

ing lemma:

Lemma 1.4.13. Let (T,A) be a measurable space, (X, d) be a com-

plete and separable metric space and F : T → Pcp(X). Then:

i) F is weak measurable if and only if F is measurable.

ii) F is measurable if and only if the single-valued operator F :

(T,A)→ (Pcp(X), Hd) is measurable.

Definition 1.4.14. Let (T,A) be a measurable space and X, Y be

metric spaces. Then ϕ : T×X → Y is said to be a Carathéodory mapping

if and only if:

i) for all x ∈ X, ϕ(·, x) is measurable.

ii) for all t ∈ T , ϕ(t, ·) is continuous.

Lemma 1.4.15. Let X and Y be complete and separable metric

spaces, (T,A) be a measurable space and ϕ : T × X → Y be a

Carathéodory mapping. Then:

a) for each measurable function f : T → X we have that t 7→
ϕ(t, f(t)) is measurable.

b) ϕ is A⊗ B measurable.

In this framework, a very important theorem belong to Kuratowski

and Ryll Nardzewski. It is an existence result of a measurable selection

for a weak measurable multi-function. Let us recall that if X, Y are two

nonempty sets and F : X → P (Y ) is a multi-function, then a single-

valued operator f : X → Y is said to be a selection of F if and only if

f(x) ∈ F (x), for each x ∈ X.
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Theorem 1.4.16. Let (T,A) be a measurable space, (X, d) be a com-

plete separable metric space and F : T → Pcl(X) be weak measurable.

Then there exists f : T → X a measurable selection for F .

Proof. Let {x1, x2, . . . } be a countable and dense subset of X. Let

Bn(i) :=

{
x ∈ X| d(x, xi) ≤

1

n

}
, for i, n ∈ N. We will define inductively

a sequence of measurable multi-functions (Fn)n∈N such that
∞⋂
n=1

Fn will

be the desired selection.

Let F0 = F and Fn+1(t) = Fn(t)∩Bn+1(In(t)), where In(t) := min{i ∈
N| F (t) ∩ Bn+1(i) 6= ∅}, for all n ∈ N. For each t ∈ T the sequence

(Fn(t))n∈N ⊂ Pb,cl(X) is decreasing and δ(Fn(t)) → 0, as n → ∞. Using

Cantor’s theorem we obtain that
∞⋂
n=1

Fn(t) consist in exactly one point.

Let us define now f(t) =
∞⋂
n=1

Fn(t), for all t ∈ T . Obviously, f is a

selection for F . Let also prove that f is measurable. We shall prove first

that each Fn are measurable, i.e. {t ∈ T | Fn(t) ∩ E 6= ∅} ∈ A, for each

closed subset E of X. From the hypothesis, we have that F0 = F is

measurable. Let suppose that Fn is measurable. Then we obtain:

{t ∈ T | Fn+1(t) ∩ E 6= ∅} = {t ∈ T | Fn(t) ∩Bn+1(In(t)) ∩ E 6= ∅} =

=
∞⋂
n=1

[{t ∈ T | Fn(t) ∩Bn+1(i) ∩ E 6= ∅} ∩ {t ∈ T | In(t) = i}].

But the final set is in A (taking account that {t ∈ T | In(t) = i} =
i−1⋂
j=1

[{t ∈ T | Fn(t) ∩ Bn+1(i) = ∅} ∩ {t ∈ T | Fn(t) ∩ Bn+1(i) 6= ∅}] ∈ A).

Hence the induction is finished.

Because X is complete, for each closed subset E of X we have

f−1(E) =
∞⋂
n=0

{t ∈ T | Fn(t) ∩ E 6= ∅}
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and in conclusion f−1(E) ∈ A, proving that f is measurable. �

The following characterization theorem describe the main properties

of measurable multi-functions:

Theorem 1.4.17. Let (T,A, µ) be a complete space with a σ-finite

measure, (X, d) be a complete and separable metric space and F : T →
Pcl(X). Then the following assertions are equivalent:

i) F is weak measurable

ii) Graf F ∈ A⊗ B(X)

iii) F−(A) ∈ A, for all A ∈ Pcl(X)

iv) F−(A) ∈ A, for each Borel subset of X

v) for each x ∈ X the mapping D : T → R defined by t 7→ D(x, F (t))

is measurable

vi) There exists a sequence of measurable selections {fn}n∈N∗ of F

such that for each t ∈ T , F (t) =
⋃
n≥1

fn(t). (Castaing representation of

F )

Lemma 1.4.18. Let (T,A, µ) be a complete space with a σ-finite

measure, (X, d) be a measurable Banach space and F : T → Pcl(X). Then

the multi-valued operator conv F : T ( X is measurable. Moreover, if

I ⊂ R is compact and F : I → Pcp(Rn) is measurable then conv F : I (

Rn is measurable.

Lemma 1.4.19. a) Let T be a metric space such that (T,A, µ) is

complete with a σ-finite measure while A contain all open sets from T .

Let (X, d) be a complete and separable metric space and F : T → Pcl(X).

If F is u.s.c. on T ( or l.s.c. on T ) then F is weak measurable.

b) Let X be a complete and separable metric space, Y be a metric

space, T a measurable space, f : T × X → Y a Carathéodory mapping,

F : T → Pcp(X) be measurable and g : T → Y a measurable mapping

such that g(t) ∈ f(t, F (t)), for all t ∈ T . Then there exists h : T → X
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a measurable selection of F , such that g(t) = f(t, h(t)), for all t ∈ T .

(Fillipov implicit function lemma)

c) Let I be a compact interval of the real axis, X be a complete and

separable metric space, ϕ : I → X a measurable mapping and F : I×X →
Pcl(Rn) a multi-valued operator satisfying the conditions:

i) F (·, x) is measurable, for all x ∈ X
ii) F (t, ·) is H-c, for all t ∈ I.

Then:

1) F is measurable

2) the multi-function G defined by G(t) = F (t, ϕ(t)), for all t ∈ I
is measurable too.

3) if H : I → Pcp(Rn) is measurable then the multifunction

P : I → P (Rn), by P (t) := F (t,H(t)), for each t ∈ I is measurable.

Moreover, same conclusion is true when the conditions i) and ii) are

replaced by the u.s.c. or l.s.c. of the multi-valued operator F .

Lemma 1.4.20. Let I be a compact interval of the real axis, Y a

separable Banach space and F1, F2 : I → Pcp(Y ) weak measurable multi-

functions. Then:

a) the deviation functional denoted d∗ : I → R+, and defined by

d∗(t) := ρ(F1(t), F2(t), for each t ∈ I is measurable.

b) the functional h : I → R+, defined by h(t) := H(F1(t), F2(t)), for

each t ∈ I is measurable.

Definition 1.4.21. Let (T,A, µ) be a complete space with a σ-finite

measure, X be a separable Banach space and F : T → Pcl(X) a measur-

able multi-function. Let us denote by L1(T,X) the set of all measurable

and Bochner integrable mappings from T to X. Then SF will denote the

set of all integrable selections of F , i.e.:

SF := {f ∈ L1(T,X)| f(t) ∈ F (t) a.p.t. t ∈ T}.
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Definition 1.4.22. Let (T,A, µ) be a complete space with a σ-finite

measure, X be a separable Banach space and F : T → Pcl(X) a mea-

surable multi-function. Then F is said to be integrably bounded if there

exists a real valued function m : T → R+ such that m ∈ L1(T,R) and

F (t) ⊂ BX(0,m(t)), a.e. t ∈ T .

Remark 1.4.23. If F : T → Pcp(X) is integrably bounded then

‖F (t)‖ ≤ m(t) a.e. t ∈ T .

Remark 1.4.24. If F : T → Pcl(X) is integrably bounded then for

each measurable selection f : T → X of F we have f ∈ SF . Moreover, if

F : T → Pcp(X) is measurable and integrably bounded, then SF 6= ∅.

Definition 1.4.25. Let F : T → Pcl(X) be a measurable multi-

function. Then F is said to be integrable in Aumann’ sense on T if and

only if SF 6= ∅. In this case, the multi-valued integral of F is:∫
T

F (t)dµ :=

{∫
T

f(t)dµ| f ∈ SF
}
.

Let us report now several properties of the multi-valued integral for

the following particular case: T = I, I ⊆ R compact and X = Rn.

Lemma 1.4.26. Let K ∈ Pcl,cv(Rn) and t1, t2 ∈ I, t1 < t2. Then∫ t2
t1
Kdt = (t2 − t1)K.

Definition 1.4.27. A set K ⊂ L1(I,Rn) is said to be decomposable

if and only if for all u, v ∈ K and for each measurable subset E of I we

have that χEu+ χI\Ev ∈ K.

Let us remark that, if F : I → Pcp(Rn) is measurable and integrably

bounded then SF is decomposable.

Lemma 1.4.28. Let K ⊂ L1(I,Rn) be a decomposable set. Then the

set

J(K) :=

{∫
I

f(t)dt| f ∈ K
}
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is convex in Rn.

Proof. Let us suppose that K 6= ∅ and let z1, z2 ∈ J(K) and λ ∈]0, 1[.

Then there exist f1, f2 ∈ K such that

z1 =

∫
I

f1(t)dt and z2 =

∫
I

f2(t)dt.

Let α(I) be the family of all Lebesgue measurable sets of I and denote

γ(E) =

(∫
I

f1(t)dt,

∫
I

f2(t)dt

)
, for all E ∈ A(I).

From Lyapunov’s convexity theorem (see for example [100])we obtain

that γ(α(I)) is a convex compact subset of R2n. Because (0, 0) and (z1, z2)

belong to γ(α(I)) it follows that (λz1, λz2) ∈ γ(α(I)). Hence, there exists

F ∈ α(I) such that (λz1, λz2) = γ(F ). Define f = χFf1 + χI\Ff2. Using

the decomposability property of the set K we obtain that f ∈ K and

so
∫
I
f(t)dt ∈ J(K). But

∫
I
f(t)dt = λz1 + (1 − λ)z2 and in conclusion

λz1 + (1− λ)z2 ∈ J(K). �

Theorem 1.4.29. Let F : I → Pcp(Rn) be a measurable and inte-

grably bounded multi-function. Then∫
I

F (t)dt =

∫
I

conv F (t)dt

and both are non-empty, convex, compact subset of Rn.

In the general case of complete spaces with a σ-finite measure we have

the following theorems.

Definition 1.4.30. Let (T,A, µ) be a complete space with a σ-finite

measure. Then the set A ∈ A is said to be an atom with respect to µ if

and only if µ(A) > 0 and for each A1 ⊂ A measurable we have that µ(A1)

is equal to 0 or µ(A). By definition, a measure µ is called non-atomic if

A does not contain atoms.
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Remark 1.4.31. The Lebesgue measure is non-atomic, while the

Dirac measure, for example, is atomic.

Theorem 1.4.32. Let (T,A, µ) be a complete space with a σ-finite

and non-atomic measure and F : T → Pcl(Rn) be measurable. Then the

following assertions hold:

i)

∫
T

Fdµ is convex in Rn

ii) If F is integrably bounded, then

∫
T

Fdµ is non-empty and compact

in Rn.

For the case of an arbitrary Banach space the following result belong

to Hiai and Umegaki.

Theorem 1.4.33. Let (T,A, µ) be a complete space with a σ-finite

and non-atomic measure, X separable Banach space and F : T → Pcl(X)

be measurable. Then:

i)
∫
T

F (t)dµ is convex and
∫
T
F (t)dµ = conv

(∫
T
F (t)dµ

)
.

ii) If F is integrably bounded, then
∫
T
F (t)dµ =

∫
T
conv F (t)dµ.

iii) If X is reflexive and F : T → Pcl,cv(X) is integrably bounded, then∫
T

F (t)dµ is closed in X.
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Chapter 2

Operatorial inclusions

One of the connections between the ”multi-valued analysis” and the

”single-valued analysis” is given by the notion of selection. The first pur-

pose of this chapter is to present continuous selection theorems for l.s.c.

and u.s.c. multi-function with convex values. Then, the case of multi-

functions with decomposable values is considered. Second, we will dis-

cuss the fixed point and the coincidence point theory for multi-valued

operators. In this respect, we will report first the basic theory of the

fixed points for multi-functions. Then, we will focus our interest on the

main properties of the fixed point set of some multi-valued generalized

contractions. In the third section, single-valued and multi-valued Caristi

type operators are considered. Then, the connection between Meir-Keeler

type operators and fractals is discussed. Coincidence theorems is the

subject of the next paragraph. Finally, Krasnoselskii type theorems for

multi-functions and the topological dimension of the fixed point set for

several classes of multi-valued operators are the main topics of the last

sections. Some applications to integral and differential inclusions are also

presented.

43
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2.1 Continuous selection theorems

In what follows, we will consider the basic selection theorems for

l.s.c. and u.s.c. multi-functions.

Definition 2.1.1. Let X, Y be nonempty sets and F : X → P (Y ).

Then the single-valued operator f : X → Y is called a selection of F if

and only if f(x) ∈ F (x), for each x ∈ X.

Recall that, if X is a topological space, then a set K ⊂ X is called

compact if every open covering of K admits a finite subcovering. More-

over, if (Ui)i∈I and (Vj)j∈J are two coverings of X, then (Ui)i∈I is said to

be a refinement of (Vj)j∈J if, for every i ∈ I there exists j ∈ J such that

Ui ⊂ Vj.

An open covering (Vj)j∈J of a topological space X is called locally

finite if for every x ∈ X there exists a neigherhood V ∈ V(x) such that

card{i ∈ I|Vi ∩ V 6= ∅}

is finite.

A space X is called paracompact if every open covering of it has a

locally finite refinement.

For example, every compact set is paracompact and every metrizable

space is paracompact. In particular, every metric space is paracompact.

For every topological space X and for f : X → R the set supp(f) is

defined by

supp(f) := {x ∈ X|f(x) 6= 0}.

Let X be a topological space and (Ui)i∈I be an open covering of X.

Then, a continuous partition of unity subordinate to (Ui)i∈I means a

family of continuous functions αi : X → [0, 1] such that:

(i) supp(αi) ⊂ Ui, for each i ∈ I;

(ii) (supp(αi))i∈I is a closed locally finite covering of X;
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(iii)
∑
i∈I

αi(t) = 1.

Remark. Let X be a paracompact space and (Ui)i∈I be an open

covering of X. Then:

(a) (Ui)i∈I admits an open locally finite refinement (Vi)i∈J with Vi ⊂
Ui, for every i ∈ I;

(b) (Ui)i∈I has a subordinate partition of unity.

In particular, if X is compact, then the open locally finite refinement

is actually a finite one. As a consequence, the subordinate partition of

unity consists in a finite number of maps.

Let us consider now the selection theorem of Browder.

Theorem 2.1.2. (Browder’ selection theorem) Let X and Y be Haus-

dorff topological vectorial space and K ∈ Pcp(X). Let F : K → Pcv(Y ) be

a multi-valued operator such that F−1(y) is open, for each y ∈ Y . Then

there exists a continuous selection f of F .

Proof. Because (F−1(y))y∈Y is an open covering of K, there exists

a finite refinement of it, denoted by (F−1(yi))i=1,n. Let (αi)i∈1,n be the

continuous partition of unity corresponding to this finite covering. We

define f : K → Y by the following relation: f(x) =
∑n

i=1 αi(x)yi. Then

f is continuous and each time when αi(x) > 0 it follows yi ∈ F (x).

But for each x ∈ X, the set F (x) is convex, and hence we obtain that

f(x) ∈ F (x), for all x ∈ X. �

A very famous result is the so-called Michael’ selection theorem. We

start by proving the following auxiliary result:

Lemma 2.1.3. Let (X, d) be a metric space, Y a Banach space and

F : X → Pcv(Y ) be l.s.c. on X. Then, for each ε > 0 there exists

fε : X → Y a continuous function such that for all x ∈ X, we have:

fε(x) ∈ V (F (x); ε).

Proof. Because F is l.s.c. we associate to each x ∈ X and to each yx ∈
F (x) an open neighborhood Ux of x such that F (x′) ∩ B(yx; ε) 6= ∅, for
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all x′ ∈ Ux. X is a paracompact space and so there exists a locally finite

refinement {U ′x}x∈X of {Ux}x∈X . Let us recall that {Ωi}i∈I is a locally

finite covering of X if for each x ∈ X there exists V a neighborhood of

x satisfying Ωi ∩ V 6= ∅, for all i = 1, k. Moreover, to each locally finite

covering it is possible to associate a continuous partition of unity, let say

{πx}x∈X . We define: fε(t) =
∑

x∈X πx(t)yx. Then fε is continuous, being,

locally, a finite sum of continuous functions. Moreover, if πx(t) > 0, for

t ∈ U ′x ⊂ Ux then yx ∈ V (F (t), ε) implies that fε(t) ∈ V (F (t), ε). �

Theorem 2.1.4. (Michael’ selection theorem) Let (X, d) be a metric

space, Y be a Banach space and F : X → Pcl,cv(Y ) be l.s.c. on X. Then

there exists f : X → Y a continuous selection of F .

Proof. Let us define inductively a sequence of continuous functions

un : X → Y , n = 1, 2, . . . satisfying the following assertions:

i) for all x ∈ X, D(un(x), F (x)) <
1

2n
, for each n ∈ N∗

ii) for all x ∈ X, ‖un(x)− un−1(x)‖ < 1

2n−2
, for each n = 2, 3, . . .

1. Case n = 1. The conclusion follows from Lemma 2.1.3 with ε =
1

2
.

2. Case n = n+ 1. Let us suppose that we have defined the mappings

u1, . . . , un and we will construct the map un+1 such that i) and ii) hold.

For this purpose, we consider the multi-valued operator Fn+1 given by:

Fn+1(x) = F (x) ∩B
(
un(x);

1

2n

)
, for each x ∈ X.

From i) we obtain that Fn+1(x) 6= ∅, for all x ∈ X. Moreover Fn+1(x)

is convex, for all x ∈ X. Using Lemma 1.3.34., we have that Fn+1

is l.s.c.. From Lemma 2.1.3., applied for Fn+1 (with ε := 1
2n+1 ), we

obtain the existence of a continuous function un+1 : X → Y such

that: D(un+1(x), Fn+1(x)) < 1
2n+1 , for each x ∈ X. It follows that

D(un+1(x), F (x)) < 1
2n+1 . On the same time, by the above relation we

have:

un+1(x) ∈ V 0

(
Fn+1(x),

1

2n+1

)
.
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Then

un+1(x) ∈ B(un(x);
1

2n
+

1

2n+1
).

Thus

‖un+1(x)− un(x)‖ < 1

2n
+

1

2n+1
=

3

2n+1
<

1

2n−1
.

This completes the induction.

Further on, from ii) we obtain that (un)n∈N is a uniform Cauchy se-

quence convergent to a continuous function u : X → Y . From i) and the

fact that F (x) are closed for each x ∈ X, we obtain that u(x) ∈ F (x),

for all x ∈ X. Hence, u is the desired continuous selection and the proof

is complete. �

Corollary 2.1.5. i) Let (X, d) be a metric space, Y a Banach space

and F : X → Pcl,cv(Y ) be l.s.c. on X. Let Z ⊂ X be a nonempty set and

ϕ : Z → Y a continuous selection of F |Z. Then ϕ admits an extension

to a continuous selection of F . In particular, we have that for each y0 ∈
F (x0), with x0 ∈ X arbitrary, there exists a continuous selection ϕ of F

such that ϕ(x0) = y0.

ii) Let X be a metric space, Y be a Banach space, F : X → Pcl,cv(Y )

be l.s.c. on X and G : X → P (Y ) with open graph. If F (x) ∩G(x) 6= ∅,
for all x ∈ X, then F ∩G has a continuous selection.

For u.s.c. multi-functions we have the following approximate selection

theorem given by Cellina [15]:

Theorem 2.1.6. (Cellina’s approximate selection theorem) Let

(X, d) be a metric space, Y be a Banach space and F : X → Pcv(Y )

be u.s.c. on X. Then for each ε > 0 there exists fε : X → Y locally

Lipschitz such that:

a) fε(X) ∈ conv F (X),

b) Graf fε ⊂ V (Graf F, ε).

The concept of locally selectionable multi-function characterize the

multi-valued operators having ”exact” continuous selections. More pre-

cisely, we define:



48 CHAPTER 2. OPERATORIAL INCLUSIONS

Definition 2.1.7. Let X, Y be Hausdorff topological spaces and F :

X → P (Y ). Then F is called locally selectionable at x0 ∈ X if for each

y0 ∈ F (x0) there exist an open neighborhood V of x0 and a continuous

mapping f : V → Y such that f(x0) = y0 and f(x) ∈ F (x), for all

x ∈ X. F is said to be locally selectionable if it is locally selectionable at

every x0 ∈ X.

Remark 2.1.8. Any locally selectionable multi-function is l.s.c.

Some examples of locally selectionable multi-functions are:

Lemma 2.1.9. Let X, Y be Hausdorff topological spaces and F : X →
P (Y ) such that F−1(y) is open for each y ∈ Y . Then F is locally selec-

tionable.

We note that a similar result hold for multi-functions with open graph.

(It is easy to see that if the graph of F is open then F−1(y) is open for

each y ∈ X.)

Lemma 2.1.10. Let X, Y be Hausdorff topological spaces and F,G :

X → P (Y ) such that F (x) ∩ G(x) 6= ∅, for each x ∈ X. If F is locally

selectionable and G has open graph then the multi-valued operator F ∩G
is locally selectionable.

A global continuous selection theorem for a locally selectionable

multi-function is:

Theorem 2.1.11. (Aubin-Cellina [15])Let X be a paracompact space

and Y a Hausdorff topological vector space. Then any locally selectionable

multi-function F : X → Pcv(Y ) has a continuous selection.

Proof We associate with each y ∈ X an element z ∈ F (x) and a

continuous selection fy : V → Y such that fy(x) ∈ F (x) and f(y) = z.

Since the space X is paracompact there exists a continuous partition of

unity (ay)y∈X associated with the open covering of X given by V (y), y ∈
X. Denote by I(x) the non-empty finite set of points y ∈ X having the
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property that ay(x) > 0. Let us define the function f : X → Y by

f(x) =
∑
y∈X

ay(x)fy(x) =
∑
y∈I(x)

ay(x)fy(x).

Obviously, f is continuous as a finite sum of continuous functions and

because F (x) is convex, the convex combination f(x) is also in F (x). �

A very interesting selection result for a continuous multi-function with

not necessarily convex values is the following:

Theorem 2.1.12. (Strother [251]) Let F : [0, 1]→ P ([0, 1]) be a con-

tinuous multi-valued operator. Then there exists a continuous selection

of F .

Proof. Let us define f : [0, 1] → [0, 1], by f(x) := inf{y|y ∈ F (x)}.
We will prove that f is a continuous selection of F . Let x

′ ∈ [0, 1] be

arbitrary and r > 0 be a real positive number. Denote by V2r an open

interval of length 2r with center f(x
′
). Obviously, Vr is also an open

set containing f(x
′
). Using the l.s.c. of F there exists an open set U1

containing x0 such that F (x) ∩ Vr 6= ∅, for each x ∈ U1. Hence x ∈ U1

implies that inf{y|y ∈ F (x)} = f(x) ≥ f(x
′
) − r. On the other side,

consider V = {y|y < r + f(x
′
)}. The set V is open and it contains

F (x
′
). From the u.s.c. of F there exists an open set U2 containing x

′
such

that F (x) ⊂ V , for each x ∈ U2. Then for each x ∈ U2 we have that

f(x) = inf{y|y ∈ F (x)} ≤ f(x
′
) + r.

Let consider now U := U1 ∩ U2. Then for each x ∈ U we obtain that

|f(x)− f(x
′
)| ≤ r and therefore f(x) ∈ V2r, proving that f is continuous

in x
′
. �.

Let us consider now the problem of the existence of a Lipschitz selec-

tion for a multi-function.

Definition 2.1.13. Let F : Rn → Pcp(B̃(0;R))) be a H-c. multi-

function and let S = B̃(y0; b) ⊂ Rn. Let q be any finite collection of
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points x1, x2, ..., xk+1 in S such that
k∑
p=1

|xp+1−xp| ≤ b and Q denote the

set of all such collections. Let V (F, S, q) :=
k∑
i=1

H(F (xi+1), F (xi)) and

V (F, S) := sup{V (F, S, q)|q ∈ Q}. If V (F, S) < ∞, then we say that F

has bounded variation in S.

Moreover, if F : [0, T ] → Pcp(B̃(0;R))) then, by definition, the

variation of F on the subinterval [t − q, t], where q > 0, denoted by

V t
t−q(F ) is defined as follows: let R be a partition of [t − q, t] (i.e.

t − q = t0, t1 < ... < tk+1 = t) and let R be the set of all such

partitions. Then V t
t−q(F,R) :=

k∑
p=1

H(F (tp+1), F (tp)) and V t
t−q(F ) :=

sup{V t
t−q(F,R)|R ∈ R}.

Theorem 2.1.14. (Hermes [98], [99]) Let T > 0 and F : [0, T ] →
Pcp(B̃(0;R))). Then:

i) If F is H-c and has bounded variation in [0, T ], then F admits a

continuous selection.

ii) If F is a-Lipschitz, then there exists an a-Lipschitz selection of F .

Proof. For each positive integer k, consider the points 0, T
k
, 2T
k
, ..., T .

Choose xk0 ∈ F (0), xq1 ∈ F (T
k

) such that |xk0−xk1| = D(xk0, F (T
k

)) and then

inductively xkj ∈ F ( jT
k

) such that |xkj−1 − xkj | = D(xkj−1, F ( jT
k

)). Define

fk : [0, T ]→ R be the polygonal arc joining the points xkj , j ∈ {0, 1, .., k}.
Then:

i) For each t ∈ [0, T ] and each k there exists an integer j = j(k) such

that |t− jT
k
|, T
k

. We can assume, without any loss of generality, that t ∈
[ (j−1)T

k
, jT
k

]. Then D(fk(t), F (t)) ≤ |fk(t)− fk( jT
k

)|+D(fk( jT
k

), F (t)) ≤
H(F ( (j−1)T

k
), F ( jT

k
)) +H(F ( jT

k
), F (t)).

ii) For each t and s from [0, T ] and each k, let j, l be integers such

that: |t − jT
k
| < T

k
and |s − lT

k
| < T

k
. We have: |fk(t) − fk(s)| ≤
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|fk(t) − fk( jT
k

)| +
l−1∑
r=j

|fk((r + 1)T

k
) − fk(

rT

k
)| + |fk( lT

k
) − fk(s)| ≤

H(F (t), F (
jT

k
)|+

l−1∑
r=j

H(F (
(r + 1)T

k
), F (

rT

k
)) +H(F (s), F (

lT

k
)).

Now, we are able to prove a). Let us first remark that the sequence

(fk)k∈bbN∗ is equicontinuous. Indeed, for any ε > 0 choose k∗ sufficiently

large such that if k ≤ k∗ and |t1−t2|, Tk∗ we have H(t1), F (t2)) <
ε
3
. Next,

since F is of bounded variation, we obtain that V t
0 (F ) is continuous as

a function of t on [0, T ] and hence uniformly continuous. We can choose

δ > 0 such that V b
a (F ) < ε

3
, for |a−b| < δ. Since | jT

k
− lT

k
| ≤ |t−s|+ 2T

k
if

k.4T
δ

and |t− s| < δ
2
, we obtain V

lT
k
jT
k

< ε
3
. Then, from ii) we have for k ≥

max(4T
j
, k∗) and |t− s| < δ that |fk(t)− fk(s)| < ε and equicontinuity is

shown. The sequence (fk) being bounded, it has an uniformly convergent

subsequence converging to f ∈ C[0, T ]. let t ∈ [0, T ] and j(k) be an

integer such that |t − j(k)T
k
| < T

k
. Using i) and the fact that the images

F (t) are closed, we obtain by taking k → +∞ f(t) ∈ F (t).

For b), let us assume in ii) that t < jT
k
< ... < lT

k
< s. From the

Lipschitz condition, relation ii) becomes: |fk(t) − fk(s)| ≤ a[( jT
k
− t) +

l−1∑
p=j

(
(p+ 1)T

k
− pT

k
)+(s− lT

k
)] = a|s−t|. Thus (fk)k∈bbN∗ is equicontinu-

ous, bounded and has a subsequence converging uniformly to f ∈ C[0, T ]

and |f(t)− f(s)| ≤ a|t− s|. From i) we conclude again that f(t) ∈ F (t),

for each t ∈ [0, T ]. �

For more general spaces, the Steiner point approach generate a Lip-

schitz selection as follows:

Theorem 2.1.15. Let X be a metric space and F : X → Pcp,cv(Rn)

be a-Lipschitz. Then F admits a b-Lipschitz selection with b = ak(n) and

k(n) = n!!
(n−1)!! if n is odd and k(n) = n!!

π(n−1)!! if n is even.

Finally, let us remark that the problem of existence of a Lipschitz se-



52 CHAPTER 2. OPERATORIAL INCLUSIONS

lection for a Lipschitz multi-function was settled by Yost (see for example

Hu-Papageorgiou [105]) as follows:

Theorem 2.1.16. (Yost) Let X be a metric space and Y be a Banach

space. Then every a-Lipschitz multi-function F : X → Pb,cl,cv(Y ) admits

a Lipschitz selection if and only if Y is finite dimensional.

A extension of the concept of selection is given by Deguire-Lassonde

as follows:

Definition 2.1.17. Let X be a topological space and (Yi)i∈I an

arbitrary family of topological spaces. The family of continuous func-

tions {fi : X → Yi}i∈I is called a selecting family for the family

{Fi : X → P(Yi)}i∈I of multi-functions if for each x ∈ X there exists

i ∈ I such that fi(x) ∈ Fi(x).

One easily observe that the notion of selecting family reduces to the

concept of continuous selection when I has only one element.

Definition 2.1.18. Let X be a topological space, (Ei)i∈I be an arbi-

trary family of Hausdorff topological vector spaces and Yi ∈ Pcv(Ei), for

all i ∈ I. Then the family {Fi : X → P(Yi)}i∈I of multi-functions is said

to be a Ky Fan family if the following are verified:

i) Fi(x) is convex for each x ∈ X and each i ∈ I.

ii) F−1(yi) is open for each yi ∈ Yi and each i ∈ I.

iii) for each x ∈ X there exists i ∈ I such that Fi(x) 6= ∅.

In this setting, an important result is:

Theorem 2.1.19. (Deguire-Lassonde [79]) Let X be a paracompact

space, (Ei)i∈I be an arbitrary family of Hausdorff topological vector spaces

and Yi ∈ Pcv(Ei), for all i ∈ I. Then any Ky Fan family of multi-valued

operators {Fi : X → P(Yi)}i∈I admits a selecting family {fi : X →
Yi}i∈I .

Proof. From the definition of the Ky Fan family of multi-functions,

we have that the system (DomFi(x))i∈I is an open covering of X. Using
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the paracompactness of the space X it follows the existence of a closed

refinement (Ui)i∈I such that Ui ⊂ Dom(Fi), for each i ∈ I. Let us define,

for each i ∈ I the multi-valued operator Gi : X → Yi,by the relation:

Gi(x) =

{
Fi(x), if x ∈ Ui
Yi, if x /∈ Yi

Then, for each i ∈ I, Gi has nonempty and closed values and the sets

F−1i (y) are open for each y ∈ Yi. From Browder selection theorem, we

have the existence of a continuous selection fi : X → Yi of Fi, for each

i ∈ I. Because for each x ∈ X there exists i ∈ I such that x ∈ Ui implies

fi(x) ∈ Gi(x) = Fi(x), we obtain that {fi : X → Yi|i ∈ I} is a selecting

family for {Fi : X → P(Yi)}i∈I . The proof is complete. �

Using a similar argument (via Michael’ selection theorem), we have:

Theorem 2.1.20. (Deguire-Lassonde [79]) Let X be a paracompact

space, (Ei)i∈I be an arbitrary family of Hausdorff topological vector spaces

and Yi ∈ Pcv(Ei), for all i ∈ I. Then any family of l.s.c. multi-valued

operators {Fi : X → P(Yi)}i∈I having the property that for each x ∈ X
there is i ∈ I with Fi(x) 6= ∅ admits a selecting family {fi : X → Yi}i∈I .

Bibliographical comments. Basic continuous selections theorems

can be found in many books on multi-valued analysis such as: Aubin [14],

Aubin-Cellina [15], Aubin-Frankowska [16], Border [36], Deimling [80],

Gorniewicz [92], Hu-Papageorgiou [105], Kamenskii-Obuhovskii-Zecca

[118], Kisielewicz [127], Repovs-Simeonov [214] Tolstonogov [257] and

Yuan [270]. Theorem 2.1.12. belong to Strother [251], meanwhile results

regarding the existence of Lipschitz selections for multi-functions maybe

found in Hermes [98] and [99]. The notion of selecting family and the

corresponding results were given by Deguire and Lassonde in [78] and

[79].
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2.2 Selection theorems. The decomposable

case

Throughout this section (T,A, µ) is a complete σ-finite non-atomic mea-

sure space and E is a Banach space. Let L1(T,E) be the Banach space

of all measurable functions u : T → E which are Bochner µ-integrable.

We recall that a set K ⊂ L1(T,E) is said to be decomposable if for all

u, v ∈ K and each A ∈ A:

uχA + vχT\A ∈ K,

where χA stands for the characteristic function of the set A.

This notion is, somehow, similar to convexity, but there exist also

major differences. However, in several cases the decomposability condi-

tion is a good substitute for convexity. The purpose of this section is to

present some results in the field of multi-valued analysis related to this

topic: convexity replaced by decomposability.

A decomposable set has been considered for the first time in the field

of multi-valued analysis by Antosiewicz and Cellina [12] in connection

with the problem of the existence of a continuous selection for a contin-

uous multifunction with not necessarily convex values.

There are several results in the analysis of multi-valued operators

where in the assumptions, convexity can be replaced by decomposability.

Some of these theorems will be considered in what follows.

First theorem is a ”decomposable” version of the Michael’s selection

theorem for l.s.c. multi-functions with convex values.

Let consider, without proofs, two technical auxiliary results.

Lemma 2.2.1. Let (gn)n∈N ⊆ L1(T,E), with g0 = 1. Then there

exists S : R+ × [0, 1] → A, such that for all τ, τ1, τ2 ∈ R+ and all

λ, λ1, λ2 ∈ [0, 1] we have:

a)S(τ, λ1) ⊆ S(τ, λ2), if λ1 ≤ λ2

b)µ(S(τ1, λ1)∆S(τ2, λ2)) ≤ |λ1 − λ2|+ 2|τ1 − τ2|
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(c)
∫
S(τ,λ)

gndµ = λ
∫
S
gndµ, for all n ≤ τ .

Lemma 2.2.2. Let X be a separable metric space, E be a separable

Banach space and let F : X → Pcl,dec(L
1(T,E)) be a l.s.c. multi-valued

operator. Then for every ε > 0 there exist fε : X → L1(T,E) and a

continuous mapping gε : X → L1(T,E) such that the multi-function

Fε(x) := {u ∈ F (x)| ‖ u(t) − fε(x)(t) ‖< gε(x)(t), a.e.} has nonempty

values and ‖gε(x)‖ < ε for each x ∈ X.

Now we present the decomposable version of Michael’ selection theo-

rem:

Theorem 2.2.3. (Fryszkowski [89], Bressan-Colombo [40]) Let (X, d)

be a separable metric space, E a separable Banach space and let F :

X → Pcl,dec(L
1(T,E)) be a l.s.c. multi-valued operator. Then F has a

continuous selection.

Proof. Using Lemma 2.2.2., by induction we will generate two se-

quences of continuous functions (fn : X → L1(T,E)) and (gn : X →
L1(T,E)) and a sequence of l.s.c. multi-functions Fn : X → Pcl(L

1(T,E))

such that:

i) ‖gn(x)‖ ≤ 2−n

ii) ‖fn(x)(t)− fn−1(x)(t)‖ ≤ gn(x) + gn−1(x)‖, a.e. and for each

n ≥ 2

iii) Fn(x) := {u ∈ F (x)| ‖ u(t)− fn(x)(t) ‖< gn(x)(t), a.e.} 6= ∅,
for each x ∈ X

Indeed, for the first step of the induction let us consider f1 and g1 be

defined by Lemma 2.2.2. with F and ε = 2−1. Suppose that fn, gn, Fn have

been defined satisfying the conditions i)-iii). Using again Lemma 2.2.2.

for Fn−1(x) and ε = 2−n we complete the induction. Because (fn(x))n∈N is

uniformly Cauchy in L1(T,E), we have that fn(x) converges to f(x), with

f a continuous function fromX to L1(T,E). Also sinceD(fn(x), Fn(x)) <

2−n, for each n ≥ 1, and F has closed values we conclude that f is the

desired continuous selection of F . �
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For the u.s.c. case we have:

Theorem 2.2.4. (Bressan-Colombo [40]) Let (X, d) be a separable

metric space and let F : X → Pdec(L1(T,E)) be a H-u.s.c. multi-

valued operator. If either X or L1(T,E) is separable, then for each

ε > 0 there is a continuous function fε : X → L1(T,E) such that

Graph fε ⊆ V (GraphF, ε) and fε(X) ∈ Pdec(F (X)).

Remark 2.2.5. As we have seen, the main tool for the decompos-

able case is to consider instead of convex combinations some continuous

interpolations between different elements of a decomposable set. More

precisely, consider an increasing family {Aλ | λ ∈ [0, 1]} (where Aλ ∈ A
with µ(Aλ) = λµ(T ), for every λ ∈ [0, 1]) and let u1, ..., un be elements

of a decomposable set K ⊂ L1(T,E). Let λi be p nonnegative numbers

such that
p∑
i=1

λi = 1. Setting η0 = 0 and ηi =
i∑

j=1

λi, (i ∈ {1, 2, ..., p}

then the decomposable combination
p∑
i=1

ui · χAηi\Aηi−1
lies inside K. For

the compact case the construction below is given by Fryszkowski in [89]

and the extension for the paracompact case appear in Bressan-Colombo

in [40]. (They consider continuous combinations of an infinite family of

functions, taking advantage of the fact that at any given time only a

finite number of ui enter in a decomposable combination).

Let us prove now an auxiliary result, concerning the existence of con-

tinuous selections for a locally selectionable multi-function with decom-

posable values.

Lemma 2.2.6. Let (X, d) be a separable metric space, (T,A, µ) be

a complete σ-finite and non-atomic measure space and E be a Banach

space. Let F : X → Pdec(L
1(T,E)) be a locally selectionable multi-valued

operator. Then F has a continuous selection.

Proof. We associate to any y ∈ X and z ∈ F (y) an open neigh-

borhood N(y) and a local continuous selection fy : N(y) → L1(T,E),
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satisfying fy(y) = z and fy(x) ∈ F (x) when x ∈ N(y). We denote by

{Vn}n∈N∗ a countable locally finite open refinement of the open covering

{N(y)| y ∈ X} and by {ψn}n∈N∗ a continuous partition of unity associ-

ated to {Vn}n∈N∗ .
Then, for each n ∈ N∗ there exist yn ∈ X such that Vn ⊂ N(yn)

and a continuous function fyn : N(yn) → L1(T,E) with fyn(yn) = zn,

fyn(x) ∈ F (x), for all x ∈ N(yn). We define λ0(x) = 0 and λn(x) =∑
m≤n

ψm(x), n ∈ N∗. Let gm,n ∈ L1(T,R+) be the function defined by

gm,n(t) = ‖zn(t)− zm(t)‖, for each m,n ≥ 1.

We arrange these functions into a sequence {gk}k∈N∗ .
Consider the function τ(x) =

∑
m,n≥1

ψm(x)ψn(x). From Lemma 2.2.1.,

there exists a family {T (τ, λ)} of measurable subsets of T such that:

(a) T (τ, λ1) ⊆ T (τ, λ2), if λ1 ≤ λ2

(b) µ(T (τ1, λ1)∆T (τ2, λ2)) ≤ |λ1 − λ2|+ 2|τ1 − τ2|
(c)

∫
T (τ,λ)

gndµ = λ
∫
T
gndµ, ∀ n ≤ τ0 for all λ, λ1, λ2 ∈ [0, 1], and all

τ0, τ1, τ2 ≥ 0.

Define fn(x) = fyn(x) and χn(x) = χT (τ(x),λn(x))\T (τ(x),λn−1(x)) for each

n ∈ N∗.
Let us consider the single-valued operator f : X → L1(T,E), defined

by f(x) =
∑

n≥1 fn(x)χn(x), x ∈ X.Then, f is continuous because the

functions τ and λn are continuous, the characteristic function of the set

T (τ, λ) varies continuously in L1(T,E) with respect to the parameters

τ and λ and because the summation defining f is locally finite. On the

other hand, from the properties of the sets T (τ, λ) (see Remark 2.2.5.

and Hu-Papageorgiou [105], 241-244pp. for more details) and because F

has decomposable values, it follows that f is a selection of F. �

The following result is similar to Corollary 2.1.4.(ii).

Theorem 2.2.7. Let (X, d) be a separable metric space, E a separable

Banach space, F : X → Pcl,dec(L
1(T,E)) be a l.s.c. multi-valued operator
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and G : X → Pdec(L
1(T,E)) be with open graph. If F (x) ∩G(x) 6= ∅ for

each x ∈ X then there exists a continuous selection of F ∩G.

Proof. Let x0 ∈ X and for each y0 ∈ F (x0) we define the multifunc-

tion

F0(x) =

{
{y0}, if x = x0

F (x), if x 6= x0.

Obviously F0 : X → Pcl,dec(L1(T,E)) is l.s.c. From Theorem 2.2.3. there

exists a continuous selection f of F0, i.e. f0(x0) = y0 and f0(x) ∈ F (x),

for each x ∈ X, x 6= x0. Using Lemma 2.1.10. it follows that F ∩ G is

locally selectionable at x0 and has decomposable values. From Lemma

2.2.6. the conclusion follows. �

An important result is the following Browder-type selection theorem:

Theorem 2.2.8. Let E be a Banach space such that L1(T,E) is

separable. Let K be a nonempty, paracompact, decomposable subset of

L1(T,E) and let F : K → Pdec(K) be a multi-valued operator with open

fibres. Then F has a continuous selection.

Proof. For each y ∈ K, F−1(y) is an open subset of K. Since K

is paracompact it follows that the open covering {F−1(y)}y∈K admits a

locally finite open refinement, let say K =
⋃
j∈J

F−1(yj), with yj ∈ K. Let

{ψj}j∈J be a continuous partition of unity subordinate to {F−1(yj)}j∈J .

Using the same construction as in the proof of Lemma 2.2.6., one can con-

struct a continuous function f : K → K, f(x) =
∑
j∈J

fj(x)χj(x), where

fj(x) ∈ F (x) for each x ∈ K. This function is a continuous selection for

F . �

The following results are decomposable versions of Deguire-Lassonde

theorems. (see Theorem 2.1.19 and Theorem 2.1.20.)

Theorem 2.2.9. Let E be a Banach space such that L1(T,E) is

separable. Let I be an arbitrary set of indices, {Ki|i ∈ I} be a family
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of nonempty, decomposable subsets of L1(T,E) and X a paracompact

space. Let us suppose that the family {Fi : X → Pdec(Ki)|i ∈ I} is of Ky

Fan-type. Then there exists a selecting family for {Fi}i∈I .

Proof. Let {Ui}i∈I be the open covering of the paracompact space

X given by Ui = {x ∈ X| Fi(x) 6= ∅} for each i ∈ I. It follows that there

exists a locally finite open cover {Wi}i∈I such that Wi ⊂ Ui for i ∈ I.

Let Vi = Wi. For each i ∈ I let us consider the multi-valued operator

Gi : X → P(Ki), defined by the relation

Gi(x) =

{
Fi(x), if x ∈ Vi
Ki, if x 6∈ Vi.

Then Gi is a multifunction with nonempty and decomposable values

having open fibres (indeed, G−1i (y) = F−1i (y) ∪ (X\Vi)) , for each i ∈ I.

Using Theorem 2.2.8. we have that there exists fi : X → Ki continu-

ous selection for Gi (i ∈ I), for each i ∈ I. It follows that for each x ∈ X
there exists i ∈ I such that x ∈ Vi and hence fi(x) ∈ Gi(x) = Fi(x),

proving that {fi}i∈I is a selecting family for {Fi}i∈I . �

Using a similar argument we have:

Theorem 2.2.10. Let E be a separable Banach space and X a sep-

arable metric space. Let I be an arbitrary set of indices, {Ki|i ∈ I}
be a family of nonempty, closed, decomposable subsets of L1(T,E). Let

{Fi : X → Pcl,dec(Ki)|i ∈ I} be a family of l.s.c. multi-valued operators

such that for each x ∈ X there is i ∈ I such that Fi(x) 6= ∅. Then {Fi}i∈I
has a selecting family.

Proof. There are only minor modifications of the above arguments.

More precisely, the proof runs exactly as in the previous theorem, but

instead of using Theorem 2.2.8., the conclusion follows from Theorem

2.2.3. �

Bibliographical comments. Mainly, this section is based on the

works of Fryszkowski [89], Bressan-Colombo [40], Petruşel-Muntean [201]
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and Petruşel-Moţ [198]. Further results can be found in Aubin-Cellina

[15], Bressan-Colombo-Fryszkowski [41], Browder [44], Cellina-Colombo

[55], Deguire [78], Deguire-Lassonde [79], Fryskowski [90], Hiai-Umegaki

[100], Hu-Papageorgiou [105], Kisielewicz [127], Marano [138], Olech

[158], Petruşel [187].

2.3 Basic fixed point theorems

The aim of this section is to report some basic theorems of the fixed point

theory for multi-functions.

Let us recall first some basic notations and concepts.

Definition 2.3.1. Let X be a metric space. If F : X → P (X) is

a multi-valued operator and x0 ∈ X is an arbitrary point, then the se-

quence (xn)n∈N is, by definition, the successive approximations sequence

of F starting from x0 if and only if xk ∈ F (xk−1), for all k ∈ N∗. Let us re-

mark that in the theory of dynamical systems, the sequence of successive

approximations is called the motion of the system F at x0 or a dynamic

process of F starting at x0. The set T(x0) := {xn : xn+1 ∈ F (xn), n ∈ N}
is called the trajectory of this motion and the space X is the phase space.

Definition 2.3.2. Let (X, d) be a generalized metric space and let

F : X → Pcl(X) be a multi-valued operator. Then F is said to be:

i) a-contraction if and only if a ∈ [0, 1[ and H(F (x1), F (x2)) ≤
ad(x1, x2), for all x1, x2 ∈ X with d(x1, x2) <∞.

ii) (ε, a)-contraction if and only if ε > 0, a ∈ [0, 1[ and

H(F (x1), F (x2)) ≤ ad(x1, x2), for all x1, x2 ∈ X with d(x1, x2) < ε.

Remark 2.3.3. Obviously, each multi-valued a-contraction is an

(ε, a)-contraction.

Theorem 2.3.4. (Covitz-Nadler [71]) Let (X, d) be a generalized com-
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plete metric space. Let x0 ∈ X arbitrary and F : X → Pcl(X) be a

multi-valued (ε, a)-contraction. Then the following alternative holds:

(1) for each sequence of successive approximations of F starting from

x0 we have d(xi−1, xi) ≥ ε, for all i ∈ N∗

or

(2) there exists a sequence of successive approximations of F starting

from x0 which converges to a fixed point of F .

Corollary 2.3.5. Let (X, d) be a generalized complete metric space

and x0 ∈ X be arbitrary. If F : X → Pcl(X) is a multi-valued a-

contraction, then the following alternative holds:

(1) for each sequence of successive approximations of F starting from

x0 we have d(xi−1, xi) =∞, for all i ∈ N∗

or

(2) there exists a sequence of successive approximations of F starting

from x0 which converges to a fixed point of F .

The following result is known in the literature as Covitz-Nadler the-

orem (see [71]):

Theorem 2.3.6. (Covitz-Nadler [71]) Let (X, d) be a complete metric

space and x0 ∈ X be arbitrary. If F : X → Pcl(X) is a multi-valued a-

contraction, then there exists a sequence of successive approximations of

F starting from x0 which converges to a fixed point of F .

As regards to the strict fixed points set of a multi-valued a-

contraction, we have the following result of I. A. Rus ([223]):

Theorem 2.3.7. (Rus [223]) Let (X, d) be a complete metric space

and F : X → Pcl(X) be a multi-valued a-contraction. If SFixF 6= ∅ then

FixF = SFixF = {x∗}.

Definition 2.3.8. Let (X, d) be a metric space and F : X → Pcl(X)

be a multi-valued operator. If there exists a, b, c ∈ R+, with a+ b+ c < 1
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such that for all x1, x2 ∈ X we have:

H(F (x1), F (x2)) ≤ ad(x1, x2) + bD(x1, F (x1)) + cD(x2, F (x2))

then F is called a Reich type multi-valued operator.

Reich’s fixed point theorem (see [213]) is an extension of the Covitz-

Nadler principle:

Theorem 2.3.9. (Reich [213]) Let (X, d) be a complete metric space

and F : X → Pcl(X) be a Reich type multi-valued operator. Then FixF 6=
∅.

If the multi-valued operator is contractive and the space is compact,

then we have the following result:

Theorem 2.3.10. (Smithson [249]) Let (X, d) be a compact metric

space and F : X → Pcl(X) be a contractive multi-valued operator. Then

FixF 6= ∅.

Another generalization of the Covitz-Nadler principle is:

Theorem 2.3.11. (Mizoguchi-Takahashi (see [147]) Let (X, d) be a

complete metric space and F : X → Pcl(X) a multi-function such that

H(F (x), F (y)) ≤ k(d(x, y))d(x, y), for each x, y ∈ X with x 6= y, where

k :]0,∞[→ [0, 1[ satisfies limr→t+k(r) < 1, for every t ∈ [0,∞[. Then

FixF 6= ∅.

For the case of multi-functions from a closed ball of a metric space

X into X, Frigon and Granas (see [88]) proved the following extension

of Covitz-Nadler principle:

Theorem 2.3.12. (Frigon and Granas [88]) Let (X, d) be a complete

metric space, x0 ∈ X, r > 0 and F : B̃(x0; r) → Pcl(X) be an a-

contraction such that D(x0, F (x0)) < (1− a)r. Then FixF 6= ∅.

Using the above theorem, Frigon and Granas have proved some con-

tinuation results for multi-functions on complete metric spaces.
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Definition 2.3.13 If X, Y are metric spaces and Ft : X → Pcl(Y ) is

a family of multi-functions depending on a parameter t ∈ [0, 1] then, by

definition, (Ft)t∈[0,1] is said to be a family of k-contractions if:

i) Ft is a k-contraction, for each t ∈ [0, 1].

ii) H(Ft(x), Fs(x)) ≤ |φ(t) − φ(s)|, for each t, s ∈ [0, 1] and each

x ∈ X, where φ : [0, 1] → R is a continuous and strictly increasing

function.

If (X, d) is a complete metric space and U is an open connected sub-

set of X, then we will denote by K (U ,X ) the set of all k-contractions

F : U → Pcl(X). Also, denote by K0(U,X) = {F ∈ K(U,X)|x /∈
F (x), for each x ∈ ∂U}.

Definition 2.3.14. F ∈ K0(U,X) is called essential if and only if

FixF 6= ∅. Otherwise F is said to be inessential.

Definition 2.3.15. A family of k-contractions (Ft)t∈[0,1] is called a

homotopy of contractions if and only if Ft ∈ K0(U,X), for each t ∈ [0, 1].

The multi-functions S and T are said to be homotopic if there exists a

homotopy of contractions (Ft)t∈[0,1] such that F0 = S and F1 = T .

The topological transversality theorem read as follows:

Theorem 2.3.16. (Frigon-Granas [88]) Let S, T ∈ K0(U,X) two ho-

motopic multi-functions. Then S is essential if and only if T is essential.

The non-linear alternative for multi-valued contractions was proved

by Frigon and Granas:

Theorem 2.3.17. (Frigon-Granas [88]) Let X be a Banach space

and U ∈ Pop(X) such that 0 ∈ U . If T : U → Pcl(X) is a multi-valued

k-contraction such that T (U) is bounded, then either:

i) there exists x ∈ U such that x ∈ T (x).

or

ii) there exists y ∈ ∂U and λ ∈]0, 1[ such that y ∈ λT (y).
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Let us present now the Leray-Schauder principle for multi-valued con-

tractions:

Theorem 2.3.18. (Frigon-Granas [88]) Let X be a Banach space and

T : X → Pcl(X) such that for each r > 0 the multi-function T |B̃(0,r) is a

k-contraction. Denote by ET := {x ∈ X|x ∈ λT (x), for some λ ∈]0, 1[}.
Then at least one of the following assertions hold:

i) ET is unbounded

ii) FixT 6= ∅.

Corollary 2.3.19. Let X be a Banach space and T : U → Pcl(X) be

a k-contractions such that for each x ∈ ∂U at least one of the following

assertions hold:

i) ‖T (x)‖ ≤ ‖x‖
ii) ‖T (x)‖ ≤ D(x, T (x))

iii) ‖T (x)‖ ≤ (D(x, T (x))2 + ‖x‖2) 1
2

iv) ‖T (x)‖ ≤ max(‖x‖, D(x, T (x)))

Then FixT 6= ∅

In case F is a nonexpansive (i.e. 1-Lipschitz) multi-function, we have:

Theorem 2.3.20. (Lim [135]) Let X be an uniformly convex Ba-

nach space Y ∈ Pb,cl,cv(X) and F : Y → Pcp(Y ) be nonexpansive. Then

FixF 6= ∅.

Definition 2.3.21. Let X be a real Banach space, Y ∈ Pcl(X) and

x ∈ Y . We let:

TY (x) =

{
y ∈ X| lim

h→0+
inf D(x+ hy, Y )h−1 = 0

}
ĨY (x) := x+ TY (x)

IY (x) = {x+ λ(y − x)| λ ≥ 0, y ∈ Y }, for Y ∈ Pcl,cv(X).

The set IY (x) is called the inward set at x. Notice that ĨY (x) = IY (x)

for convex subset Y of X.
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Definition 2.3.22. Let X be a real Banach space, Y ∈ Pcl(X) and

the mappings f : Y → X and F : Y → P (X). Then:

i) f is called weakly inward if f(x) ∈ ĨY (x), for each x ∈ Y
ii) F is called weakly inward if F (x) ⊂ ĨY (x), for each x ∈ Y
iii) F is called inward if F (x) ∩ ĨY (x) 6= ∅, for each x ∈ Y

For weakly inward multi-valued contractions we have the following

recent result of T. -C. Lim ([134]):

Theorem 2.3.23. (Lim [134]) Let X be a Banach space and Y be a

nonempty closed subset of X. Assume that F : Y → Pcl(X) is a weakly

inward multi-valued contraction. Then F has a fixed point in Y .

Let us consider now some basic topological fixed point principles.

For the beginning, we define the notion of Kakutani-type multi-

function:

Definition 2.3.24. Let X, Y be two vector topological spaces. Then

F : X → P (Y ) is said to be a Kakutani-type multi-function if and only

if:

i) F (x) ∈ Pcp,cv(Y ), for all x ∈ X
ii) F is u.s.c. on X.

Definition 2.3.25. Let X be a vector topological space and Y ∈
P (X). Then, by definition, Y has the Kakutani fixed point property

(briefly K.f.p.p.) if and only if each Kakutani-type multi-function F :

Y → P (Y ) has at least a fixed point in Y .

The most famous topological fixed point result is the Kakutani-Fan

theorem (see [117]):

Theorem 2.3.26. (Kakutani-Fan [117]) Any compact convex subset

K of a Banach space has the K.f.p.p.

For the infinite dimensional case we also have the following result (see

for example Kirk-Sims [124]) of Bohnenblust-Karlin:
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Theorem 2.3.27. (Bohnenblust-Karlin) Let X be a Banach space

and Y ∈ Pb,cl,cv(X). The any u.s.c. multi-function F : Y → Pcl,cv(Y )

with relatively compact range has at least a fixed point in Y .

As consequence of the Kakutani-Fan result, Browder and Fan proved:

Theorem 2.3.28. (Browder-Fan [44]) Let X be a Hausdorff vector

topological space and K be a nonempty compact and convex subset of X.

Let F : K → Pcv(K) be a multi-valued operator with open fibres. Then

FixF 6= ∅.

Another generalization of the Kakutani-Fan fixed point principle has

been proved by Himmelberg as follows:

Theorem 2.3.29. (Himmelberg [103]) Let X be a convex subset of

a locally convex Hausdorff topological vector space and Y be a nonempty

compact subset of X. Let F : X → Pcl,cv(Y ) be an u.s.c. multi-function.

Then there exists a point x ∈ Y such that x ∈ F (x).

Recently, X. Wu (see [264]) proved a fixed point theorem for lower

semi-continuous multivalued operators in locally convex Hausdorff topo-

logical vector spaces. This theorem is the lower semi-continuous version

of Himmelberg’s fixed point theorem.

Theorem 2.3.30. (Wu [264]) Let X be a nonempty convex subset of a

locally convex Hausdorff topological vector space, Y a nonempty compact

metrizable subset of X and F : X → Pcl,cv(Y ) a l.s.c. multi-function.

Then the exists a point x ∈ Y such that x ∈ F (x).

We recall now the definitions of Kuratowski and Hausdorff noncom-

pactness measures αK , respectively αH :

Definition 2.3.31. Let X be a metric space and S a bounded subset

of X. We set:

αK(S) := inf{ε > 0| there exists m ∈ N∗ such that S =
⋃
i≤m

Si, Si ∈

P (X), diam(Si) ≤ ε}.
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Definition 2.3.32. Let X be a metric space and S a bounded subset

of X. Then

αH(S) := inf{ε > 0| there exist m ∈ N∗ and xi ∈ X such that S =⋃
i≤m

B(xi, ε)}.

Definition 2.3.33. Let (X, d) be a metric space. A multi-valued

operator F : X → Pcl(X) is called:

i) γ-condensing if and only if γ(F (A)) < γ(A)), for each A ∈
Pb(X), with γ(A) > 0.

ii) (γ, a)-contraction if and only if a ∈ [0, 1[ and γ(F (A)) ≤
aγ(A), for each A ∈ Pb(X).

(where γ is αK or αH . Moreover, γ could be an abstract measure

of noncompactness, see for example Ayerbe Toledano, Dominguez Bena-

vides, López Acedo [23]).

The following results can be found, for example, in Deimling [80] and

[81].

Theorem 2.3.34. Let X be a Banach space and Y ∈ Pb,cl,cv(X). Let

F : Y → Pcl,cv(X) be u.s.c. , γ-condensing and inward. Then FixF 6= ∅.

As a consequence of the degree theory for multi-functions one can

prove:

Theorem 2.3.35. Let X be a Banach space, Y ∈ Pb(X) and F :

Y → Pcl,cv(X) an u.s.c. and (γ, a)-contraction multi-function. Suppose

that one of the following conditions holds:

i) Y is open and there exists x0 ∈ Y such that x0 +λ(x−x0) /∈ F (x),

for each x ∈ ∂Y and each λ > 1

ii) Y is closed, convex and F (Y ) ⊂ Y

Then FixF 6= ∅.

Finally, let us consider some fixed point principles for single-valued

operators.
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Definition 2.3.36. Let (X, d) be a metric space and f : X → X a

single-valued operator. Then:

i) f is a Meir-Keeler type operator if and only if for each η > 0 there

exists δ > 0 such that x, y ∈ X, η ≤ d(x, y) < η+δ ⇒ d(f(x), f(y)) < η.

ii) f is a ε-locally Meir-Keeler type operator (where ε > 0) if and only

if for each 0 < η < ε there is δ > 0 such that x, y ∈ X, η ≤ d(x, y) <

η + δ ⇒ d(f(x), f(y)) < η.

Let us remark that each Meir-Keeler type operator is contractive, i.e.

d(f(x), f(y)) < d(x, y), for each x, y ∈ X with x 6= y .

Theorem 2.3.37. (Meir-Keeler [144]) Let (X, d) be a complete metric

space and f a mapping from X into itself. If f is a Meir-Keeler-type

operator then f has a unique fixed point, i.e. Fixf = {x∗}. Moreover for

any x ∈ X, lim
n→∞

fn(x) = x∗.

Theorem 2.3.38. (Xu [267]) Let (X, d) be a complete ε-chainable

metric space and f : X → X be a ε-locally Meir-Keeler type operator.

Then f has at least a fixed point in X.

For single-valued operators satisfying to a Boyd-Wong type condition

we have:

Theorem 2.3.39. (Boyd-Wong [39] and H. K. Xu [267]) Let (X, d)

be a complete metric space, ε > 0 and f : X → X be a single-valued

operator such that:

d(f(x), f(y)) ≤ k(d(x, y))d(x, y), for all x, y ∈ X with 0 < d(x, y) <

ε, where k :]0,∞[→]0, 1[ is a real function with the property:

(P)

{
For each 0 < t < ε there exist e(t) > 0 and s(t) < 1

such that k(r) ≤ s(t) provided t ≤ r < t+ e(t)

Then Fixf 6= ∅.

Combining a metrical fixed point result (namely, the Banach contrac-

tion principle) with a topological ones (Schauder’s theorem), Krasnosel-
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skii (see for example [128])proved the following fixed point principle for

the sum of two single-valued operators:

Theorem 2.3.40. (Krasnoselskii [128]) Let X be a Banach space,

Y ∈ Pcl,cv(X) and consider f : Y → X, g : Y → X two single-valued

operators. If the following conditions are satisfied:

i) f(y) + g(y) ∈ Y , for each y ∈ Y
ii) f is a-contraction

iii) g is continuous and has relatively compact range

then Fix(f + g) 6= ∅.

Bibliographical comments. Basic fixed point theorems for multi-

function can be found in several sources, such as: Agarwal-Meehan-

O’Regan [1], Border [36], Covitz-Nadler [71], Deimling [80], [81], Frigon-

Granas [88], Hu-Papageorgiou [105], M. Kamenskii-Obuhovskii-Zecca

[118], Kirk-Sims [124], I. A. Rus [223], Smithson [249], X. Wu [264], Z.

Wu [265], Yuan [270].

2.4 The fixed point set

The purpose of this section is to present several properties of the fixed

point set for some multi-valued generalized contractions.

Throughout this section, the symbol M indicates the family of all

metric spaces. Let X ∈M.

The following notions appear in Rus- Petruşel-Ŝıntămărian (see [228]

and [229]).

Definition 2.4.1. Let (X, d) be a metric space and T : X → P (X) a

multi-valued operator. By definition, T is a multi-valued weakly Picard

(briefly MWP) operator if and only if for all x ∈ X and all y ∈ T (x)

there exists a sequence (xn)n∈N such that:

i) x0 = x, x1 = y

ii) xn+1 ∈ T (xn), for all n ∈ N
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iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of

the multi-valued operator T .

Let us remark that a sequence (xn)n∈N satisfying the conditions (i)

and (ii) in the previous definition is, by definition, a sequence of successive

approximations of T , starting from (x, y).

We can illustrate this notions by several examples.

Example 2.4.2. (Covitz-Nadler [71]) Let (X, d) be a complete metric

space and T : X → Pcl(X) be a multi-valued a-contraction. Then T is a

MWP operator.

Example 2.4.3. (Reich [213]) Let (X, d) be a complete metric space

and T : X → Pcl(X) be a multi-valued Reich-type operator. Then T is a

MWP operator.

Example 2.4.4. (I. A. Rus [224]) Let (X, d) be a complete metric

space. A multi-valued operator T : X → Pcl(X) is said to be a multi-

valued Rus-type graphic-contraction if Graf(T) is closed and the follow-

ing condition is satisfied: there exist α, β ∈ R+, α + β < 1 such that:

H(T (x), T (y)) ≤ αd(x, y) +βD(y, T (y)), for every x ∈ X and every y ∈
T (x)

Then T is a MWP operator.

Example 2.4.5. (Petruşel [182]) Let (X, d) be a complete metric

space, x0 ∈ X and r > 0. The multi-valued operator T is called a Frigon-

Granas type operator if T : B̃(x0; r)→ Pcl(X) and satisfies the following

assertion:

i) there exist α, β, γ ∈ R+, α + β + γ < 1 such that:

H(T (x), T (y)) ≤ αd(x, y)+βD(x, T (x))+γD(y, T (y)), for all x, y ∈ B̃(x0; r)

If T is a Frigon-Granas type operator such that:

ii) δ(x0, T (x0)) < [1− (α + β + γ)](1− γ)−1r,

then T is a MWP operator.
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Let us recall that in 1985, T. -C. Lim (see [132]) proved that if T1

and T2 are multi-valued contractions on a complete metric space X with

a same contraction constant α < 1 and if H(T1(x), T2(x)) ≤ η, for all

x ∈ X, then the data dependence phenomenon for the fixed point set

holds, i.e.

H(FixT1, F ixT2) ≤ η{1− a}−1.

We will show now that the data dependence problem for the fixed point

set for some generalized multi-valued contractions has also a positive

answer.

Definition 2.4.6. Let (X, d) be a metric space and T : X → P (X)

a MWP operator. Then we define the multi-valued operator T∞ :

Graf(T )→ P (FixT ) by the formula:

T∞(x, y) := {z ∈ FixT | there exists a sequence of successive approx-

imations of T starting from (x, y) that converges to z}.

An important abstract concept in this approach is the following:

Definition 2.4.7. Let (X, d) be a metric space and T : X → P (X)

a MWP operator. Then T is a c-multi-valued weakly Picard operator

(briefly c-MWP operator) if there is a selection t∞ of T∞ such that:

d(x, t∞(x, y)) ≤ cd(x, y), for all (x, y) ∈ Graf(T ).

Further on we shall present several examples of c-MWP operators.

Example 2.4.8. A multi-valued α-contraction on a complete metric

space is a c-MWP operator with c = (1− α)−1.

Example 2.4.9. A multi-valued Reich type operator on a complete

metric space is a c-MWP operator with c = [1− (α+ β + γ)]−1(1− γ).

Example 2.4.10. A multi-valued Rus-type graphic contraction on a

complete metric space is a c-MWP operator with c = (1−β)[1−(α+β)]−1.
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Example 2.4.11. A multi-valued Frigon-Granas type operator T :

B̃(x0; r)→ Pcl(X) satisfying the condition δ(x0, T (x0)) < [1− (α + β +

γ)](1− γ)−1r is a c-MWP operator.

An important abstract result of is the following:

Theorem 2.4.12. Let (X, d) be a metric space and T1, T2 : X →
P (X). We suppose that:

i) Ti is a ci-MWP operator for i ∈ {1, 2}
ii) there exists η > 0 such that H(T1(x), T2(x)) ≤ η, for all x ∈ X.

Then H(FixT1, F ixT2) ≤ ηmax{c1, c2}.

Proof. Let ti : X → X be a selection of Ti for i ∈ {1, 2}. Let us

remark that

H(FixF1, F ixT2) ≤ max

{
sup

x∈FixT2
d(x, t∞1 (x, t1(x))), sup

x∈FixT2
d(x, t∞2 (x, t2(x)))

}
.

Let q > 1. Then we can choose ti (i ∈ {1, 2}) such that

d(x, t∞1 (x, t1(x))) ≤ c1qH(T2(x), T1(x)), for all x ∈ FixT2

and

d(x, t∞2 (x, t2(x)) ≤ c2qH(T1(x), T2(x)), for all x ∈ FixT1.

Thus we have H(FixT1, F ixT2) ≤ qηmax{c1, c2}. Letting q ↘ 1, the

proof is complete. �

Remark 2.4.13. As consequences of this abstract principle, we de-

duce that the data dependence phenomenon regarding the fixed points

set for some generalized multi-valued contractions (such as Reich-type

operators, Rus-type graphic contractions, Frigon-Granas type operators)

holds.

Contrary to the single-valued case, if T : X → Pcl(X) is a multi-

valued contraction on a complete metric space, then FixT is not nec-

essarily a singleton and hence it is of interest to study the topological

properties of it.
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Let us recall that a metric space X is called an absolute retract for

metric spaces (briefly X ∈ AR(M)) if, for any Y ∈ M and any Y0 ∈
Pcl(X), every continuous function f0 : Y0 → X has a continuous extension

over Y, that is f : Y → X. Obviously, any absolute retract is arcwise

connected. In this setting, B. Ricceri (see [215]), stated the following

important theorem:

Theorem 2.4.14. (Ricceri) Let E be a Banach space and let X be

a nonempty, closed, convex subset of E. Suppose T : X → Pcl,cv(X) is

a multi-valued contraction. Then FixT is an absolute retract for metric

spaces.

A decomposable version of this result was proved by Bressan-Cellina-

Fryszkowski (see [41]):

Theorem 2.4.15. (Bressan-Cellina-Fryszkowski) Let F : L1(T,E)→
Pb,cl,dec(L

1(T,E)) be a multi-valued a-contraction. Then FixF is an ab-

solute retract for metric spaces.

We establish the following result on the structure of the fixed point

set for a multi-valued Reich type operator with convex values.

Theorem 2.4.16. Let E be a Banach space, X ∈ Pclc,cv(E) and

T : X → Pcl,cv(X) be a l.s.c. multi-valued Reich-type operator. Then

FixT ∈ AR(M).

Proof. Let us remark first that FixT ∈ Pcl(X). (see for example

Reich [213]) Let K be a paracompact topological space, A ∈ Pcl(K) and

ψ : A→ FixT a continuous mapping. Using Theorem 2 from B. Ricceri

[215] (taking G(t) = X, for each t ∈ K) it follows the existence of a

continuous function ϕ0 : K → X such that ϕ0|A = ψ. We next consider

q ∈]1, (α + β + γ)−1[. We claim that there exists a sequence (ϕn)n∈N of

continuous functions from K to X with the following properties:

(i) ϕn|A = ψ

(ii) ϕn(t) ∈ T (ϕn−1(t)), for all t ∈ K
(iii) ‖ϕn(t)−ϕn−1(t)‖ ≤ [(α+β+γ)q]n−1‖ϕ1(t)−ϕ0(t)‖, for all t ∈ K.
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To see this, we proceed by induction on n. Clearly, for each t ∈ A

we have that ψ(t) ∈ T (ϕ0(t)). On the other hand, the multi-function

t 7→ T (ϕ0(t)) is l.s.c. on K with closed, convex values and hence using

again Theorem 2 in [215] it follows that there is a continuous function

ϕ1 : K → X such that ϕ1|A = ψ and ϕ1(t) ∈ T (ϕ0(t)), for all t ∈ K.

Hence, the conditions (i), (ii), (iii) are true for ϕ1. Suppose now we have

constructed p continuous functions ϕ1, ϕ2, . . . , ϕp from K to X in such a

way that (i), (ii), (iii) are true for n ∈ {1, 2, . . . , p}. Using the Reich type

contraction condition for T , we have

D(ϕp(A), T (ϕp(t))) ≤ H(T (ϕp−1(t)), T (ϕp(t))) ≤

≤ α‖ϕp−1(t)−ϕp(t)‖+βD(ϕp−1(t), T (ϕp−1(t))) + γD(ϕp(t), T (ϕp(t))) ≤

≤ α‖ϕp−1(t)− ϕp(t)‖+ β‖ϕp−1(t)− ϕp(t)‖+ γD(ϕp(t), T (ϕp(t)))

so that

D(ϕp(t), T (ϕp(t))) ≤ (α + β)(1− γ)−1‖ϕp(t)− ϕp−1(t)‖ ≤

≤ (α + β)(1− γ)−1[(α + β + γ)q]p−1‖ϕ1(t)− ϕ0(t)‖

< (α + β + γ)pqp−1‖ϕ1(t)− ϕ0(t)‖ < [(α + β + γ)q]p‖ϕ1(t)− ϕ0(t)‖.

We next define, for each t ∈ K

Qp(t) =

{
B(ϕp(t), [(α + β + γ)q]p‖ϕ1(t)− ϕ0(t)‖), if ϕ1(t) 6= ϕ0(t)

{ϕp(t)}, if ϕ1(t) = ϕ0(t)

Obviously T (ϕp(t)) ∩ Qp(t) 6= ∅, for all t ∈ K. We can apply now (tak-

ing G(t) = F (ϕp(t)), f(t) = ϕp(t) and the mapping g(t) = [(α + β +

γ)q]p‖ϕ1(t)− ϕ0(t)‖, for all t ∈ K). Proposition 3 from Ricceri [215], we

obtain that the multi-function t 7→ T (ϕp(t)) ∩Qp(t) is l.s.c. on K with

nonempty, closed, convex values. Because of Theorem 2 in [215], this pro-

duces a continuous function ϕp+1 : K → X such that ϕp+1|t = ψ and

ϕp+1(t) ∈ T (ϕp(H)) ∩Qp(t), for all t ∈ T . Thus the existence of the se-

quence {ϕn} is established. Consider now the open covering of K defined
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by the formula: ({t ∈ K| ‖ϕ1(t) − ϕ0(t)‖ < λ})λ>0. Moreover, because

of (iii) and the fact that X is complete, the sequence {ϕn}n∈N converges

uniformly on each of the following set Kλ = {t ∈ K| ‖ϕ1(t)−ϕ0(t)‖ < λ}
(λ > 0). Let ϕ : K → X be the pointwise limit of (ϕn)n∈N. Obviously ϕ

is continuous and ϕ|A = ψ. Moreover, a simple computation ensures that

: ϕ(t) ∈ T (ϕ(t)) for all t ∈ K and this completes the proof. �

Remark 2.4.17 If β = γ = 0 then the previous theorem coincides

with B. Ricceri’s result (Theorem 2.4.14. below).

Remark 2.4.18. Of course, it is also possible to formulate version

of Theorem 2.4.16. for multi-valued Rus type graphic contraction. It is

an open question if such a result holds for a Frigon-Granas type multi-

function.

Several paper have been devoted to some extensions and generaliza-

tions of the previous results to a larger family of multi-valued contrac-

tions defined on arbitrary complete absolute retracts. For this purpose,

an important abstract notion is:

Definition 2.4.19. Let (X, d) be a metric space, F : X → Pcl(X) be

l.s.c. and U ⊂ X be an arbitrary family of metric spaces. We say that F

has the selection property with respect to U when for any Y ∈ U , any

pair of continuous functions f : Y → X and r : Y →]0,∞[ such that:

G(y) = F (f(y)) ∩B(f(y), r(y)) 6= ∅, for each y ∈ Y

and any nonempty closed set Z ⊂ Y , every continuous selection g0 of

G |Z admits a continuous extension g over Y fulfilling g(y) ∈ G(y), for

all y ∈ Y . When U = X we say that G has the selection property (briefly

G ∈ SP (X)).

Some examples illustrating this notion are:
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Example 2.4.20. Let X be a nonempty closed convex subset of a

Banach space E and F : X → Pcl,cv(X) be l.s.c.. From Michael’s selection

theorem it follows that F ∈ SP (X).

Example 2.4.21. Let X be a nonempty closed decomposable subset

of L1(T,E) and let F : X → Pcl,dec(X) be l.s.c.. Gorniewicz and Marano

proved (see [94]) that F has the selection property with respect to the

family of all separable metric spaces.

Using this abstract setting the following results was proved in

Gorniewicz-Marano [94]:

Theorem 2.4.22. (Gorniewicz-Marano) Let X be a complete absolute

abstract and let F : X → Pcl(X) be a multi-valued contraction. Suppose

that F ∈ SP (X). Then FixF is a complete absolute retract.

Remark 2.4.23. Theorem 2.4.22. contains as particular cases both

Theorem 2.4.14. and Theorem 2.4.15.

An important result is the following generalization of Theorem 2.4.22.

:

Theorem 2.4.24. Let X be a complete absolute retract and F : X →
Pcl(X)be a Reich type multi-function such that F ∈ SP (X). Then the

fixed point set FixF is a complete absolute retract.

Regarding to the compactness property of the fixed point set of a

multi-valued contraction mapping, J. Saint Raymond (see [237]) estab-

lished the following theorem:

Theorem 2.4.25. (Saint Raymond) Let T be a multi-valued contrac-

tion from the complete metric space X to itself. If T takes compact values,

the fixed point set FixT is compact too.

An extension of the previous result is:
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Theorem 2.4.26. Let (X, d) be a complete metric space, x0 ∈ X and

r > 0. Let us suppose that T : B̃(x0; r) → Pcp(X) satisfies the following

two conditions:

i) there exist α, β ∈ R+, α + 2β < 1 such that

H(T (x), T (y)) ≤ αd(x, y) + β[D(x, T (x)) +D(y, T (y))],

for each x, y ∈ B̃(x0; r)

ii) D(x0, T (x0)) < [1− (α + 2β)](1− γ)−1r.

Then the fixed points set FixT is compact.

Proof. From Reich’s theorem [213] it follows that FixT ∈
Pcl(B̃(x0; r)). Assume that FixT is not compact. Because FixT is com-

plete, it cannot be precompact, so there exist δ > 0 and a sequence

(xi)i∈N ⊂ FixT such that d(xi, xj) ≥ δ, for each i 6= j. Put ρ = inf{R|
there exists a ∈ B̃(x0; r) such that B(a,R) contains infinitely many xi;s}.
Obviously ρ ≥ δ

2
> 0. Let ε > 0 such that ε <

1− α− 2β

1 + α
ρ and choose

a ∈ B̃(x0; r) such that the set J = {i : xi ∈ B(a, ρ+ ε)} is infinite.

For each i ∈ J , we have

D(xi, T (a)) ≤ H(T (xi), T (a)) ≤ αd(xi, a)+βi[D(xi, T (xi))+D(a, T (a))] =

= αd(xi, a) + βD(a, T (a)) < α(ρ+ ε) + βd(a, y), for every y ∈ T (a).

Then

D(xi, T (a)) < α(ρ+ε)+β[d(a, xi)+d(xi, y)] < α(ρ+ε)+β(ρ+ε)+βd(xi, y),

for every y ∈ T (a). Taking inf
y∈T (a)

we get : D(xi, T (a)) ≤

(α + β)(ρ+ ε)(1−β)−1, for each i ∈ J. So, we can choose some yi ∈ T (a)

such that d(xi, yi) ≤ (α + β)(ρ+ ε)(1 − β)−1, for each i ∈ J. By the

compactness of T (a) there exists b ∈ T (a) such that the following

set: J ′ = {i ∈ J | d(yi, b) < ε} is infinite. Then, for each i ∈ J ′

we get d(xi, b) ≤ d(xi, yi) + d(yi, b) < (α + β)(ρ+ ε)(1 − β)−1 + ε
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= (α + β)(1 − β)−1ρ + ε (1 + (α + β)(1− β)−1) < ρ. This contradicts

the definition of ρ, because the set B(b, R) contains infinitely many xi’s(
where R = (α + β)ρ(1− β)−1 + ε

(
1 + (α + β)(1− β)−1

))
. �

The purpose of the last part of this section is to study the measurabil-

ity of the fixed point set for some multi-valued generalized contractions.

Let (X, d) be a complete separable metric space and (Ω,Σ) be a mea-

surable space. Recall also that a multi-valued operator T : Ω×X → P(X)

is said to be a random operator if, for any x ∈ X T (·, x) : Ω→ P (X) is

measurable. We will denote by F (ω) the fixed points set of T (ω, ·), i.e.

F (ω) := {x ∈ X| x ∈ T (ω, x)}. A random fixed point of T is a measur-

able function x : Ω → X such that x(ω) ∈ T (ω, x(ω)), for all ω ∈ Ω, or

equivalently, x is a measurable selection for F .

If T : Ω × X → Pb,cl(X) is a random contraction (that is, for each

x ∈ X, T (·, x) is measurable and for each ω ∈ Ω there exists a number

k(ω) ∈ [0, 1[ such that

H(T (ω, x), T (ω, y)) ≤ k(ω)d(x, y), for all x, y ∈ X)

then Xu and Beg (see [18]) proved that the multi-function F is measur-

able and hence T admits a random fixed point.

Let us start with the following lemma.

Lemma 2.4.27. Let (X, d) be a complete metric space and let T :

X → Pb,cl(X) be a multi-valued Reich type operator. Then for each p > 0

we have

H(Fp, F ixT ) ≤ (1− γ)p[1− (α + β + γ)]−1

where Fp := {x ∈ X| D(x, T (x)) < p}.

Proof. Obviously Fp ⊇ FixT and hence H(Fp, F ixT ) = ρ(Fp, F ixT ).

Let x ∈ Fp and ε > 0 be arbitrarily. We can choose x1 ∈ T (x) such that

d(x, x1) < (1 + ε)p.
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Starting from x0 = x and x1, we can construct a sequence {xn} of

successive approximation of T starting from (x0, x1) such that

d(xn, x
∗) ≤ Ln(q)(1− L(q))−1d(x1, x0), for each n ≥ 0

where q ∈
]
1, (α + β + γ)−1

[
is arbitrary, L(q) = q(α+ β)(1− qγ)−1 and

lim
n→∞

xn = x∗ ∈ FixT .

For n = 0 we obtain d(x0, x
∗) ≤ (1− L(q))−1d(x1, x0) ≤ (1 + ε)p(1−

L(q))−1. Letting ε↘ 0 and q ↘ 1 we have

d(x, x∗) ≤ p

1− (α + β)(1− γ)−1
=

(1− γ)p

1− (α + β + γ)
.�

Definition 2.4.28. Let (X, d) be a complete separable metric space,

(Ω,Σ) is a measurable space. Then T : Ω × X → Pb,cl(X) is a random

Reich type operator, if for each x ∈ X, T (·, x) is measurable and for each

ω ∈ Ω there exist α(ω), β(ω), γ(ω) ∈ R+ with α(ω) + β(ω) + γ(ω) < 1

such that

H(T (ω, x), T (ω, y)) ≤ α(ω)d(x, y)+β(ω)D(x, T (ω, x))+γ(ω)D(y, T (ω, y))

for each x, y ∈ X.

Main result of the last part of this section is:

Theorem 2.4.29. Suppose that (X, d) is a complete separable metric

space, (Ω,Σ) is a measurable space and T : Ω×X → Pb,cl(X) is a random

continuous Reich type operator. Then the multi-function F of the fixed

point set is measurable.

Proof. By Reich’s theorem [213] the set F (ω) is nonempty for every

ω ∈ Ω. For each n ≥ 1 we consider

Fn(ω) =

{
x ∈ X| D(x, T (ω, x)) <

1

n

}
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Using Proposition 1.5 in Xu-Beg [268], each Fn(ω) is measurable and

by Lemma 2.4.27. we have

H(Fn(ω), F (ω)) ≤ 1− γ
1− (α + β + γ)

· 1

n
→ 0, as n→∞.

So F is measurable. The proof is now complete. �

Theorem 2.4.30. Suppose that (X, d) is a complete separable metric

space, (Ω,Σ) is a measurable space and T : Ω×X → Pb,cl(X) is a random

continuous Reich-type operator. Then the multi-function T has a random

fixed point.

Proof. The conclusion follows from Theorem 2.4.29. via Kuratowski

and Ryll Nardzewski selection theorem. (see Theorem 1.4.16.) �

Bibliographical comments. The approach of this paragraph fol-

lows mainly Petruşel [174] and Rus-Petruşel-Ŝıntămărian [229]. There is

an extensive literature on the subject of multi-valued generalized contrac-

tions. Excellent sources for the properties of the fixed point set are the fol-

lowing: Anisiu-Mark [7], Deimling [80], Gorniewicz-Marano-Slosarki [93],

Gorniewicz-Marano [94], Kamenskii-Obuhovskii-Zecca [118], Lim [133],

Marano [137], Markin [138], Naselli Ricceri and B. Ricceri [156], Ricceri

[215], Rybinski [235], Saint Raymond [237], Schirmer [246], Wang [261],

Xu-Beg [268].

2.5 Caristi type operators

Caristi’s fixed point theorem states that each operator f from a complete

metric space (X, d) into itself satisfying the condition:

there exists a lower semi-continuous function ϕ : X → R+ ∪ {+∞}
such that:

(2.5.1.) d(x, f(x)) + ϕ(f(x)) ≤ ϕ(x), for each x ∈ X,
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has at least a fixed point x∗ ∈ X, i. e. x∗ = f(x∗) (see Caristi [52]).

There are several extensions and generalizations of this important

principle of the nonlinear analysis (see for example Jachymski [111], Ciric

[62] etc.).

One of them, asserts that if (X, d) is a complete metric space, x0 ∈ X,

ϕ : X → R+ ∪ {+∞} is lower semi-continuous and h : R+ → R+ is a

continuous function such that
∫∞
0

ds
1+h(s)

= ∞, then each single-valued

operator f from X to itself satisfying the condition:

(2.5.2.) for each x ∈ X, d(x, f(x))

1 + h(d(x0, x))
+ ϕ(f(x)) ≤ ϕ(x),

has at least a fixed point. (see Zhong-Zhu-Zhao [274])

For the multi-valued case, if F is an operator of the complete metric

space X into the space of all nonempty subsets of X and there exists a

lower semi-continuous function ϕ : X → R+ ∪ {+∞} such that:

(2.5.3.) for each x ∈ X, there is y ∈ F (x) so that d(x, y) +ϕ(y) ≤ ϕ(x),

then the multi-valued map F has at least a fixed point x∗ ∈ X, i. e.

x∗ ∈ F (x∗). (see for example [147])

Moreover, if F satisfies the stronger condition:

(2.5.4.) for each x ∈ X and each y ∈ F (x) we have d(x, y)+ϕ(y) ≤ ϕ(x),

then the multi-valued map F has at least a strict fixed point x∗ ∈ X,

i. e. {x∗} = F (x∗). (see [18])

On the other hand, if F is a multi-valued operator with nonempty

closed values and ϕ : X → R+ ∪ {+∞} is a lower semi-continuous func-

tion such that the following condition holds:
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(2.5.5.) for each x ∈ X, inf { d(x, y) + ϕ(y) : y ∈ F (x) } ≤ ϕ(x),

then F has at least a fixed point.(see [104])

In this framework, let us remark that if we replace condition (2.5.5.)

by a weaker condition (see (2.5.6.) below), then the conjecture stated by

J.-P. Penot in [171] as follows:

Let (X, d) be a complete metric space, ϕ : X → R+ be a lower semi-

continuous function and F be a multi-valued operator of X into the family

of all nonempty closed subsets of X satisfying the following condition:

(2.5.6.) D(x, F (x)) + inf { ϕ(y) : y ∈ F (x) } ≤ ϕ(x),

then F has at least a fixed point.

is false. (see van Hot [104] for a counterexample).

It is easy to see that (2.5.4.) ⇒ (2.5.3.) ⇒ 2.5.5.) and (2.5.5.) ⇒
(2.5.3.) provided that F has nonempty compact values.

The purpose of this section is to present several new results in con-

nection with the above mentioned single-valued and multi-valued Caristi

type operators in complete metric spaces.

Let (X, d) be a metric space and F : X → P (X) be a multi-valued

map.

Definition 2.5.1. A function ϕ : X → R+ ∪ {+∞} is called:

(i) a weak entropy of F if the condition (2.5.3) holds.

(ii) an entropy of F if the condition (2.5.4.) holds.

Moreover, the map F : X → P (X) is said to be weakly dissipative if

there exists a weak entropy of F and it is said to be dissipative if there

is an entropy of it.

Definition 2.5.2. Let (X, d) be a metric space and F : X → Pb,cl(X)

be a multi-valued operator. Then F is said to be a δ-Reich type operator
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if there exist a, b, c ∈ R+, with a+ b+ c < 1 such that

δ(F (x), F (y)) ≤ a d(x, y)+b D(x, F (x))+c D(y, F (y)), for each x, y ∈ X.

Let us remark now, that if f is a (single-valued) a-contraction in

a complete metric space X, then f satisfies condition (2.5.1.) with

ϕ(x) = (1− a)−1 d(x, f(x)), for each x ∈ X, so that part of the Banach

contraction principle which says about the existence of a fixed point can

be obtained by Caristi’s theorem. For the multi-valued case we have the

following result:

Theorem 2.5.3. Let (X, d) be a complete metric space and F : X →
Pcp(X) be an a-contraction (0 < a < 1). Then:

(a) F satisfies the condition (2.5.5.) with ϕ(x) = (1−a)−1 D(x, F (x)),

for each x ∈ X.

(b) If, in addition F (x) ∈ Pcp(X), for each x ∈ X, then F is

weakly dissipative with a weak entropy given by the formula ϕ(x) =

(1− a)−1 D(x, F (x)), for each x ∈ X.

Proof. a) is Corollary 1 in [104] and b) follows immediately from a)

and the conditions (2.5.3.) ⇔ (2.5.5.). �

Remark 2.5.4. It is an open question if a multi-valued a-contraction

(0 < a < 1) is dissipative.

First main result of this section is:

Theorem 2.5.5. Let (X, d) be a metric space and F : X → Pcl(X) be

a Reich type multi-valued map. Then there exists f : X → X a selection

of F satisfying the Caristi type condition (2.5.1.).

Proof. Let ε > 0 such that a < ε < 1 − b − c. We denote by Ux =

{ y ∈ F (x) : ε d(x, y) ≤ (1 − b − c) D(x, F (x)) }, for each x ∈ X.

Obviously, for each x ∈ X, the set Ux is nonempty (otherwise, if x ∈ X
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is not a fixed point of F and we suppose that for each y ∈ F (x) we

have εd(x, y) > (1 − b − c) D(x, F (x)), then we reach the contradiction

εD(x, F (x)) ≥ (1− b− c) D(x, F (x)); if x ∈ X is a fixed point of F , then

clearly Ux 6= ∅).
We can choose a single-valued mapping f : X → X such that f(x) ∈

Ux, i. e. f(x) ∈ F (x) and ε d(x, f(x)) ≤ (1− b− c) D(x, F (x)), for each

x ∈ X.

Then we have successively: D(f(x), F (f(x))) ≤ H(F (x), F (f(x))) ≤
a d(x, f(x)) + b D(x, F (x)) + c D(f(x), F (f(x))) and hence

(1− c) D(f(x), F (f(x)))− b D(x, F (x)) ≤ a d(x, f(x)).

In view of this we obtain:

d(x, f(x)) = (ε− a)−1 [ε d(x, f(x))− a d(x, f(x))] ≤

≤ (ε−a)−1 [(1−b−c)D(x, F (x))−(1−c)D(f(x), F (f(x)))+b D(x, F (x))] =

= (1− c)/(ε− a) [D(x, F (x))−D(f(x), F (f(x)))].

If we define ϕ : X → R+ by ϕ(x) = (1 − c)/(ε − a) D(x, F (x)), for

each x ∈ X, then it is easy to see that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), for each x ∈ X.

Moreover,

|ϕ(x)− ϕ(y)| = (1− c)/(ε− a) |D(x, F (x))−D(y, F (y))| ≤

≤ (1− c)/(ε− a) |d(x, y) +H(F (x), F (y))| ≤

≤ (1− c)/(ε− a) [d(x, y) + a d(x, y) + b D(x, F (x)) + c D(y, F (y))] =

= (1 − c)(1 + a)/(ε − a) d(x, y) + b(1 − c)/(ε − a) D(x, F (x)) + c(1 −
c)/(ε − a) D(y, F (y)), proving the fact that the selection f is a kind of

single-valued Reich type operator. �
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Remark 2.5.6. If the multi-valued operator F : X → Pcl(X) is

an upper semi-continuous Reich type operator, then ϕ is a lower semi-

continuous entropy of f . (because the map x 7→ D(x, F (x)) is lower

semi-continuous.)

Remark 2.5.7. If in Theorem 2.5.5. we take b = c = 0, then we

obtain a result of Jachymski, see [111]. Moreover, we get that a multi-

valued a-contraction (0 ≤ a < 1) is weakly dissipative.

Theorem 2.5.8. Let (X, d) be a metric space and F : X → P (X) be

a δ-Reich type operator. Then the multi-valued operator F is dissipative.

Proof. Let ε > 0 such that a < ε < 1−b−c. Let x ∈ X and y ∈ F (x).

It is not difficult to see that

ε d(x, y) ≤ (1− b− c) δ(x, F (x)).

Using the fact that y ∈ F (x) and the condition from hypothesis we

have

δ(y, F (y)) ≤ δ(F (x), F (y)) ≤ a d(x, y) + b δ(x, F (x)) + c δ(y, F (y)).

It follows that

−a d(x, y) ≤ b δ(x, F (x))− (1− c) δ(y, F (y)).

So, we have

d(x, y) = (ε− a)−1 [ε d(x, y)− a d(x, y)] ≤

≤ (ε− a)−1 [(1− b− c) δ(x, F (x)) + b δ(x, F (x))− (1− c) δ(y, F (y))] =

= (1− c)/(ε− a) [δ(x, F (x))− δ(y, F (y))].

We define ϕ(x) : X → R+ as follows: ϕ(x) = (1−c)/(ε−a) δ(x, F (x)),

for each x ∈ X and we get

d(x, y) + ϕ(y) ≤ ϕ(x), for each x ∈ X and for all y ∈ F (x),
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i. e. the multi-valued operator F is dissipative. �

The following result is an extension of Proposition 1 in van Hot [104].

Theorem 2.5.9. Let (X, d) a complete metric space, x0 ∈ X be

arbitrarily, ϕ : X → R+ ∪ {+∞} a lower semi-continuous function

and h : R+ → R+ a continuous non-decreasing function such that∫∞
0

ds
1+h(s)

= ∞. Let F : X → Pcl(X) be a multi-valued operator such

that:

inf{ d(x, y)

1 + h(d(x0, x))
+ ϕ(y) : y ∈ F (x)} ≤ ϕ(x), for each x ∈ X.

Then F has at least a fixed point.

Proof. We shall prove that for each x ∈ X there exists f(x) ∈ F (x)

such that:
d(x, f(x))

1 + h(d(x0, x))
+ 2ϕ(f(x)) ≤ 2ϕ(x).

If D(x, F (x)) = 0 then x ∈ F (x) and put x = f(x).

If D(x, F (x)) > 0 then we get successively:

D(x, F (x)

1 + h(d(x0, x)
+ inf{ d(x, y)

1 + h(d(x0, x))
+ 2ϕ(y) : y ∈ F (x)}

≤ 2 inf{ d(x, y)

1 + h(d(x0, x))
+ ϕ(y) : y ∈ F (x)} ≤ 2ϕ(x), for each x ∈ X.

It follows that:

inf{ d(x, y)

1 + h(d(x0, x))
+ 2ϕ(y) : y ∈ F (x)} < 2ϕ(x)

and hence there exists f(x) ∈ F (x) such that:

d(x, f(x))

1 + h(d(x0, x))
+ 2ϕ(f(x)) ≤ 2ϕ(x).

If we define ψ(t) = 2ϕ(t) we get that f satisfies the hypothesis of Lemma

1.2. in [274] and hence there exists x∗ ∈ X such that x∗ = f(x∗) ∈ F (x∗).

�
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In what follows we shall discuss the data dependence of the fixed

points set of multi-valued operators which satisfy the Caristi type con-

dition (2.5.3) and the data dependence of the strict fixed points set of

multi-valued operators which satisfy the Caristi type condition (2.5.4).

Theorem 2.5.10. Let (X, d) be a complete metric space and F1, F2 :

X → P (X) be two multi-valued operators. We suppose that:

(i) there exist two lower semi-continuous functions ϕ1, ϕ2 : X → R+

such that for all x ∈ X, there exists y ∈ Fi(x) so that

d(x, y) ≤ ϕi(x)− ϕi(y), i ∈ {1, 2};

(ii) there exists ci ∈ ]0,+∞[ such that

ϕi(x) ≤ ci d(x, y), for each x ∈ X and for all y ∈ Fi(x), i ∈ {1, 2};

(iii) there exists η > 0 such that

H(F1(x), F2(x)) ≤ η, for all x ∈ X.

Then

H(Fix(F1), F ix(F2)) ≤ η max { c1, c2 }.

Proof. From the condition (i) we have that Fix(Fi) 6= ∅, i ∈ {1, 2}.
Let ε ∈ ]0, 1[ and x0 ∈ Fix(F1). It follows, from Ekeland variational

principle (see for example [81]), that there exists x∗ ∈ X such that

ε d(x0, x
∗) ≤ ϕ2(x0)− ϕ2(x

∗)

and

ϕ2(x
∗)− ϕ2(x) < ε d(x, x∗), for each x ∈ X \ {x∗}.

For x∗ ∈ X, there exists y ∈ F2(x
∗) so that

d(x∗, y) ≤ ϕ2(x
∗)− ϕ2(y).
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If we suppose that y 6= x∗, then we reach the contradiction

d(x∗, y) ≤ ϕ2(x
∗)− ϕ2(y) < ε d(y, x∗).

So y = x∗ and therefore x∗ ∈ F2(x
∗), i. e. x∗ ∈ Fix(F2).

Let q ∈ R, q > 1. Then, there exists x1 ∈ F2(x0) such that

d(x0, x1) ≤ q H(F1(x0), F2(x0)).

Taking into account the conditions (ii) and (iii) we are able to

write ε d(x0, x
∗) ≤ ϕ2(x0) − ϕ2(x

∗) = ϕ2(x0) ≤ c2 d(x0, x1) ≤
c2 q H(F1(x0), F2(x0)) ≤ c2 q η. Hence

d(x0, x
∗) ≤ η c2 q / ε.

Analogously, for all y0 ∈ Fix(F2), there exists y∗ ∈ Fix(F1) such that

d(y0, y
∗) ≤ η c1 q / ε.

Using the last two inequalities, we obtain

H(Fix(F1), F ix(F2)) ≤ η q ε−1 max { c1, c2 }.

From this, letting q ↘ 1 and ε↗ 1, the conclusion follows. �

Remark 2.5.11. In the condition (ii) of the Theorem 2.5.10. it is

sufficient to ask that ϕi(x) = 0, for all x ∈ Fix(Fi) and the existence of

ci ∈ ]0,+∞[ such that

ϕi(x) ≤ ci d(x, y),

for each x ∈ Fix(Fj) and for all y ∈ Fi(x), i, j ∈ {1, 2}, i 6= j.

Theorem 2.5.12. Let (X, d) be a complete metric space and F :

X → P (X) be a multi-valued operator. We suppose that:

(i) there exists ϕ : X → R+ a lower semi-continuous function such

that

d(x, y) ≤ ϕ(x)− ϕ(y), for each x ∈ X and for all y ∈ F (x);
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(ii)there exists c ∈ ]0,+∞[, such that

ϕ(x) ≤ c d(x, y), for each x ∈ X and for all y ∈ F (x).

Then Fix(F ) = SFix(F ) 6= ∅.

Proof. From the condition (i) we have that SFix(F ) 6= ∅. Let x∗ ∈
Fix(F ) and y ∈ F (x∗). It follows that

d(x∗, y) ≤ ϕ(x∗)− ϕ(y) = −ϕ(y) ≤ 0.

Hence d(x∗, y) = 0 and therefore y = x∗. So F (x∗) = {x∗}, i. e. x∗ ∈
SFix(F ) and thus we are able to write that Fix(F ) ⊆ SFix(F ). �

Remark 2.5.13. In condition (ii) of Theorem 2.5.12. it is sufficient

to ask that ϕ(x) = 0, for all x ∈ Fix(F ).

Example 2.5.14. Let F : [0, 1] → P ([0, 1]), F (x) = [x/3, x/2], for

each x ∈ [0, 1] and ϕ : X → R+, ϕ(x) = kx, for each x ∈ [0, 1], where

k ∈ R, k ≥ 1. It is not difficult to see that |x − y| ≤ ϕ(x) − ϕ(y), for

each x ∈ [0, 1] and for all y ∈ F (x) and there exists c = 2k > 0 such that

ϕ(x) ≤ c |x− y| for each x ∈ [0, 1] and for all y ∈ F (x). From Theorem

2.5.12. we have Fix(F ) = SFix(F ) 6= ∅.

Theorem 2.5.15. Let (X, d) be a complete metric space and F1, F2 :

X → P (X) be two multi-valued operators. We suppose that:

(i) there exist two lower semi-continuous functions ϕ1, ϕ2 : X → R+

such that

d(x, y) ≤ ϕi(x)−ϕi(y), for each x ∈ X and for all y ∈ Fi(x), i ∈ {1, 2};

(ii) there exists ci ∈ ]0,+∞[ such that

ϕi(x) ≤ ci d(x, y), for each x ∈ X and for all y ∈ Fi(x), i ∈ {1, 2};

(iii) there exists η > 0 such that

H(F1(x), F2(x)) ≤ η, for all x ∈ X.
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Then

H(Fix(F1), F ix(F2)) = H(SFix(F1), SF ix(F2)) ≤ η max { c1, c2 }.

Proof. From Theorem 2.5.12. we have Fix(Fi) = SFix(Fi) 6= ∅,
i ∈ {1, 2} and applying Theorem 2.5.10. the conclusion follows. �

Example 2.5.16. Let F1, F2 : [0, 1] → P ([0, 1]), F1(x) = [x/3, x/2],

for each x ∈ [0, 1] and F2(x) = [(x+1)/2, (x+2)/3], for each x ∈ [0, 1]. Let

ϕ1, ϕ2 : [0, 1]→ R+, ϕ1(x) = x, for each x ∈ [0, 1] and ϕ2(x) = 1− x, for

each x ∈ [0, 1]. By an easy calculation we get that |x−y| ≤ ϕi(x)−ϕi(y),

for each x ∈ [0, 1] and for all y ∈ Fi(x), i ∈ {1, 2} and there exist

c1 = 2 and c2 = 2 such that ϕi(x) ≤ ci |x − y|, for each x ∈ [0, 1] and

for all y ∈ Fi(x), i ∈ {1, 2}. Also, there exists η = 2/3 > 0 so that

H(F1(x), F2(x)) ≤ η, for all x ∈ [0, 1]. Then, from Theorem 2.5.15. we

have H(Fix(F1), F ix(F2)) = H(SFix(F1), SF ix(F2)) ≤ 4/3.

Bibliographical comments. For the results of this section and more

details see Petruşel-Ŝıntămărian [203]. Also, the works of Aubin-Siegel

[18], Bae-Cho-Yeom [24], Caristi [52], Ciric [62], van Hot [104], Mizoguchi-

Takahashi [147], Penot [172], Zhong-Zhu-Zhao [274] are important for the

topic of single-valued and multi-valued Caristi operators.

2.6 Meir-Keeler type operators and frac-

tals

It is well-known that, initiated by Mandelbrot and then developed by

Barnsley, Hutchinson and Hata the mathematical study of self-similar

sets is in connection with the mathematics of fractals. In few words, a self-

similar set is a set consisting of retorts of itself. More precisely, let fi, i ∈
{1, . . . ,m} be continuous operators of X into itself. A nonempty compact
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set Y in X is, by definition, self-similar if it satisfies the condition Y =

∪mi=1fi(Y ). Obviously, we may regard the above relation as a fixed point

problem for an appropriate operator. More precisely, if T : (Pcp(X), H)→
(Pcp(X), H) is defined by T (Y ) =

⋃m
i=1 fi(Y ), then the self-similar sets in

X are the fixed points of T . If X = Rn, it is well known that a self-similar

set is a global attractor with respect to the dynamics generated by T in

the phase set Pcp(X) and its Hausdorff dimension is not, in general, an

integer. For this reason, Y is a fractal and Pcp(X) is the space of fractals.

Moreover, self-similar sets among the fractals form an important class,

since many of them have computable Hausdorff dimensions. For example,

if fi are a-contractions for i ∈ {1, . . . ,m} then the operator T is also an

a-contraction and hence has a unique fixed point.

The purpose of this section is to present similar results for the case

of single-valued and multi-valued Meir-Keeler type operators.

Definition 2.6.1. Let fi : X → X, i ∈ {1, . . . ,m} be a finite family

of continuous operators. Let us define Tf : (Pcp(X), H)→ (Pcp(X), H) by

Tf (Y ) = ∪mi=1fi(Y ). The operator Tf is the so-called Barnsley-Hutchinson

operator or the fractal operator generated by the iterated function system

f = (f1, f2, ...fm).

First result of this section is:

Theorem 2.6.2. Let (X, d) be a complete metric space and fi : X →
X, for i ∈ {1, 2, . . . ,m} are Meir-Keeler type operators. Then the fractal

operator Tf : (Pcp(X), H) → (Pcp(X), H) is a Meir-Keller type operator

and hence FixTf = {A∗} and (T nf (A))n∈N converges to A∗, for each

A ∈ Pcp(X)

Proof. We shall prove that for each η > 0 there is δ > 0 such that

the following implication holds

η ≤ H(A,B) < η + δ we have H(Tf (A), Tf (B)) < η.

Let us consider A,B ∈ Pcp(X) such that η ≤ H(A,B) < η + δ.
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If u ∈ Tf (A) then there exists j ∈ {1, . . . ,m} and x ∈ A such that

u = fj(x).

For x ∈ A we can choose y ∈ B such that d(x, y) ≤ H(A,B) < η+ δ.

We have the following alternative:

1) If d(x, y) ≥ η then η ≤ d(x, y) < η+δ implies d(fj(x), fj(y)) < η.

Hence D(u, Tf (B)) ≤ d(u, fj(y)) < η.

2) If d(x, y) < η then from the definition of Meir-Keeler oper-

ator we have d(fj(x), fj(y)) < d(x, y) < η and again the conclusion

D(u, Tf (B)) < η.

Because Tf (A) is compact we have that ρ(Tf (A), Tf (B)) < η.

Interchanging the roles of Tf (A) and Tf (B) we obtain

ρ(Tf (B), Tf (A)) < η and hence H(Tf (A), Tf (B)) < η, showing the

fact that Tf is a Meir-Keeler-type operator. From Meir-Keeler fixed

point result (see Theorem 2.3.37.), we obtain that there exists an unique

A∗ ∈ Pcp(X) such that Tf (A
∗) = A∗ and (T nf (A))n∈N converges to A∗,

for each A ∈ Pcp(X). �

Remark 2.6.3. By definition, the set A∗ is called the attractor of the

system f = (f1, f2, ..., fm). Hence, Theorem 2.6.2. is an existence result

of an attractor.

Next we will prove a local version of the previous result:

Theorem 2.6.4. Let (X, d) be a complete ε-chainable metric space

and fi : X → X, for i ∈ {1, . . . ,m} be ε-locally-Meir-Keeler type opera-

tors. Then the fractal operator Tf is an ε-locally-Meir-Keeler type oper-

ator, having at least a fixed point.

Proof. Let us consider 0 < η < ε and δ > 0 such that A,B ∈ Pcp(X)

and η ≤ H(A,B) < η+ δ. We shall prove that H(Tf (A), Tf (B)) < η. For

this purpose, let u ∈ Tf (A) arbitrarily. Then there is j ∈ {1, . . . ,m} and

x ∈ A such that u = fj(x). For x ∈ A we can choose y ∈ B such that

d(x, y) ≤ H(A,B) < η + δ.
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If d(x, y) ≥ η then from the hypothesis we get d(fj(x), fj(y)) < η and

hence D(u, Tf (B)) ≤ d(fj(x), fj(y)) < η.

If on the other hand d(x, y) < η < ε then d(fj(x), fj(y)) < d(x, y)

implies again that D(u, Tf (B)) < η.

As before we deduce that H(Tf (A), Tf (B)) < η thus Tf is an ε-locally

Meir-Keeler type operator. The existence of the fixed point for Tf is now

an easy application of Theorem 2.3.38. �

Remark 2.6.5. Jachymski (see [112]), C. S. Wong (in [263]) and T.

-C. Lim [134] proved that the Meir-Keeler type condition is equivalent

to other conditions of this type:

(a) for any η > 0 there exists a δ > 0 such that x, y ∈ X, 0 <

d(x, y) < η + δ we have d(f(x), f(y)) < η

(b) for any η > 0 there exists a δ > 0 such that x, y ∈ X, 0 ≤
d(x, y) < η + δ we have d(f(x), f(y)) < η

(c) δ(η) > 0, for each η > 0, where δ(η) denotes the modulus of

uniform continuity of f.

(d) there exists a lower semi-continuous function ψ : R+ → R+ such

that ψ(0) = 0, ψ(ε) > 0, for every ε > 0 and ψ(d(f(x), f(y))) ≤ d(x, y),

for every x, y ∈ X
(e) there exists a function λ : R+ → R+ with the properties λ(0) = 0,

λ(ε) > 0, for every ε > 0 and for each s > 0 there exists u > s with

λ(t) ≤ s, for each t ∈ [s, u] such that d(f(x), f(y)) ≤ λ(d(x, y)), for

every x, y ∈ X, x 6= y.

Obviously, similar theorems for operators fi, i ∈ {1, . . .m} satisfying

the condition (a)-(e) can be proved.

Let us consider now the multi-valued case. In this respect, we need

some definitions.

Definition 2.6.6. Let X be a metric space and F1, . . . , Fm : X →
Pcp(X) be a finite family of upper semi-continuous multi-valued opera-

tors. We define the multi-fractal operator generated by F = (F1, . . . , Fm)
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as follows: TF : Pcp(X)→ Pcp(X), TF (Y ) = ∪mi=1Fi(Y ).

Also, by definition, A∗ ∈ Pcp(X) is a multi-self-similar set if A∗ =

TF (A∗).

Let us consider now some generalized contraction conditions for a

multi-valued operator on a metric space (X, d).

Definition 2.6.7. The multi-valued operator F : X → P (X) is said

to be:

i) a Meir-Keeler type operator if:

for each η > 0 there is δ > 0 such that η ≤ d(x, y) < η + δ implies

H(F (x), F (y)) < η.

ii) an ε-locally Meir-Keeler type operator (where ε > 0) if:

for each η ∈]0, ε[ there is δ > 0 such that η ≤ d(x, y) < η + δ implies

H(F (x), F (y)) < η.

It is easy to prove that a multi-valued Meir-Keeler operator is con-

tractive and hence u.s.c. on X.

An existence and uniqueness result for a multi-self-similar set is:

Theorem 2.6.8. Let (X, d) be a complete metric space and Fi : X →
Pcp(X), i ∈ {1, . . . ,m} be a finite family of multi-valued Meir-Keeler

type operators. Then the multi-fractal operator TF : Pcp(X)→ Pcp(X) is

a single-valued Meir-Keeler type operator and FixTF = {A∗}.

Proof. Let us suppose that for each η > 0 there exists δ > 0 such

that η ≤ d(x, y) < η + δ implies H(Fi(x), Fi(y)) < η for i ∈ {1, . . . ,m}.
Obviously, Fi is contractive and hence upper semi-continuous, for

i ∈ {1, . . . ,m}. As consequence TF : Pcp(X)→ Pcp(X).

Let us consider η > 0 and Y1, Y2 ∈ Pcp(X) such that η ≤ H(Y1, Y2) <

η + δ. We will prove that H(TF (Y1), TF (Y2)) < η.

For this purpose, let u ∈ TF (Y1) be arbitrary. Then there exist k ∈
{1, . . . ,m} and y1 ∈ Y1 such that u ∈ Fk(Y1). For this y1 ∈ Y1 there is

y2 ∈ Y2 such that d(y1, y2) ≤ H(Y1, Y2) < η + δ.

If d(y1, y2) ≥ η, then from Meir-Keeler condition we get that
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H(Fk(y1), Fk(y2)) < η. It follows that there is v ∈ Fk(y2) such that

d(u, v) < η and hence D(u, TF (Y2)) ≤ d(u, v) < η.

On the other hand if 0 < d(y1, y2) < η, using again Meir-Keeler

condition we deduce that:

H(Fk(y1), Fk(y2)) < d(y1, y2) < η

and as before D(u, TF (Y2)) < η.

Because TF (Y1) is a compact set, we have that ρ(TF (Y1), TF (Y2)) <

η. Interchanging the roles of TF (Y1) and TF (Y2) we obtain

ρ(TF (Y2), TF (Y1)) < η and the conclusion H(TF (Y1), TF (Y2)) < η fol-

lows.

So TF : Pcp(X) → Pcp(X) is a Meir-Keeler type operator and by

Theorem 2.3.37. has a unique fixed point, i.e. A∗ ∈ Pcp(X) such that

TF (A∗) = A∗. �

The following abstract notion is giving by Rus (see [223] for example):

Definition 2.6.9. Let (X, d) be a metric space and f : X → X an

operator. By definition, f is a Picard operator if for each x ∈ X, the

sequence (xn)n∈N defined by:

i) x0 = x

ii) xn+1 = f(xn), for all n ∈ N
is convergent and its limit is the unique fixed point of f .

Corollary 2.6.10. Let (X, d) be a complete metric space and Fi :

X → Pcp(X), i ∈ {1, . . . ,m} be a finite family of multi-valued Meir-

Keeler type operators. Then the multi-fractal operator TF is a Picard

operator.

For multi-valued operators satisfying to some locally contractive type

conditions, we have the following results:

Theorem 2.6.11. Let (X, d) be a complete ε-chainable metric space

(where ε > 0) and Fi : X → Pcp(X), i ∈ {1, . . . ,m} be a finite family of

multi-valued ε-locally Meir-Keeler type operators.
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Then the multi-fractal operator TF : Pcp(X) → Pcp(X) is an single-

valued ε-locally Meir-Keeler type operator, having a fixed point.

Proof. The proof runs exactly as in Theorem 2.6.8., but this time

via Xu’s Theorem 2.3.38. �

Using an ε-locally Boyd-Wong type condition (see Theorem 2.3.39.)

one can also prove:

Theorem 2.6.12. Let (X, d) be a complete ε-chainable metric and

let Fi : X → Pcp(X), i ∈ {1, . . . ,m} be multi-valued operators such that

H(Fi(x), Fi(y)) ≤ k(d(x, y))d(x, y), for all x, y ∈ X, with 0 < d(x, y) <

ε, where k : (0,∞)→ (0, 1) is a real function with the property:

(P)

{
For each 0 < t < ε there exist e(t) > 0 and s(t) < 1

such that k(r) ≤ s(t) provided t ≤ r < t+ e(t)

Then, the multi-fractal operator TF : Pcp(X) → Pcp(X) satisfy the

condition:

H(TF (Y1), TF (Y2)) ≤ k(H(Y1, Y2))H(Y1, Y2),

for all Y1, Y2 ∈ Pcp(X) with 0 < H(Y1, Y2) < ε and has a fixed point.

Proof. Let Y1, Y2 ∈ Pcp(X) such that 0 < H(Y1, Y2) < ε. Then

H(TF (Y1), TF (Y2)) ≤ max{H(Fk(Y1), Fk(Y2))| k ∈ {1, . . . ,m}} ≤

≤ k(H(Y1, Y2))H(Y1, Y2).

The conclusion follows now from Theorem 2.3.39. �

Bibliographical comments. The theory of self-similar sets in con-

nection with Meir-Keeler type operators can be found in Petruşel [183],

[197] and Petruşel-Rus [204]. For the topics of iterated function systems,

self-similarity and fractals we refer the works of Barnsley [28], Hutchin-

son [106], Jachymski [114], Máté [140], Rus [227], Yamaguti-Hata-Kigami

[271]. Regarding the Meir-Keeler type operators the following papers

should be mentioned: Meir-Keeler [144], Boyd-Wong [39], Lim [134], Kirk-

Sims [124], Jachymski [112], [113].
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2.7 Coincidence theorems

S. Sessa and G. Mehta (see [242]) established some general coincidence

theorems for upper semi-continuous multi-functions using Himmelberg’s

fixed point principle.

The first aim of this section is to prove some coincidence theorems

for lower semi-continuous multi-functions on locally convex Hausdorff

topological vector spaces using, instead of Himmelberg’s result, the new

fixed point principle of X. Wu (see Theorem 2.3.30.). We also show that

a lower semi-continuous version of the well-known Browder’s coincidence

theorem is an easy consequence of our main result.

Theorem 2.7.1. Let X be a nonempty convex and paracompact subset

of a locally convex Hausdorff topological vector space E, D a nonempty

set of a topological vector space Y . If S : D → P (X) and T : X → P (D)

are such that:

(a) S is l.s.c.

(b) S(y) ∈ Pcl,cv(X)

(c) Q(x) = conv T (x) is a subset of D

(d) S(D) ⊂ C, where C is a compact metrizable subset of X

(e) for each x ∈ X there exists y ∈ D such that x ∈ intQ−1(y).

Then there exist x ∈ X and y ∈ D such that x ∈ S(y) and y ∈ Q(x).

Proof. We denote by U(y) = intQ−1(y), for each y ∈ D. Then the

family (U(y))y∈D is an open covering of the paracompact space X (see

(e)). Let (U(yi))i∈I be an open locally finite covering of X and {fyi |i ∈ I}
a partition of unity by continuous nonnegative real functions defined on

X subordinate to the covering (U(yi))i∈I . We can define a continuous

function f : X → D by f(x) =
∑
i∈I

fyi(x)yi for each x ∈ X. If fyi(x) 6= 0

then x ∈ suppfyi ⊂ U(yi) ⊂ Q−1(yi), that is yi ∈ Q(x). Since Q(x)

is convex for each x ∈ X by (c) and f(x) is a convex combination of
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elements from Q(x), it follows that f(x) ∈ Q(x), for each x ∈ X. We

consider now the multi-valued operator W : X → P(X) by W (x) =

S(f(x)), for each x ∈ X. Then W is l.s.c. since f is continuous and

S is l.s.c. Moreover by (b) W has nonempty, closed, convex values and

W (X) ⊂ S(D) ⊂ C. Since C is compact and metrizable, then using

Theorem 2.3.30. we get that there exists x ∈ C such that x ∈ W (x).

It follow that x ∈ S(f(x)) and hence y = f(x) ∈ Q(x), proving the

conclusion of this theorem. �

If E = Y and T (x) is convex for each x ∈ X then we get the following

coincidence result, similar to Sessa’s coincidence theorem for u.s.c. multi-

functions (see [241]).

Corollary 2.7.2. Let X be a nonempty convex and paracompact sub-

set of a locally convex Hausdorff topological vector space E, D a nonempty

set of E and S : D → P (X), T : X → P (D) two multi-valued operators

satisfying the following assertions:

a) S is l.s.c.

b) S(y) ∈ Pcl,cv(X)

c) T (x) ∈ Pcv(D)

d) S(D) ⊂ C, where C is a nonempty compact, metrizable subset of

the space X

e) for each x ∈ X there exists y ∈ D such that x ∈ int T−1(y).

Then there exist x ∈ X and y ∈ D such that x ∈ S(y) and y ∈ T (x).

Remark 2.7.3. Condition (e) from Corollary 2.7.2. appears in Taraf-

dar [254] and it generalize the well-known Browder’s condition:

(f) for each y ∈ D the set T−1(y) is open in X.

Using condition (f) instead of (e) we deduce from Theorem 2.7.1. the

following result:

Theorem 2.7.4. Let X be a nonempty convex compact and metriz-

able subset of a locally convex Hausdorff topological vector space E, D
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a nonempty set of a topological vector space Y , and S : D → P (X),

T : X → P (D) two multi-valued operators satisfying:

a) S is l.s.c.

b) S(y) ∈ Pcl,cv(X), for each y ∈ D
c) T (x) ∈ Pcv(D), for each x ∈ X
d) T−1(y) is open in X, for each y ∈ D.

Then there exist x ∈ X and y ∈ D such that x ∈ S(y) and y ∈ T (x).

As consequence of the previous result we get:

Theorem 2.7.5. Let X be a nonempty convex compact and metriz-

able subset of a locally convex Hausdorff topological vector space E, D a

nonempty subset of a topological vector space Y and S, T : D → P (X)

be multi-functions such that:

a) S is l.s.c.

b) S(y) ∈ Pcl,cv(X) for each y ∈ D
c) T−1(x) is a nonempty convex subset of D for each x ∈ X
d) T (y) is open in X for each y ∈ D.

Then there exists y ∈ D such that S(y) ∩ T (y) 6= ∅.

Proof. Let us define the multifunction T̃ : X → P (D) by T̃ (x) =

T−1(x), for each x ∈ D. Then S and T̃ satisfy all the hypothesis of

Theorem 2.7.4. and hence there exist x ∈ X and y ∈ D such that x ∈
S(y) and y ∈ T̃ (x). From the definition of T̃ we obtain y ∈ T−1(x) and

so x ∈ S(y) ∩ T (y). �

Remark 2.7.6. Theorem 2.7.5. is a l.s.c. version of Browder’s coin-

cidence theorem (see [44]).

Bibliographical comments. The results given here extent to the

l.s.c. multi-functions case some results from Sessa-Mehta (see [242]).

Mainly, this section follow the paper Muntean-Petruşel [150]. For other

results and interesting applications see: Ansari-Idzik-Yao [10], Buică [45],

[46], Dugundji-Granas [84], Petruşel [190], [191], O’Regan [161], Rus

[220], [223].
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2.8 Fixed points and integral inclusions

First purpose of this section is to present some fixed point theorems for

the sum of two multi-valued operators. Secondly, several applications to

integral inclusions are given.

Let us start with some auxiliary results that will be used in the follow-

ing proofs. (see Rybinski [235], Deimling [80], Petruşel [176] and [222])

Theorem 2.8.1. Let X be a metric space and Y be a closed subset of

a Banach space Z. Assume that the multi-valued operator F : X × Y →
Pcl,cv(Y ) satisfies the following conditions:

i) H(F (x, y1), F (x, y2)) ≤ L‖y1−y2‖, for each (x, y1), (x, y2) ∈ X×Y ;

ii) for every y ∈ Y , F (·, y) is lower semi-continuous ( briefly l.s.c.)

on the space X.

Then there exists a continuous mapping f : X × Y → Y such that :

f(x, y) ∈ F (x, f(x, y)), for each (x, y) ∈ X × Y.

Theorem 2.8.2. Let X be a Banach space and F1, F2 : X → Pcp(X)

be two multi-valued operators, such that F1 is an L-contraction and F2 is

compact. Then F1 + F2 is (α,L)-contraction.

Theorem 2.8.3. Let X be a Banach space and Y ∈ Pb,cl,cv(X). If F :

Y → Pcp,cv(Y ) is an u.s.c. and (α,L)-contraction multi-valued operator

then FixF 6= ∅.

A first multi-valued version of the Krasnoselskii’s fixed point principle

is:

Theorem 2.8.4. Let X be a Banach space, Y ∈ Pcl,cv(X) and A :

Y → Pb,cl,cv(X), B : Y → Pcp,cv(X) two multi-valued operators. If the

following conditions are satisfied:

(i) A(y1) +B(y2) ⊂ Y , for each y1, y2 ∈ Y
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(ii) A is L-contraction

(iii) B is l.s.c. and B(Y ) is relatively compact

Then Fix(A+B) 6= ∅.

Proof. Let C : Y → P(Y ) be a multi-valued operator defined as

follows:

a) For each x ∈ Y consider the multi-valued operator Tx : Y →
Pcp,cv(Y ), Tx(y) = A(y) + B(x). Since Tx is multi-valued L-contraction

(indeed, on have:

H(Tx(y1), Tx(y2)) = H(A(y1)+B(x), A(y2)+B(x)) ≤ H(A(y1), A(y2)) ≤
L‖y1− y2‖, for each y1, y2 ∈ Y ), from Covitz-Nadler fixed point theorem

it follows that for every x ∈ Y the fixed point set for the multifunction

Tx, Fix Tx = {y ∈ Y | y ∈ A(y) +B(x)} is nonempty and closed.

b) From Theorem 2.8.1. it follows that there exists a continuous map-

ping f : Y × Y → Y such that f(x, y) ∈ A(f(x, y)) + B(x). Let us ob-

serve that the multi-valued operator F : Y × Y → Pcp,cv(Y ) defined by

F (x, y) = A(y) + B(x), for each (x, y) ∈ Y × Y satisfies the hypothesis

of Theorem 2.8.1.

Let us define C(x) = Fix Tx, C : Y → Pcl(Y ) and consider the

single-valued operator c : Y → Y defined by c(x) = f(x, x), for each

x ∈ Y . Then c is a continuous mapping having the property that c(x) =

f(x, x) ∈ A(f(x, x)) +B(x) = A(c(x)) +B(x), for each x ∈ Y .

Now, we will prove that c(Y ) is relatively compact. For this purpose

it is sufficient to show that C(Y ) is relatively compact. Let us observe

that C(Y ) is totally bounded:

Indeed B(Y ) being relatively compact it is also totally bounded. So,

there exists Z = {x1, . . . , xn} ⊂ Y such that B(Y ) ⊂ {z1, . . . , zn} +

B(0, (1 − L)ε) ⊂
n⋃
i=1

B(xi) + B(0, (1 − L)ε) (where zi ∈ B(xi), for each

i = 1, 2, . . . , n). It follows that, for each x ∈ Y , B(x) ⊂
n⋃
i=1

B(xi) +

B(0, (1 − L)ε) and hence there exists an element xk ∈ Z such that
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ρ(B(x), B(xk)) < (1− L)ε. Then:

ρ(C(x), C(xk)) = ρ(Fix Tx, F ix Txk) ≤
1

1− L
sup
y∈Y

ρ(Tx(y), Txk(y)) =

1

1− L
sup
y∈Y

ρ(A(y) +B(x), A(y) +B(xk)) ≤
1

1− L
sup
y∈Y

ρ(B(x), B(xk)) <

<
1

1− L
(1− L)ε = ε

It follows that for each u ∈ C(x) there is vk ∈ C(xk) such that

‖u − vk‖ < ε. Hence, for each x ∈ Y , C(x) ⊂ Q + B(0, ε), where

Q = {v1, . . . , vk, . . . , vn}, vi ∈ C(xi), i = 1, 2, . . . , n.

Since in a Banach space a totally bounded set is relatively compact

the conclusion follows.

Finally, let us observe that the mapping c : Y → Y satisfies the

assumptions of Schauder’s fixed point theorem. Let x∗ ∈ Y be a fixed

point for c. On have that x∗ = c(x∗) ∈ A(c(x∗))+B(x∗) = A(x∗)+B(x∗).

�

Using the abstract measures of noncompactness technique another

fixed point result for the sum of two multi-valued operators is the follow-

ing:

Theorem 2.8.5. Let X be a Banach space, Y ∈ Pb,cl,cv(X) and A,B :

Y → Pcp,cv(X) two multi-valued operators. If the following conditions are

satisfied:

(i) A(y) +B(y) ⊂ Y , for each y ∈ Y
(ii) A is L-contraction

(iii) B is u.s.c. and compact

Then Fix(A+B) 6= ∅.

Proof. Since A is L-contraction it follows that A is u.s.c. The multi-

valued operator T = A+B (i.e. T (x) = A(x) +B(x), for each x ∈ Y ) is

(α,L)-contraction from Y into the space Pcp,cv(Y ). On the same time, T

is u.s.c. The conclusion follows by Theorem 2.8.3. �
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Following a idea from T.A. Burton [48], let us observe that the con-

dition i) in Theorem 2.8.4. can be relaxed as follows:

Theorem 2.8.6. Let X be a Banach space, Y ∈ Pcl,cv(X) and A :

X → Pb,cl,cv(X), B : Y → Pcp,cv(X) two multi-valued operators. Suppose

that:

i) If y ∈ A(y) +B(x), x ∈ Y then y ∈ Y
ii) A is L-contraction

iii) B is l.s.c. and B(Y ) is relatively compact.

Then Fix(A+B) 6= ∅.

Proof. Let consider now the multi-valued operator C : Y → P (Y )

as follows:

a) for each x ∈ Y consider the multi-valued mapping Tx : X →
Pcp,cv(X) defined by Tx(y) = A(y) + B(x). As in the proof of Theorem

4.1 we have that Tx is L-contraction and hence for each x ∈ Y the fixed

points set FixTx = {y ∈ X| y ∈ A(y) + B(x)} is nonempty and closed.

Moreover from i) we have that FixTx ⊂ Y .

b) Using Theorem 2.8.1. one obtain a continuous function f : Y×X →
X such that f(x, y) ∈ A(f(x, y)) + B(x). Let us define C(x) = FixTx,

for each x ∈ Y . From a) we have that C : Y → Pcl(Y ). Let consider now

the single-valued operator c : Y → Y defined by c(x) = f(x, x), for all

x ∈ Y . Of course c(x) = f(x, x) ∈ A(f(x, x)) + B(x) = A(c(x)) + B(x),

x ∈ Y .

The rest of the proof is now identically with that of Theorem 2.8.4.

�

Remark 2.8.7. Suppose that the conditions ii) and iii) from Theorem

2.8.6. hold. If there exists r > 0 such that for Y = {x ∈ X| ‖x‖ ≤ r}
we have B(Y ) ⊂ Y and ‖y‖ ≤ D(y, A(y)), y ∈ Y then the conclusion of

Theorem 2.8.6. holds.

Indeed, let y ∈ A(y) +B(x), x ∈ Y . Then there exists u ∈ A(y) such

that y−u ∈ B(x), x ∈ Y . Thus ‖y‖ ≤ D(y, A(y)) ≤ ‖y−u‖ ≤ ‖B(x)‖ ≤
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r. Hence y ∈ Y . �

As applications, some existence results for integral inclusions are now

presented.

Using Theorem 2.8.5. we have the following existence result for a

Fredholm-Volterra integral inclusion:

Theorem 2.8.8. Let us consider the following inclusion:

y(t) ∈ λ1
∫ t

a

K1(s, y(s))ds+ λ2

∫ b

a

K2(t, s, y(s))ds, t ∈ [a, b]

(where λ1, λ2 ∈ R).

We assume that:

i) K1 : [a, b] × Rn → Pcl,cv(Rn) is a l.s.c., measurable and integrably

bounded multi-valued operator.

ii) K2 : [a, b] × [a, b] × Rn → Pcp,cv(Rn) is an u.s.c., measurable and

integrably bounded (by an integrable function mK2) multi-valued operator.

iii) there exists L > 0 such that

H(K1(t, u1), K1(t, u2)) ≤ L‖u1−u2‖, for each (t, u1), (t, u2) ∈ [a, b]×Rn.

iv) λ2 satisfy the following relation:

|λ2| ≤
R

2MK2(b− a)
, where R ≥ δ

1− |λ1|L
2τ

(with MK2 = max
t∈[a,b]

mK2(t), τ > |λ1|L and δ is an upper bound for

the set of continuous selections for the multi-valued operator t 7→

λ2

∫ b

a

K2(t, s, y(s))ds, with y ∈ C[a, b]).

Then, there exists y0 ∈ C[a, b] such that the integral inclusion has at

least a solution y∗ ∈ B̃(y0, R) ⊂ C[a, b].

Proof. Let A,B : C[a, b]→ P(C[a, b]) be two multi-valued operators

given by

A(y) =

{
u ∈ C[a, b]| u(t) ∈ λ1

∫ t

a

K1(s, y(s))ds a.e. on [a, b]

}
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B(y) =

{
v ∈ C[a, b]| v(t) ∈ λ2

∫ b

a

K2(s, y(s))ds a.e. on [a, b]

}
Obviously y∗ ∈ Fix(A + B) if and only if y∗ is a solution for the

considered integral inclusion. We need to show that the multi-valued

operators A and B satisfies the assumptions of Theorem 2.8.5.

Clearly, from the Ascoli-Arzela theorem we have that A : C[a, b] →
Pcp,cv(C[a, b]).

We shall prove that A is a multi-valued contraction. To see this,

let y, z ∈ C[a, b] be and u1 ∈ A(y). Then u1 ∈ C[a, b] and u1(t) ∈

λ1

∫ t

a

K1(s, y(s))ds a.e. on [a, b]. It follows that there is a mapping

k1y ∈ S1
K1(·,y(·)) such that u1(t) = λ1

∫ t

a

k1y(s)ds a.e. on [a, b]. Since

H(K1(t, y(t)), K1(t, z(t)) ≤ L‖y(t) − z(t)‖, one obtain that there ex-

ists w ∈ K1(t, z(t)) such that ‖k1y(t) − w‖ ≤ L‖y(t) − z(t)‖. Thus

the multi-valued operator G defined by G(t) = K1
z (t) ∩ K(t) (where

K1
z (t) = K1(t, z(t)) and K(t) = {w| ‖k1y(t) − w‖ ≤ L‖y(t) − z(t)‖} has

nonempty values and is measurable. Let k1z be a measurable selection for

G (which exists by Kuratowski and Ryll Nardzewski’selection theorem).

Then k1z(t) ∈ K1(t, z(t)) and ‖k1y(t) − k1z(t)‖ ≤ L‖y(t) − z(t)‖ a.e. on

[a, b].

Define u2(t) = λ1

∫ t

a

k1z(s)ds. It follows that u2 ∈ A(z) and

‖u1(t)−u2(t)‖ ≤ |λ1|
∫ t

a

‖k1y(s)− k1z(s)‖ds ≤ |λ1|L
∫ t

a

‖y(s)− z(s)‖ds =

= λ1|L
∫ t

a

‖y(s)− z(s)‖e−τ(s−a)eτ(s−a)ds ≤ |λ1|L‖y − z‖B
∫ t

a

eτ(s−a)ds ≤

≤ |λ1|L
1

τ
eτ(t−a)‖y − z‖B.

(Here ‖ · ‖B denote the Bielecki-type norm on C[a, b].) Finally, we have

that ‖u1 − u2‖B ≤
|λ1|L
τ
‖y − z‖B. From this and the analogous in-

equality obtained by interchanging the roles of y and z we get that
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HB(A(y), A(z)) ≤ |λ1|
τ
L‖y−z‖B, for each y, z ∈ C[z, b]. Taking τ > |λ1|L

it follows that A is multi-valued contraction.

By Covitz-Nadler fixed point theorem one obtain y0 ∈ FixA.

Considers Y = B̃(y0, R). We can choose R > 0 such that A(Y ) ⊂

B̃

(
y0,

R

2

)
(namely, one take R ≥ diam(A(y0))

1− |λ1|L
2τ

where τ > |λ1|L).

The multi-valued operator B is u.s.c. and compact. Let choose λ2 ∈ R

such that B(Y ) ⊂ B̃

(
0,
R

2

)
. Let y ∈ Y and v ∈ B(y) be arbitrarily

chosen. Then v(t) ∈ λ2

∫ b

a

K2(t, s, y(s))ds a.e. on [a, b]. It follows that

v(t) = λ2

∫ b

a

fy(t, s)ds, where fy(t, s) ∈ K2(t, s, y(s)) a.e. on [a, b]× [a, b].

Clearly ‖v(t)‖ ≤ |λ2|
∫ b

a

‖fy(t, s)‖ds ≤ |λ2|(b − a)MK2 ≤
R

2
. So v ∈

B̃

(
0,
R

2

)
.

Then, the multi-valued operator T = A + B has the property T :

Y → Pcp,cv(Y ), i.e. A(y) +B(y) ⊂ Y for each y ∈ Y .

The conclusion follows by Theorem 2.8.5. �

An auxiliary result is:

Lema 2.8.9. (Rybinski [233]) Let S be a complete measurable space,

X a complete separable metric space and Y a separable Banach space.

Suppose that F : S × X → Pcl,cv(Y ) is measurable and F (t, ·) is l.s.c.,

for each t ∈ S.

Then, there exists f : S × X → Y selection for F such that f is

measurable and f(t, ·) is continuous, for each t ∈ S.

Some existence results for Fredholm and Volterra type integral inclu-

sions via fixed point technique are the following theorems.

Theorem 2.8.10. Consider the following Fredholm-type integral in-
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clusion:

x(t) ∈
∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b],

where K : [a, b]× [a, b]× Rn → Pcl,cv(Rn) and g : [a, b]→ Rn.

If the following conditions are satisfied:

(i) there exists an integrable function M : [a, b]→ R+ such that for

each t ∈ [a, b] and each u ∈ Rn we have K(t, s, u) ⊂ M(s)B(0; 1), a. e.

s ∈ [a, b] (i. e. for each t ∈ [a, b] and each u ∈ Rn if v(s) ∈ K(t, s, u),

s ∈ [a, b] then we have ‖v(s)‖ ≤M(s), a. e. s ∈ [a, b])

(ii) for each x ∈ C([a, b],Rn) we have that the multivalued operator

Kx(t, s) := K(t, s, x(s)) : [a, b]× [a, b]→ Pcl,cv(Rn) is measurable

(iii) for each (s, u) ∈ [a, b]×Rn the multivalued operator K(·, s, u) :

[a, b]→ Pcl,cv(Rn) is l.s.c.

(iv) g ∈ C([a, b],Rn)

(v) H(K(t, s, u), K(t, s, v)) ≤ l(t, s)‖u − v‖, for each t, s ∈ [a, b]

and u, v ∈ Rn, where l ∈ C[a, b]× [a, b] and max
t∈[a,b]

∫ b

a

l(t, s)ds < 1,

then the integral inclusion has at least a solution in C[a, b] and its

solution set is stable with respect to small perturbations of the free term.

Proof. Consider the multi-valued operator T : C[a, b] → P(C[a, b]),

given by the formula:

T (x) =

{
v ∈ C[a, b]| v(t) ∈

∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]

}
.

We prove successively:

a) T (x) 6= ∅, for each x ∈ C[a, b].

Indeed, from Lemma 2.8.9 we have that for each x ∈ C[a, b] there

is k : [a, b] × [a, b] → Rn such that k(t, s) is a selection of Kx(t, s) :=

K(t, s, x(s)), t, s ∈ [a, b] with k measurable and k(·, s) continuous, for
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each s ∈ [a, b]. From (i) we get that k(t, ·) is integrable and so

v(t) =

∫ b

a

k(t, s)ds+ g(t) ∈
∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b].

Hence, (see also (iv)) v ∈ T (x).

b) T (x) ∈ Pcl(C[a, b]), for each x ∈ C[a, b].

The fact that T (x) is closed for each x ∈ C[a, b] follows from (i), (ii)

and Teorema 8.6.3. from Aubin-Frankowska [16].

(indeed, let (xn)n≥0 ∈ T (x) such that xn
C[a,b]−→ x̃. Then x̃ ∈

C[a, b] and xn(t) ∈
∫ b

a

K(t, s, x(s))ds + g(t), for each t ∈ [a, b]. Be-

cause

∫ b

a

K(t, s, x(s))ds is compact, for every t then xn(t) → x̃(t) ∈∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]. So x̃ ∈ T (x)).

c) H(T (x1), T (x2)) ≤ L‖x1 − x2‖, for each x1, x2 ∈ C[a, b] (where

L < 1).

Let x1, x2 ∈ C[a, b] and v1 ∈ T (x1). Then v1(t) ∈
∫ b

a

K(t, s, x(s))ds+

g(t), t ∈ [a, b]. It follows that there exists k1(t, s) ∈ Kx1(t, s) =

K(t, s, x1(s)), such that v1(t) =

∫ b

a

k1(t, s)ds+g(t), t ∈ [a, b]. From (iii) it

follows that H(K(t, s, x1(s)), K(t, s, x2(s))) ≤ l(t, s)‖x1(s) − x2(s)‖ and

hence there is w ∈ K(t, s, x2(s)) such that ‖k1(t, s)−w‖ ≤ l(t, s)‖x1(s)−
x2(s)‖, (t, s) ∈ [a, b]× [a, b]. Consider U : [a, b]× [a, b]→ P(Rn), given by

U(t, s) = {w| ‖k1(t, s)− w‖ ≤ l(t, s)‖x1(s)− x2(s)‖}.

Define the multi-valued operator V (t, s) = U(t, s) ∩ Kx2(t, s). From

the Proposition 3.4 a) from Deimling ([80], pp. 25) we have that V is

measurable. From Proposition 15.6. from Gorniewicz [92], we get that

V (·, s) is l.s.c. Hence, from Lemma 2.8.9, there exists k2 a measurable

selection for V such that k2(·, s) is continuous. So, k2(t, s) ∈ Kx2(t, s) =

K(t, s, x2(s)) and ‖k1(t, s) − k2(t, s)‖ ≤ l(t, s)‖x1(s) − x2(s)‖, for each

t, s ∈ [a, b].
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Let us define v2(t) =

∫ b

a

k2(t, s)ds+ g(t) ∈ C[a, b].

One have

‖v1(t)−v2(t)‖ ≤
∫ b

a

‖k1(t, s)−k2(t, s)‖ds ≤
∫ b

a

l(t, s)‖x1(s)−x2(s)‖ds ≤

≤ ‖x1−x2‖
∫ b

a

l(t, s)ds ≤

(
sup
t∈[a,b]

∫ b

a

l(t, s)ds

)
‖x1−x2‖, for each t ∈ [a, b].

Consider L = max
t∈[a,b]

∫ b

a

l(t, s)ds < 1. Hence ‖v1 − v2‖ ≤ L‖x1 − x2‖.

By the analogous relation obtained by interchanging the roles of x1 and

x2 it follows that H(T (x1), T (x2)) ≤ L‖x1 − x2‖. So T satisfy all the

hypothesis of Covitz-Nadler fixed point principle, having a fixed point,

let say x∗ ∈ T (x∗). Then x∗(t) ∈
∫ b

a

K(t, s, x∗(s))ds, t ∈ [a, b].

So, the integral inclusion has at least a solution.

If Sg is the solution set for the considered integral inclusion and Sh

is the solution set for

x(t) ∈
∫ b

a

K(t, s, x(s))ds+ h(t), t ∈ [a, b]

we estimate the distance H(Sg, Sh).

Since Sg = FixTg (where Tg is given by (3.2)) and Sh = FixTh using

Lemma 1.1 from Lim [132] one obtain:

H(Sg, Sh) = H(FixTg, F ixTh) ≤
1

1− L
sup

x∈C[a,b]

H(Tg(x), Th(x)).

Let x ∈ C[a, b] and v ∈ Tg(x). Then v ∈ C[a, b] and v(t) ∈∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]. Of course, v(t) =

∫ b

a

k(t, s)ds+ g(t),

with k(t, s) ∈ K(t, s, x(s)), (t, s) ∈ [a, b] × [a, b]. Consider w(t) =∫ b

a

k(t, s)ds+ h(t) ∈
∫ b

a

K(t, s, x(s))ds+ h(t), t ∈ [a, b].
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Then ‖v(t) − w(t)‖ = ‖g(t) − h(t)‖ and hence ‖v − w‖ = ‖g − h‖.
From the analogous relation obtained for each w ∈ Th(x) it follows that

sup
x∈C[a,b]

H(Tg(x), Th(x)‖ = ‖g − h‖.

As consequence H(Sg, Sh) ≤
1

1− L
‖g − h‖, showing the stability of

the solution set with respect to small perturbation of the free term. �

Remark 2.8.11. If K is a single-valued operator then Theorem 2.8.9.

is Theorem 1 from Constantin [65].

Theorem 2.8.12. Consider the following Volterra-type integral in-

clusion:

x(t) ∈
∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b],

where K : [a, b]× [a, b]× Rn → Pcl,cv(Rn) and g : [a, b]→ Rn.

If the following conditions are satisfied:

(i) there exists an integrable function M : [a, b]→ R+ such that for

each t ∈ [a, b] and each u ∈ Rn we have K(t, s, u) ⊂ M(s)B(0; 1), a. e.

s ∈ [a, b]

(ii) for each x ∈ C([a, b],Rn) we have that the multivalued operator

Kx(t, s) := K(t, s, x(s)) : [a, b]× [a, b]→ Pcl,cv(Rn) is measurable

(iii) for each (s, u) ∈ [a, b]×Rn the multivalued operator K(·, s, u) :

[a, b]→ Pcl,cv(Rn) is l.s.c.

(iv) g ∈ C([a, b],Rn)

(v) H(K(t, s, u), K(t, s, v)) ≤ k(s)‖u− v‖, for each t, s ∈ [a, b] and

u, v ∈ Rn (where k ∈ L1[a, b]),

then the integral inclusion has at least a solution in C[a, b] and the

solution set is stable with respect to small perturbations of the free term.

Proof. Consider the multi-valued operator T : C[a, b] → P(C[a, b])
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given by:

T (x) =

{
v ∈ C[a, b]| v(t) ∈

∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]

}
.

We prove successively:

a) T (x) 6= ∅, for each x ∈ C[a, b].

Indeed, let x ∈ C[a, b] be arbitrarily. Since the multi-valued operator

Kx(t, s) = K(t, s, x(s)) is (jointly) measurable for (t, s) ∈ [a, b] × [a, b]

and Kx(·, s) is l.s.c., for each s ∈ [a, b], we get from Lemma 2.8.9 that

there exists a measurable selection of Kx, say k(t, s) ∈ Kx(t, s), for each

(t, s) ∈ [a, b] × [a, b] such that k(·, s) is continuous for each s ∈ [a, b].

From (i) each measurable selection of Kx(t, s) is integrable with respect

to s. Let

v(t) =

∫ t

a

k(t, s)ds+ g(t) ∈
∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b].

So, v ∈ T (x).

b) T (x) ∈ Pcl(C[a, b]). The proof is similar with the proof of b) from

Theorem 2.8.10.

c) H(T (x1), T (x2)) ≤ L‖x1 − x2‖, for each x1, x2 ∈ C[a, b] (where

L < 1).

Let x1, x2 ∈ C[a, b] and v1 ∈ T (x1). Then v1(t) ∈
∫ t

a

K(t, s, x1(s))ds+

g(t), t ∈ [a, b]. It follows that v1(t) =

∫ b

a

k1(t, s)ds + g(t), t ∈ [a, b],

where k1(t, s) ∈ Kx1(t, s), (t, s) ∈ [a, b] × [a, b]. From (iii) it follows

H(K(t, s, x1(s)), K(t, s, x2(s)) ≤ k(s)‖x1(s) − x2(s)‖ and hence there

exists w ∈ K(t, s, x2(s)) such that ‖k1(t, s)− w‖ ≤ k(s)‖x1(s)− x2(s)‖,
t, s ∈ [a, b].

Consider U : [a, b] × [a, b] → P(Rn), given by the formula U(t, s) =

{w| ‖k1(t, s)−w‖ ≤ k(s)‖x1(s)−x2(s)‖}. Since the multi-valued operator

V (t, s) = U(t, s) ∩ Kx2(t, s) is measurable and V (·, s) is l.s.c., for each

s ∈ [a, b], there exists k2(t, s) a measurable selection for V such that
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k2(·, s) is continuous for each s ∈ [a, b]. So, k2(t, s) ∈ K(t, s, x2(s)) and

‖k1(t, s)− k2(t, s)‖ ≤ k(s)‖x1(s)− x2(s)‖ for each t, s ∈ [a, b].

Let us define v2(t) =

∫ t

a

k2(t, s)ds+ g(t), t ∈ [a, b]. One have:

‖v1(t)− v2(t)‖ ≤
∫ t

a

‖k1(t, s)− k2(t, s)‖ds ≤
∫ t

a

k(s)‖x1(s)−x2(s)‖ds =

=

∫ t

a

k(s)e−τp(s)eτp(s)‖x1(s)− x2(s)‖ds ≤ ‖x1 − x2‖B
∫ t

a

k(s)eτp(s)ds =

= ‖x1 − x2‖B
1

τ

∫ t

a

(eτp(s))′ds =
‖x1 − x2‖B

τ
eτp(s)

∣∣∣∣∣
t

a

≤ ‖x1 − x2‖B
τ

eτp(t),

for each t, s ∈ [a, b] (here p(t) =

∫ t

a

k(s)ds, t ∈ [a, b] and τ > 1).

Then ‖v1−v2‖B ≤
1

τ
‖x1−x2‖B. By the analogous inequality obtained

by interchanging the roles of x1 and x2 it follows that

H(T (x1), T (x2)) ≤
1

τ
‖x1 − x2‖B

(here ‖ · ‖B is the Bielecki-type norm on C[a, b] given by the formula

‖v‖B = max
t∈[a,b]

‖v(t)‖e−τp(t)).

So T satisfy the hypothesis of Covitz-Nadler fixed point principle and

hence there is x∗ ∈ T (x∗). Then x∗ is a solution for the integral inclusion.

As before, one can prove the stability of the solution set with respect to

small perturbation of the free term. �

Let us consider now the following integral inclusion with delay:

(2.8.1.)

 x(t) ∈
∫ t

t−τ
F (s, x(s))ds, t ∈ [0, T ]

x(t) = ϕ(t), t ∈ [−τ, 0]

where
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(2.8.2.)

F : [−τ, T ]× R+ → P(R+),

ϕ : [−τ, 0]→ R+ is continuous, such that ϕ(0) =

∫ 0

−τ
F (s, ϕ(s))ds

and T, τ > 0 are given.


A solution for this integral inclusion is a continuous function x :

[−τ, T ]→ R+ such that x satisfies the relations (2.8.1.) for each t.

An existence result for (2.8.1.) is the following:

Theorem 2.8.13. Consider the problem (2.8.1.), with F, ϕ, T, τ sat-

isfying (2.8.2.).

If F : [−τ, T ]× R+ → Pb,cl(R+) is a multi-valued operator such that:

i) F is measurable and integrably bounded

ii) there exists k ∈ L1[−τ, T ] such that

H(F (s, u), F (s, v)) ≤ k(s)|u− v|,

for each s ∈ [−τ, T ] and every u, v ∈ R+.

Then the problem (2.8.1.) has at least a solution.

Proof. Let us define the multi-valued operator A : C[0, T ] →
P(C[0, T ]) by the formula

Ax =

{
v ∈ C[0, T ]| v(t) ∈

∫ t

t−τ
F (s, x̃(s))ds, t ∈ [0, T ]

}
where

x̃(s) =

{
ϕ(s), s ∈ [−τ, 0]

x(s), s ∈ [0, T ].

Let Y = {v ∈ C[0, T ]| v(t) ≥ 0 for each t ∈ [0, T ] and v(0) = ϕ(0)}.
We shall prove:

a) Ax ∈ Y , for each x ∈ Y . Indeed, let x ∈ Y be arbitrarily and v ∈

Ax. Then v ∈ C[0, T ] and v(t) =

∫ t

t−τ
fx̃(s)ds, where fx̃(s) ∈ F (s, x̃(s)),
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s ∈ [−τ, T ]. Since F (s, x̃(s)) ∈ P (R+), for each s ∈ [−τ, T ] we have that

v(t) ≥ 0 for each t ∈ [0, T ].

On the other side:

v(0) =

∫ 0

−τ
fx̃(s)ds ∈

∫ 0

−τ
F (s, x̃(s))ds =

∫ 0

−τ
F (s, ϕ(s))ds = ϕ(0).

b) A : Y → Pcl(Y ) is a multi-valued contraction. Indeed, by standard

argument, one can prove that A(x) ∈ Pcl(Y ), for every x ∈ Y .

Let us demonstrate that there exist L ∈]0, 1[ such that ‖Ax−Ay‖B ≤
L‖x − y‖B for each x, y ∈ Y (where ‖ · ‖B is the classical Bielecki-type

norm on C[0, T ]).

Let v1 ∈ Ax be arbitrarily. Then v1(t) ∈
∫ t

t−τ
F (s, x̃(s))ds, t ∈ [0, T ]

and hence v1(t) =

∫ t

t−τ
fx̃(s)ds, with fx̃(s) ∈ F (s, x̃(s)), s ∈ [−τ, T ].

Using the condition ii) we obtain that there exist w ∈ F (s, ỹ(s)) such

that ‖fx̃(s) − w‖ ≤ k(s)‖x̃(s) − ỹ(s)‖. As before, we can construct an

integrable selection fỹ for F (s, ỹ(s)), such that

‖fx̃(s)− fỹ(s)‖ ≤ k(s)‖x̃(s)− ỹ(s)‖, for s ∈ [−τ, T ].

Let us define v2(t) =

∫ t

t−τ
fỹ(s)ds, t ∈ [0, T ]. Then

‖v1(t)− v2(t)‖ ≤
∫ t

t−τ
‖fx̃(s)− fỹ(s)‖ds ≤

≤
∫ t

t−τ
k(s)‖x̃(s)− ỹ(s)‖ds =

∫ t

t−τ
‖x̃(s)− ỹ(s)‖e−τp(s)eτp(s)k(s)ds ≤

≤ ‖x̃− ỹ‖B
∫ t

t−τ
k(s)eτp(s)ds = ‖x̃− ỹ‖B

1

τ

∫ t

t−τ
(eτp(s))′ds =

=
1

τ
‖x̃− ỹ‖B[eτp(t) − eτp(t−τ)] ≤ 1

τ
‖x̃− ỹ‖Beτp(t)

where p(s) =

∫ s

−τ
k(u)du, s ∈ [−τ, T ].
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Hence ‖v1 − v2‖B ≤
1

τ
‖x̃− ỹ‖B =

1

τ
‖x− y‖B.

From the analogous inequality obtained by interchanging the roles of

x and y, we get the conclusion.

From a), b) and using Covitz-Nadler’s fixed point theorem we have

that there exists x∗ ∈ Y such that x∗ ∈ Ax∗. Then

x∗(t) ∈
∫ t

t−τ
F (s, x̃∗(s))ds, t ∈ [0, T ]. �

Bibliographical comments. This section uses results from Petruşel

[175] and [176]. For the theory of integral inclusions via fixed point prin-

ciples we refer to: Appell- de Pascale-Nguyêñ-Zabreiko [13], Burton [49],

Constantin [65], Corduneanu [67], Couchouron-Precup [70], Czerwik [74],

Himmelberg-van Vleck [101], Kannai [121], Petruşel [192], [193], Precup

[208], O’Regan [161], O’Regan-Precup [163], O’Regan-Precup [166].

2.9 Fixed points and differential inclu-

sions.

Let X be a nonempty set, F : X → P (X) be a multi-valued operator

and f : X → X be a selection for F . By FixF (respectively Fixf) we

denote the fixed points set of the multi-valued (respectively single-valued)

operator. Obviously Fixf ⊂ FixF and hence the following implication

holds:

(2.9.1.) Fixf 6= ∅ ⇒ FixF 6= ∅.

We are now interested about the reverse implication:

(2.9.2.) FixF 6= ∅ ⇒ Fixf 6= ∅,

where f is an arbitrary selection with a certain property.
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The first purpose of this section is to give some abstract results for the

problem (2.9.2.) in the setting of the multi-valued fixed points structures

(see Rus [222]).

Then, we will apply some of these abstract results to the problem

of the topological dimension of the fixed point set of some contractive

type multi-valued operators. Further applications to some multi-valued

Cauchy and Darboux problems are also discussed.

Our results generalize and extend some theorems of this type obtained

by J. Saint Raymond in [237] and Z. Dzedzej and B. D. Gelman in [85].

For the beginning we need some known notions and results.

Definition 2.9.1. Let ϕ : R+ → R+ be a mapping. Then ϕ is said

to be:

i) a comparison function if ϕ is strictly increasing and lim
n→∞

ϕn(t) = 0,

for each t ∈]0,∞[;

ii) a strong comparison function if ϕ is strictly increasing and
∞∑
n=1

ϕn(t) <∞, for each t ∈]0,∞[;

iii) a strict comparison function if ϕ is a strong comparison function

and lim
t→∞

(t− ϕ(t)) = +∞.

Remark 2.9.2. i) ϕ : R+ → R+, ϕ(t) = at (where a ∈]0, 1[) is a

strict comparison function.

ii) ϕ : R+ → R+, ϕ(t) = ln(1 + t) is a strong comparison function.

Definition 2.9.3. Let (X, d) be a metric space. A multi-valued op-

erator F : X → Pcl(X) is called:

i) ϕ-contraction if there exists a comparison function ϕ such that

H(F (x), F (y)) ≤ ϕ(d(x, y)), for each x, y ∈ X.

ii) (α, ϕ)-contraction if there exists a comparison function ϕ such that

α(F (A)) ≤ ϕ(α(A)), for each A ∈ Pb(X) ∩ I(F ) (where α denote an ab-

stract measure of noncompactness for example α is αK or αH , Kuratowski

and respectively Hausdorff measure of noncompactness).
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The notion of fixed point structure for multi-valued mappings has

been introduced by Rus in [222]. For the convenience of the reader we

recall some basic notions and results. For this purpose, let X, Y be two

nonempty sets and M0(X, Y ) be the set of all multi-valued operators T

from X to Y . Denote by M0(X) := M0(X,X).

Definition 2.9.3. A triple (X,S,M0) is a fixed point structure if:

(i) S ⊂ P (X), S 6= ∅.
(ii) M0 : P (X)(

⋃
Y ∈P (X)

M0(Y ), Y ( M0(Y ), is a mapping such

that if Z ⊂ Y, Z 6= ∅, then M0(Z) ⊃ {T |Z |T ∈M0(Y ) and Z ∈ I(T )}.
(iii) every Y ∈ S has the strict fixed point property with respect

to M0(Y ).

Definition 2.9.4. Let (X,S,M0) be a fixed point structure, θ : Z →
R+ (where S ⊂ Z ⊂ P (X)) and µ : P (X) → P (X). The pair (θ, µ) is a

compatible pair with (X,S,M0) if:

a) µ is a closure operator, S ⊂ µ(Z) ⊂ Z and θ(µ(Y )) = θ(Y ), for

each Y ∈ Z.

b) Fixµ ∩ Zθ ⊂ S.

Definition 2.9.5. Let ϕ : R+ → R+ be a comparison function and

θ : Z → R+. A multi-valued mapping T : Y → P (X) is said to be a

(θ, ϕ)- contraction if:

i) A ∈ P (Y ) ∩ Z implies T (A) ∈ Z.

ii) θ(T (A)) ≤ ϕ(θ(A)), for each A ∈ P (Y ) ∩ Z ∩ I(T ).

Definition 2.9.5. A multi-valued operator T : Y → P (X) is said to

be θ-condensing if:

i) A ∈ P (Y ) ∩ Z implies T (A) ∈ Z.

ii) A ∈ P (Y ) ∩ Z, θ(A) 6= ∅ implies θ(T (A)) < θ(A).

Definition 2.9.6. Let X be a nonempty set, Z ⊂ P (X), Z 6= ∅ and

θ : Z → R+. Then θ has the intersection property if Yn ∈ Z, Yn+1 ⊂ Yn,
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n ∈ N and θ(Yn)→ 0, as n→∞ implies
⋂
n∈N

Yn 6= ∅.

Theorem 2.9.7. ([222]) Let (X,S(X),M0) be a fixed point structure

and (θ, µ) a compatible pair with (X,S(X),M0). Let Y ∈ µ(Z) and F ∈
M0(Y ). We suppose that:

(i) θ|µ(Z) has the intersection property

ii) F is a (θ, ϕ)-contraction.

Then FixF 6= ∅.

Theorem 2.9.8. ([222]) Let (X,S(X),M0) be a fixed point structure

and (θ, µ) a compatible pair with (X,S(X),M0). Let Y ∈ µ(Z) and F ∈
M0(Y ). We suppose that:

i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A)

ii) F is θ-condensing.

Then FixF 6= ∅.

An auxiliary result is:

Lemma 2.9.9 Let X be a nonempty set, µ a closure operator, Y ∈
Fixµ and T : Y → P (Y ) a multi-valued operator. Let A ⊂ Y be a

nonempty subset of Y . Then there exists A0 ⊂ Y such that:

a) A ⊂ A0

b) A0 ∈ Fixµ
c) A0 ∈ I(T )

d) µ(T (A0) ∪ A) = A0.

If F : X → P (Y ) is a multi-valued operator and f : X → Y is a

selection for F , then we denote by f̃ the multi-valued operator defined

by f̃(x) = {f(x)}, x ∈ X. The first general result is:

Theorem 2.9.10. Let (X,S(X),M0) be a fixed point structure and

(θ, µ) a compatible pair with (X,S(X),M0). Let Y ∈ µ(Z) and F ∈
M0(Y ). We suppose that:
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i) θ|µ(Z) has the intersection property

ii) F is a (θ, ϕ)-contraction

iii) f is a selection of F such that f̃ ∈M0(Y ).

Then Fixf 6= ∅.

Proof. From Lemma 2.9.9. we have that there exists A0 ∈ I(F ) ∩
S(X) ∩ Z. From (iii) it follows that f̃ |A0 ∈ M0(A0). This implies (see

Theorem 2.9.7.) Fixf̃ 6= ∅ and hence Fixf 6= ∅. �

Another result of this type is:

Theorem 2.9.11. Let (X,S(X),M0) be a fixed point structure and

(θ, µ) a compatible pair with (X,S(X),M0). Let Y ∈ µ(Z) and F ∈
M0(Y ). We suppose that:

i) A ∈ Z, x ∈ Y implies A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A)

ii) F is θ-condensing

iii) f is a selection of F such that f̃ ∈M0(Y ).

Then Fixf 6= ∅.

Proof. From Lemma 2.9.9. we have that there exists A0 ∈ I(F ) ∩
S(x) ∩ Z. From iii) it follows that f̃ |A0 ∈ M0(A0) and hence Fixf̃ 6= ∅
(see Theorem 2.9.8.). This imply Fixf 6= ∅. �

Some important consequences of these abstract results are:

Corollary 2.9.12. Let X be a real Banach space and F : X → Pcp(X)

be a multi-valued ϕ-contraction with a strict comparison function ϕ. If

f : X → X is a continuous selection of F then Fixf 6= ∅.

Proof. Let S(X) = Pcl(X) and M0(Y ) be the set of the operators F :

Y → Pcp(Y ) such that F is a multi-valued ϕ-contraction, with ϕ a strong

comparison function. Then (X,S(X),M0) is a fixed point structure. F

being a multi-valued ϕ-contraction is θ-condensing with respect to θ =

αH and µ(Y ) = convY . The conclusion follows now from Theorem 2.9.11.

�
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Corollary 2.9.13. Let X be a real Banach space, Y a nonempty,

bounded, closed, convex subset of X and F : Y → Pclc,cv(Y ) a u.s.c.

multi-valued (α, ϕ)-contraction. If f : Y → Y is a continuous selection

of F then Fixf 6= ∅.

Proof. Let S(X) = Pcl,cv(X), z = Pb(X) and M0(Y ) = {F : Y →
Pcl,cv(Y )| F is u.s.c.}. Let θ = α (an abstract measure of noncompact-

ness) and µ(Y ) = convY . The result is an easy application of Theorem

2.9.10. �

Other results of this type are:

Theorem 2.9.14. Let X be a real Banach space, Y ∈ Pcl(X) and F :

Y → Pcp(X) be weakly inward multi-valued a-contraction. If f : Y → X

is a continuous selection of F then Fixf 6= ∅.

Proof. By Theorem 11.4 from Deimlimg [80] on have that FixF 6= ∅.
Let x0 ∈ FixF . The closed ball B̃(x0, R) = {y ∈ Y | ‖x0 − y‖ ≤ R}, with

R ≥ 1
1−aδ(F (x0)), is invariant with respect to F and so F : B̃(x0;R) →

Pb,cl(B̃(x0, R)). F being a multi-valued a-contraction is αH-condensing

and therefore f is αH-condensing. The conclusion that Fixf 6= ∅ follows

by Sadovskii’s fixed point theorem, see for example [81]. �

Theorem 2.9.15. Let X be a real Banach space, Y ∈ Pcp,cv(X) and

F : Y → Pcl,cv(X) be an u.s.c. weakly inward multi-valued operator. If

f : Y → X is a continuous selection of F then Fixf 6= ∅.

Proof. By Halpern’s fixed point theorem (see [95]) it follows that

FixF 6= ∅. Let f : Y → X be a continuous selection of F . Using the

fact that F is weakly inward one obtain that f is weakly inward (since

f(x) ∈ F (x) ⊂ ĨY (x), for each x ∈ Y ). The conclusion follows from a

fixed point theorem given by Deimling (see [81] pp.210). �

The following problem appear in Saint Raymond [237] and Dzedzej-

Gelman [85] :
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If X is a Banach space and F : X → P (X) is a multi-valued operator

then when dimF (x) ≥ n, for each x ∈ X imply that dim FixF ≥ n? (By

dimY we denote the topological (covering) dimension of the space Y ).

Some answers to this question are given in what follows.

An auxiliary result is the following:

Lemma 2.9.16. ([85]). Let X be a Banach space, T be a compact

metric space with dimT < n and F : T → Pb,cl,cv(X) be a l.s.c. operator

such that 0 ∈ F (x) and dimF (x) ≥ n, for each x ∈ T . Then there exists

a continuous selection f of F such that f(x) 6= 0 for each x ∈ T .

The following results generalize and complete some results given in

[237] and [85].

Theorem 2.9.17. Let X be a Banach space and F : X → Pcp,cv(X)

be a multi-valued ϕ-contraction, with ϕ a strict comparison function. If

dimF (x) ≥ n for each x ∈ X then dim FixF ≥ n.

Proof. Since F : X → Pcp,cv(X) is a multi-valued ϕ-contraction and

FixF is bounded (see Proposition 3.1 from [85]) it follows that FixF is

compact (otherwise αH(FixF ) ≤ αH(F (FixF )) < αH(FixF ), a contra-

diction). Consider the multi-valued operator G : FixF → Pcp,cv(X) given

by G(x) = x− F (x), for each x ∈ X.

Suppose, by contradiction, that dim FixF < n. Then by Lemma

2.9.16. there is a continuous selection g of G such that g(x) 6= 0 for

each x ∈ FixF . It follows that there exists a continuous selection f0 of

F |FixF with no fixed points. Using Michael’s selection theorem we extend

f0 to a map f : X → X which is a selection of F without fixed points,

contradiction with Corollary 2.9.11.. �

By the same technique one obtain the following results on the di-

mension of the fixed points set of some contractive type multi-valued

operators.

Theorem 2.9.18. Let X be a Banach space, Y ∈ Pcl(X) and
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F : Y → Pcp,cv(X) be a weakly inward multi-valued a-contraction. If

dimF (x) ≥ n, for each x ∈ X then dim FixF ≥ n.

Theorem 2.9.19. Let X be a Banach space, Y ∈ Pb,cl,cv(X) and

F : Y → Pcp,cv(X) be a continuous γ-condensing and weakly inward

multi-valued operator (where γ is αK or αH). If dimF (x) ≥ n for each

x ∈ X then dim FixF ≥ n.

Finally, we give some examples illustrating the usefulness of these

theorems.

Example 2.9.20. Consider the multi-valued Cauchy problem:

x′(t) ∈ F (t, x(t)), x(0) = x0,

where F : [0, a] × Rn → Pcp,cv(Rn) is a multi-valued operator satisfying

the following conditions:

(a) F is upper semi-continuous and integrably bounded

(b) F (·, x) : [0, h]→ Pcp,cv(Rn) is measurable, for all x ∈ Rn

(c) H(F (t, u), F (t, v)) ≤ k(t)ϕ(|u − v|), for each t ∈ [0, a], for all u, v ∈
Rn and some ϕ a strict comparison function, where for each t ∈ [0, a],

k(t) ∈ L1[0, a] and sup
t∈[0,a]

∫ t

0

k(s)ds ≤ 1.

Denote by Sx0 the solutions set for the Cauchy problem . Con-

sider also, the following integral operator: T : C([0, a],Rn) →
Pcp,cv(C([0, a],Rn)) defined by

T (x) =

{
v ∈ C([0, a],Rn)| v(t) ∈ x0 +

∫ t

0

F (s, x(s))ds, t ∈ [0, a]

}
Obviously FixT = Sx0 . By standard arguments on have that for

every x1, x2 ∈ C([0, a],Rn) and every x1, x2 ∈ C([0, a],Rn) and every

v1 ∈ T (x1) there exists v2 ∈ T (x2) such that

|v1(t)− v2(t)| ≤ ϕ(‖x1 − x2‖)
∫ t

0

k(s)ds, for every t ∈ [0, a].
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Then ‖v1−v2‖ ≤ ϕ(‖x1−x2‖). By the analogous inequality obtained

by interchanging the roles of x1 and x2 we obtain H(T (x1), T (x2)) ≤
ϕ(‖x1 − x2‖) for each x1, x2 ∈ C([0, a],Rn).

From the above relation, using Lemma 2.6. and the same argument

as in Theorem 2.7. (both results in Dzedzej-Gelman [85]), from Theorem

2.9.17. we obtain:

Theorem 2.9.21. Let F : [0, a] × Rn → Pcp,cv(Rn) be a

multi-valued operator satisfying the assertions (a)-(c). Assume that

µ({t| dimF (t, x) < 1, for any x ∈ Rn}) = 0. Then the solution set

for the Cauchy problem has an infinite dimension for all x0 ∈ Rn.

Example 2.9.22. Consider the following multi-valued Darboux prob-

lem:
∂2u

∂x∂y
∈ F (x, y, u(x, y)), u(x, 0) = 0, u(0, y) = 0,

where (x, y) ∈ D = [0, a]× [0, b].

As before, the following result on the topological dimension of the

solutions set is an application of Theorem 2.9.17.

Theorem 2.9.23. Let F : D × R → Pcp,cv(R) be a multi-valued

operator satisfying the following conditions:

i) F is u.s.c. and integrably bounded;

ii) F (·, ·, u) : D → Pcp,cv(R) is measurable, for all u ∈ R;

iii) H(F (t, s, u), F (t, s, v)) ≤ k(t, s)ϕ(|u−v|), for each (t, s) ∈ D, for

all u, v ∈ R and for some ϕ a strict comparison function (where for each

(t, s) ∈ D k(t, s) ∈ L1(D) and sup
(x,y)∈D

∫ x

0

∫ y

0

k(x, t)dsdt ≤ 1).

iv) µ({(t, s) ∈ D| dimF (t, s, u) < 1, for all u ∈ R}) = 0.

Then the solutions set S for the Darboux problem has an infinite

dimension.

Proof. If we consider the multi-valued operator T : C(D) →
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Pcp,cv(C(D)), given by

T (u) =

{
z ∈ C(D)| z(x, y) ∈

∫ x

0

∫ y

0

F (s, t, u(s, t))dsdt, (x, y) ∈ D
}

then it is obviously that FixT = S. T is a multi-valued ϕ-contraction

and the conclusion follows from Lemma 2.6. in [85]. �

Bibliographical comments. Following the method from Saint Ray-

mond [237] and Dzedzej-Gelman [85], results of this section can be found

in Petruşel [177] and [180]. We mention also the papers: Anello [3], An-

tosiewicz-Cellina [12], Aubin-Cellina [15], Cellina-Colombo [55], Cernea

[56], [58], Constantin [65], Deimling [80], Kisielewicz [127], Lakshmikan-

tham-Wen-Zhang [130], Naselli Ricceri [156], Petruşel [178], [180], Ricceri

[218], for similar results and interesting applications.
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tions and applications], Cub Press 22, Baia Mare, 1997.

[34] D. C. Biles, M. P. Robinson, J. S. Spraker, Fixed point approaches

to the solution of integral inclusions, Topol. Meth. Nonlinear Anal.,

25(2005), 297-311.

[35] G. Birkhoff, Integration of functions with values in a Banach space,

Trans. A. M. S., 38(1936), 357-372.

[36] K. Border, Fixed point theorems with applications to economics and

game theory, Cambridge Univ. Press, Cambridge, 1985.
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[150] A. Muntean, A. Petruşel, Coincidence theorems for l.s.c. multifunc-

tions in topological vector spaces, Proc. of the ”Tiberiu Popoviciu”

Itinerant Seminar of Functional Equations, Approximation and Con-

vexity (Ed. E. Popoviciu), Cluj-Napoca, Romania, 2000, 147-151.
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[154] S. Mureşan and I. A. Rus, Data dependence of the fixed points set of

weakly Picard operators, Studia Univ. Babeş-Bolyai Math. 43 (1998),
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41(1996), 97-100.
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