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1. Introduction

Let X be a Banach space. We consider the following problem

Dα+1
C u(t) + µDβ

Cu(t)−Au(t) = F (t, u(t), ut), t ∈ I = [0, T ] (1.1)

u(s) = g(s), s ≤ 0, (1.2)

u′(0) + h(u) = ψ, (1.3)

where 0 < α ≤ β ≤ 1, Dα
C is the fractional derivative in Caputo’s sense of order

α, A : D(A) ⊂ X −→ X is the closed linear operator, and A generates a strongly
continuous family {Sα,β(t)} of bounded and linear operator on X, u is the unknown
function defined on I and taking values in X, ut is the history state defined by
ut : (−∞, 0] → X,ut(s) = u(t + s), for each t ∈ I, ψ ∈ X, g ∈ B with B being an
admissible phase space that satisfying some fundamental axioms listed in Subsection
2.1, F : I ×X × B → X, h : BC(I;X)→ X are given functions.

Equation (1.1) without delays come from recent investigations [16, 17, 13]. These
papers discussed the existence and asymptotic behavior of solutions for linear or
semilinear two-term time-fractional differential evolution equations.
In the case 0 < α < 1, β = 1, µ = 0, Eq. (1.1) without delays was studied in [27]
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and when 0 < α < 1, β = 1, µ = 0, A = 4 is the model of a fractional diffusion-
wave equation (see [26]). Eq. (1.1) without delays is the abstract setting of nonlinear
time-fractional telegraph equations when α + 1 = 2β, A = 4 (see [22, 23]), and
nonlinear fractional diffusion-wave with damping when 0 < α < 1, β = 1, A = 4
(see [24]). In the case, A = 4, in [21] a two-term fractional-order diffusion evolution
equation without delays was proposed for the total concentration in solute transport,
in order to distinguish explicitly the mobile and immobile status of the solute using
fractional dynamics; the kinetic equation with two fractional derivatives of different
orders appears also quite naturally when describing subdiffusive motion in velocity
fields [19]; and [12] for investigations on the model for wave-type phenomena.

Differential equations with delay are often more realistic mathematical models
for practical problems compared to those without delay, for instance, from control
theory in which control factor is taken in the form of feedbacks. In such control
problems, the presence of delay term is an inherent feature. Numerous papers and
monographs have appeared devoted to differential equations with delays (see, e.g.,
[8, 9, 28, 7, 14, 1, 20, 11] and references therein). These papers contain various types
of existence results for initial value problem to differential equations with delays.
Recently, in [29], two-term time fractional differential equations with finite delay and
the right hand side f = f(t, ut) has studied, the author established the existence,
uniqueness of pseudo asymptotically periodic solutions.

In this paper, based on a fixed point principle for condensing maps for measures
of noncompactness on BC(R+;X), we prove the existence of mild solution on [0, T ]
for problem (1.1)-(1.3) and decay estimates of mild solutions u with ‖u(t)‖ = O(t−γ)
as t→∞.

The rest of our work is organized as follows. Section 2, we recall some notions,
phase space and facts relating to measures of noncompactness and condensing map.
Section 3, we prove the existence of mild solutions on (−∞, T ], T > 0 under some
regular conditions imposed on the nonlinearities h and F . Section 4 is devoted to show
that decay mild solutions on R with the certain decay rate exist if some conditions of
the operator A and the phase space B are added. Section 5, we give an application
for partial differential equations to illustrate the obtained results.

2. Preliminaries

Denote by L1
loc(R+, X) the Banach space of all locally (Bochner) integrable vector-

valued functions. The Laplace transform of a function f ∈ L1
loc(R+, X) is defined as

L [f ](λ) :=

∞∫
0

e−λtf(t)dt, Reλ > ω.

whenever the integral is entirely convergent for Reλ > ω.
The Caputo fractional derivative of order α > 0 is ascertained by

Dα
Cf(t) :=

(
ϕm−α ∗ f (m)

)
(t) :=

t∫
0

ϕm−α(t− s)f (m)(s)ds,
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in which m is the smallest integer greater that or equal to α, and for β > 0

ϕβ(t) =
tβ−1

Γ(β)
, t > 0,

in which Γ(·) denotes the Gamma function. This function satisfies the semigroup
property (see [6])

ϕα ∗ ϕβ = ϕα+β , ∀α, β > 0.

Applying the properties of the Laplace transform, an easy computation shows that
for α > 0,

L [Dα
Cf ](λ) = λαL [f ](λ)−

m−1∑
k=0

λα−k−1f (k)(0).

Definition 2.1. Let µ ≥ 0 and 0 ≤ α, β ≤ 1 be given. Let A be a closed linear
operator with domain D(A) on a Banach space X. Then A is called the generator of
an (α, β)µ-regularized family if there exists ω ∈ R and a strongly continuous function
Sα,β : R+ → L (X) such that {λα+1 + µλβ : Re(λ) > ω} ⊂ ρ(A) and

λα(λα+1 + µλβ −A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt,Re(λ) > ω, x ∈ X.

We know that in the case µ = 0, α = 0, this is a C0-semigroup while if µ = 0, α = 1,
we get a cosine family. The existence and characterization of generators of (α, β)µ-
regularized families were discussed in [15]. Specifically, let A be a closed and densely
defined operator. An operator A is called to be ω-sectorial of angle θ if there exist
θ ∈ [0, π2 ) and ω ∈ R such that its resolvent family is in the sector

ω + Sθ := {ω + λ : λ ∈ C, |arg(λ)| < π

2
+ θ} \ {ω}, (2.1)

and

‖(λ−A)−1‖ ≤ M

|λ− ω|
, λ ∈ ω + Sθ. (2.2)

Notice that a closed and densely defined operator A is ω-sectorial of angle θ if A−ωI
is sectorial of angle θ. The following results were established in [13].

Lemma 2.2. [13] Let 0 < α ≤ β ≤ 1, µ > 0 and A be an ω-sectorial operator of angle
βπ
2 . Then A generates an exponentially bounded (α, β)µ-regularized family Sαβ(t).

Lemma 2.3. [13] Let 0 < α ≤ β ≤ 1, µ > 0 and ω < 0. Assume that A is an ω-

sectorial operator of angle βπ
2 . Then A generates an (α, β)µ-regularized family Sαβ(t)

satisfying the estimate

‖Sαβ(t)‖ ≤ C

1 + |ω|(tα+1 + µtβ)
, t ≥ 0, (2.3)

for some constant C > 0 depending only on α, β.
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We now are in search of suitable concept of mild solutions to problem (1.1)-(1.3).
Denoting by L the Laplace transform for X-valued functions acting on R+, putting
v(t) = F (t, u(t), ut) and applying the Laplace transform to (1.1)-(1.3), we have

(λα+1 + µλβ −A)L [u](λ)

= λαu(0) + λα−1ut(0) + µλβ−1u(0) + L [v](λ), Re(λ) > ω.

Therefore

L [u](λ) = λα(λα+1 + µλβ −A)−1u(0) + λα−1(λα+1 + µλβ −A)−1u′(0)

+ µλβ−1(λα+1 + µλβ −A)−1u(0)

+ (λα+1 + µλβ −A)−1L [v](λ),

for all λ such thatRe(λ) > ω, λα+1+µλβ ∈ ρ(A). Let Sα,β(t) be an (α, β)µ-regularized
family generated by A, we have

L [u](λ) = L [Sα,β ](λ)
(
g(0)

)
+ L [ϕ1]L [Sα,β ](λ)[ψ − h(u)]

+ µL [ϕ1+α−β ]L [Sα,β ](λ)
(
g(0)

)
+ L [Sα,β ](λ)L [ϕα](λ)L [v](λ), Re(λ) > ω,

where functions ϕβ(t) = tβ−1

Γ(β) , t > 0, β > 0. Inversion of the Laplace transform indi-

cates that

u(t) = Sα,β(t)
(
g(0)

)
+ (ϕ1 ∗ Sα,β)(t)[ψ − h(u)]

+ µ(ϕ1+α−β ∗ Sα,β)(t)
(
g(0)

)
+ (Sα,β ∗ ϕα ∗ v)(t). (2.4)

Assume that f(t, u(t), ut) = ϕα ∗ F (t, u(t), ut). Motivated by (2.4), the following
definition of mild solutions are given.

Definition 2.4. Let 0 < α ≤ β ≤ 1 and µ ≥ 0. A function u : (−∞, T ] → X is
called to be a mild solution of problem (1.1)−(1.3) iff u(t) = g(t), for t ≤ 0 and

u(t) = Sα,β(t)(g(0)) + (ϕ1 ∗ Sα,β)(t)[ψ − h(u)] + µ(ϕ1+α−β ∗ Sα,β)(t)(g(0))

+

∫ t

0

Sα,β(t− τ)f(τ, u(τ), uτ )dτ, (2.5)

for each t ∈ R+ and (g, ψ) ∈ B ×X.

2.1. Phase space. Let (B, |·|B) be a semi-normed linear space, consisting of functions
mapping (−∞, 0] into a Banach space X. The definition of a phase space B, introduced
in [8], is based on the following axioms. If v : (−∞, σ+ T ]→ X, where σ ∈ R and T
is a positive number, is a function such that v|[σ,T+σ] ∈ C([σ, T + σ];X) and vσ ∈ B,
we have

(B1) vt ∈ B for t ∈ [σ, T + σ];
(B2) The function t 7→ vt is continuous on [σ, T + σ];
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(B3) |vt|B ≤ K(t − σ) sup
s∈[σ,t]

‖v(s)‖ + M(t − σ)|vσ|B for each t ≥ σ, where

K,M : [0,∞) → [0,∞),K is continuous, M is locally bounded and they
are independent of v.

An archetypal example for B is Cγ defined as follows

Cγ = {w ∈ C((−∞, 0];X) such that lim
s→−∞

eγsw(s) exists in X}.

If γ > 0 then Cγ is a Banach space with the norm

|w|γ = sup
s≤0

eγs‖w(s)‖X .

In this case K(t) = 1,M(t) = e−γt. For more examples of phase space, see [9].

2.2. Measure of noncompactness. Let X be a Banach space. Denote by Pb(X)
the collection of all nonempty bounded subsets in X.

Definition 2.5. A function Φ : Pb(X) −→ [0,+∞) is called a measure of noncom-
pactness (MNC) in X if

Φ(coΩ) = Φ(Ω), ∀Ω ∈ Pb(X),

where coΩ is the closure of the convex hull of Ω. An MNC Φ in X is called

(i) monotone if for ∀Ω1,Ω2 ∈ Pb(X),Ω1 ⊂ Ω2 implies Φ(Ω1) ≤ Φ(Ω2),
(ii) nonsingular if Φ

(
{x} ∪ Ω

)
= Φ(Ω) for ∀x ∈ X,∀Ω ∈ Pb(X);

(iii) invariant with respect to union with compact set if Φ(K ∪ Ω) = Φ(Ω) for
every relatively compact K ⊂ X and Ω ∈ Pb(X);

(iv) algebraically semi-additive if Φ(Ω1 + Ω2) ≤ Φ(Ω1) + Φ(Ω2) for any Ω1,Ω2 ∈
Pb(X);

(v) regular if Φ(Ω) = 0 is equivalent to the relative compactness of Ω.

A significant example of MNC is the Hausdorff MNC χ(·), which is defined as
follows:

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net} (2.6)

for ∀ Ω ∈ Pb(X). It is well known that Hausdorff MNC χ(·), enjoys the the above
properties (i)-(v).

Sequencingly, some basic MNC estimates are needed. Based on Hausdorff MNC χ
in X, one can define the sequential MNC χ0 as follows:

χ0(Ω) = sup{χ(D) : D ∈ ∆(Ω)},

in which ∆(Ω) is the collection of all at-most-countable subsets of Ω (see [2]). It is
known that

1

2
χ(Ω) ≤ χ0(Ω) ≤ χ(Ω),

for all bounded set Ω ⊂ X. So the following property is evident.

Proposition 2.6. Let χ be the Hausdorff MNC on Banach space X,Ω ∈ Pb(X).
Then there exists a sequence {xn}∞n=1 ⊂ Ω such that

χ(Ω) ≤ 2χ
(
{xn}∞n=1

)
+ ε, ∀ε > 0. (2.7)
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Let C([0, T ];X) be the space of all continuous functions defined on the interval
[0, T ] taking values in X, which is a Banach space with the norm

‖u‖C = sup
t∈[0,T ]

‖u(t)‖X .

Denote by χT the Hausdorff measure of noncompactness of C([0, T ];X), we obtain
the following proposition.

Proposition 2.7. [5]

(1) If D ⊂ C([0, T ];X) is bounded, then χ(D(t)) ≤ χT (D), for any t ∈ [0, T ],
where D(t) = {x(t) : x ∈ D}.

(2) If D is equicontinuous on [0, T ], then χ(D(t)) is continuous for t ∈ [0, T ] and
χT (D) = sup

t∈[0,T ]

χ(D(t)).

(3) If D is bounded and equicontinuous on [0, T ], then χ(D(t)) is continuous for
t ∈ [0, T ] and

χ

(∫ t

0

D(s)ds

)
≤
∫ t

0

χ(D(s))ds, for all t ∈ [0, T ],

where
∫ t

0
D(s)ds = {

∫ t
0
x(s)ds : x ∈ D}.

We denote by
(
L(X), ‖ · ‖L(X)

)
the space of linear bounded operators from X into

itself, χ is the Hausdorff MNC on X. For each S ∈ L(X), we define χ−norm of S (see
[2]) as follows:

‖S‖χ = inf{k > 0 : χ
(
S(Ω)

)
≤ kχ(Ω), Ω ∈ Pb(X)} (2.8)

We have following estimate (see [4])

‖S‖χ ≤ ‖S‖L(X) (2.9)

Consider the space BC(R+;X) of bounded continuous functions on R+ taking
values on X. Denote by πT the restriction operator on this space, i. e, πT (u) is the
restriction of u on [0, T ]. Then

χ∞(D) = sup
T>0

χT
(
πT (D)

)
, D ⊂ BC(R+;X). (2.10)

is an MNC. Some measures of noncompactness are given as follows

dT (D) = sup
u∈D

sup
t≥T
‖u(t)‖X , (2.11)

d∞(D) = lim
T→∞

dT (D), (2.12)

χ∗(D) = χ∞(D) + d∞(D). (2.13)

The regularity of MNC χ∗ is proved in [3, Lem 2.6].
Before coming to the next section, we recall the fixed point principle for condensing

maps which will be used in next sections.
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Definition 2.8. [4] Let χ be an MNC on Banach space X, and ∅ 6= D ⊂ X. A con-
tinuous map F : D −→ X is said to be condensing with respect to χ (χ−condensing)
if for ∀Ω ∈ Pb(D), the relation

χ(Ω) ≤ χ
(
F (Ω)

)
implies the relative compactness of Ω.

Theorem 2.9. [10] Let D be a bounded convex closed subset of Banach space X and
let F : D −→ D be a χ−condensing map. Then

Fix(F ) = {x ∈ D : x = F (x)}

is a nonempty compact set.

This theorem is rather typical. Particularly, it covers the contraction mapping
principle and Krasnoselkii theorem.

3. Existence result

In formulation of problem (1.1)-(1.3), we suppose that

(B) The phase space B verifies (B1)-(B3).
(F) The nonlinear function f : [0, T ]×X × B −→ X satisfies:

(i) t 7→ f(t, v, w) is measurable for each (v, w) ∈ X × B and (v, w) 7→
f(t, v, w) is continuous for a.e t ∈ [0, T ].

(ii) There exists function m,m1 ∈ L1(0, T ) such that

‖f(t, v, w)‖X ≤ m(t)‖v‖X +m1(t)|w|B, (3.1)

for all (v, w) ∈ X × B, and for each t ∈ [0, T ].
(iii) There exists k ∈ L1(0, T ), which is non-negative such that

χ
(
f(t,Ω, D)

)
≤ k(t)

(
χ(Ω) + sup

s≤0
χ(D(s))

)
, (3.2)

for every t ∈ [0, T ] and for all bounded sets Ω ⊂ X,D ⊂ B.
(H) The function h : C([0, T ];X)→ X satisfies following conditions:

(i) There exists a nondecreasing continuous function θ : R+ → R+ such
that

‖h(u)‖X ≤ θ(‖u‖C), (3.3)

for all u ∈ C([0, T ];X).
(ii) There exists a non-negative constant η such that

χ
(
h(Ω)

)
≤ ηχT (Ω), (3.4)

for all bounded set Ω ⊂ C([0, T ];X).

For g ∈ B and y ∈ C([0, T ];X), we ascertain the function y[g] : (−∞, T ] → X as
follows

y[g](t) =

{
y(t) for t ∈ [0, T ],
g(t) for t < 0.
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We denote

Cg = {y ∈ C([0, T ];X) : y(0) = g(0)}.

Then Cg is a closed subspace of C([0, T ];X) with the supremum norm.
We ascertain the solution operator F : Cg → Cg by

Φ(u)(t) = Sα,β(t)(g(0)) + (ϕ1 ∗ Sα,β)(t)[ψ − h(u)]

+ µ(ϕ1+α−β ∗ Sα,β)(t)(g(0)) +

∫ t

0

Sα,β(t− τ)f(τ, u(τ), uτ )dτ, (3.5)

for ∀u ∈ Cg, ∀t ∈ [0, T ]. It is clear that u is a fixed point of F then u[g] is a mild
solution of (1.1)−(1.3) on (−∞, T ].
From the assumptions imposed on f, h, it is seen that Φ is a continuous map on Cg.
Set

ST = sup
t∈[0,T ]

‖Sα,β(t)‖L(X), ΛT = sup
t∈[0,T ]

‖ϕ1 ∗ Sα,β(t)‖L(X),

ΘT = sup
t∈[0,T ]

‖ϕ1+α−β ∗ Sα,β(t)‖L(X), ΓT = sup
t∈[0,T ]

t∫
0

‖Sα,β(t− τ)‖L(X)m1(τ)dτ

ΥT = sup
t∈[0,T ]

t∫
0

‖Sα,β(t− τ)‖L(X)

[
m(τ) +m1(τ)K(τ)

]
dτ.

Lemma 3.1. Let (B), (F), (H) hold and

ΥT + ΛT lim inf
n→∞

θ(n)

n
< 1. (3.6)

Then there exists R > 0 such that F (BR) ⊂ BR, in which BR is the ball in Cg centered
at origin with radius R.

Proof. Assume to the contrary that there exists a sequence {un}∞n=1 ⊂ Bn with
‖un‖C ≤ n but ‖F (un)‖C > n. From the formulation of Φ, we set

Φ(un)(t) = Φ1(un)(t) + Φ2(un)(t) + Φ3(un)(t),

where

Φ1(u)(t) = Sα,β(t)g(0) + µ
(
ϕ1+α−β ∗ Sα,β

)
(t)
(
g(0)

)
;

Φ2(u)(t) = (ϕ1 ∗ Sα,β)(t)
(
ψ − h(u)

)
;

Φ3(u)(t) =

t∫
0

Sα,β(t− τ)f
(
τ, u(τ), uτ

)
dτ.
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We have

‖Φ(un)(t)‖X ≤ ‖Φ1(un)(t)‖X + ‖Φ2(un)(t)‖X + ‖Φ3(un)(t)‖X . (3.7)

‖Φ1(un)(t)‖X ≤ ‖Sα,β(t)‖L(X)‖g(0)‖X + µ‖ϕ1+α−β ∗ Sα,β(t)‖L(X)‖g(0)‖X
≤ sup
t∈[0,T ]

‖Sα,β(t)‖L(X)‖g(0)‖X

+ µ sup
t∈[0,T ]

‖ϕ1+α−β ∗ Sα,β(t)‖L(X)‖g(0)‖X

= ST ‖g(0)‖X + µΘT ‖g(0)‖X . (3.8)

‖Φ2(un)(t)‖X ≤ ‖ϕ1 ∗ Sα,β(t)‖L(X)‖ψ − h(un)‖X
≤ sup
t∈[0,T ]

‖ϕ1 ∗ Sα,β(t)‖L(X)

(
‖ψ‖X + ‖h(un)‖X

)
≤ ΛT

(
‖ψ‖X + θ(n)

)
, (3.9)

owing to the assumption (H).

‖Φ3(un)(t)‖X ≤
t∫

0

‖Sα,β(t− τ)‖L(X)‖f
(
τ, un(τ), un[g]τ

)
‖Xdτ

≤
t∫

0

‖Sα,β(t− τ)‖L(X)[m(τ)‖un(τ)‖X +m1(τ)|un[g]τ |B]dτ,

owing to the assumption (F). Noting that

|un[g]τ |B ≤ K(τ) sup
r∈[0,τ ]

‖un(r)‖X +M(τ)|g|B

≤ K(τ)‖un‖C +MT |g|B ≤ nK(τ) +MT |g|B,

we get

‖Φ3(un)(t)‖X ≤
t∫

0

‖Sα,β(t− τ)‖L(x)[m(τ)n+m1(τ)nK(τ) +m1(τ)MT |g|B]dτ.

≤ nΥT + ΓTMT |g|B. (3.10)

From (3.7)-(3.10), we obtain

‖Φ(un)(t)‖X ≤
[
ST ‖g(0)‖X + ΛT (‖ψ‖X + θ(n))

]
+ µΘT ‖g(0)‖X + nΥT + ΓTMT |g|B.

It is inferred

‖Φ(un)‖C ≤
[
ST ‖g(0)‖X + ΛT ‖ψ‖X + µΘT ‖g(0)‖X + ΓTMT |g|B

]
+ ΛT θ(n) + nΥT .
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So

1 <
1

n
‖Φ(un)‖C ≤

1

n

[
ST ‖g(0)‖X + ΛT ‖ψ‖X

+ µΘT ‖g(0)‖X + ΓTMT |g|B
]

+
(

ΥT + ΛT
θ(n)

n

)
. (3.11)

Passing to the limit in (3.11), we obtain a contradiction. Thus, Lemma 3.1 is proved.
�

Now, we put

ΩT =


0, if Sα,β(·) is compact,

sup
t∈[0,T ]

t∫
0

‖Sα,β(t− τ)‖L(X)k(τ)dτ, otherwise.

Lemma 3.2. Let (B), (F) and (H) be satisfied. Then

χT
(
Φ(D)

)
≤ (ηΛT + 4ΩT )χT (D), (3.12)

for all bounded sets D ⊂ Cg.

Proof. Take the decompositions of Φ as in Lemma 3.1. From the algebraically semi-
additive property of χT , we have

χT
(
Φ(D)

)
≤ χT

(
Φ1(D)

)
+ χT

(
Φ2(D)

)
+ χT

(
Φ3(D)

)
. (3.13)

1. Obviously, we have

χT
(
Φ1(D)

)
= 0. (3.14)

2. For z1, z2 ∈ Φ2(D), there exist u1, u2 ∈ D such that

z1(t) = Φ2(u1)(t), z2(t) = Φ2(u2)(t).

Then

‖z1(t)− z2(t)‖X = ‖Φ2(u1)(t)− Φ2(u2)(t)‖X
≤ ‖(ϕ1 ∗ Sα,β)(t)‖L(X)‖h(u2)− h(u1)‖X .

So

χT
(
Φ2(D)

)
≤ ΛTχ

(
h(D)

)
≤ ΛT ηχT (D) (3.15)

3. Using Proposition 2.6, for every ε > 0, there exists a sequence {un}∞n=1 ⊂ D such
that

χT
(
Φ3(D)

)
≤ 2χT

(
{Φ3(un)}∞n=1

)
+ ε. (3.16)

χ
(
{Φ3(un)(t)}

)
≤

t∫
0

χ
(
Sα,β(t− τ)

)
f
(
τ, {un(τ)}, {un[g]τ}

)
dτ

≤
t∫

0

‖Sα,β(t− τ)‖L(X) χ
(
f
(
τ, {un(τ)}, {un[g]τ}

))
dτ.
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It is seen that

χ
(
f
(
τ, {un(τ)}, {un[g]τ}

))
≤ k(τ)

[
χ
(
{un(τ)}

)
+ sup
r≤0

χ
(
{un[g](τ + r)}

)]
≤ k(τ)

[
χ
(
{un(τ)}

)
+ sup
r∈[0,τ ]

χ
(
{un(r)}

)]
≤ 2k(τ) sup

r∈[0,τ ]

χ
(
{un(r)}

)
.

So

χ
(
{Φ3(un)(t)}

)
≤ 2

 t∫
0

‖Sα,β(t− τ)‖L(X)k(t)dτ

 sup
r∈[0,τ ]

χ
(
{un(r)}

)
.

We also see that {Φ3(un)} is an equicontinuous set. Therefore

χT
(
{Φ3(un)}

)
≤ 2ΩTχT (D).

So

χT
(
Φ3(D)

)
≤ 4ΩTχT (D). (3.17)

The combination of (3.13)-(3.17) brings in

χT
(
Φ(D)

)
≤ (ηΛT + 4ΩT )χT (D). (3.18)

Lemma 3.2 is proved. �

Theorem 3.3. Let (B), (F) and (H) be satisfied. Then problem (1.1)-(1.3) has at
least one mild solution on (−∞, T ] on condition that

l := ηΛT + 4ΩT < 1, (3.19)

ΥT + ΛT lim inf
n→∞

θ(n)

n
< 1. (3.20)

Proof. By inequality (3.19), the solution operator F is a χT−condensing. Indeed, let
D ⊂ M be a bounded set such that χT (D) ≤ χT

(
F (D)

)
. Applying Lemma 3.2, we

have
χT (D) ≤ χT

(
F (D)

)
≤ lχT (D).

So χT (D) = 0, and thus, D is relatively compact.
Applying Lemma 3.1, bearing in mind (3.20), we get F (BR) ⊂ BR. Next, applying

Theorem 2.9, the χT−condensing map F defined by (3.5) has fixed point set Fix(F ) ⊂
BR which is nonempty and compact. This indicates that the problem (1.1)−(1.3) has
at least one mild solution u[g] with u ∈ Fix(F ). �

4. Polynomial Decay of mild solutions

In this section, we look at solution operator Φ on the following space:

BγR(ρ) = BR ∩ {u ∈ BCg and sup
t∈R+

tγ‖u(t)‖X ≤ ρ},

where BCg = {y ∈ BC(R+;X) : y(0) = g(0)}, BR is the ball in BCg centered at the
origin with radius R > 0, and γ, ρ are positive numbers with γ < min{α, β − α}. We
can see that BγR(ρ) is nonempty, bounded convex closed subset of BC(R+;X).
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Our following task is to prove that F keeps BγR(ρ) invariant, i.e. Φ
(
BγR(ρ)

)
⊂

BγR(ρ), and F is χ∗−condensing on BγR(ρ). To this end, we suppose that

(B∗) The phase B satisfies (B) with K ∈ BC(R+;R+) and M being such that
tγM(t) = O(1) as t→∞.

(A∗) A is an ω−sectorial operator of angle βπ/2 with ω < 0.
(F∗) f satisfies (F) for all T > 0. Moreover, we assume that k,m,m1 ∈ L1

loc(R+),
such that

N = sup
t≥0

t∫
0

‖Sα,β(t− τ)‖L(X)m(τ)dτ < +∞,

N1 = sup
t≥0

t∫
0

‖Sα,β(t− τ)‖L(X)m1(τ)dτ < +∞,

M∞1 = sup
t≥0

m1(t) < +∞, M∞ = sup
t≥0

m(t) < +∞.

(H∗) In (H), space C([0, T ];X) is replaced by space BC(R+;X).

Lemma 4.1. [17] Let 0 < α ≤ β ≤ 1, µ > 0 and A be an ω-sectorial operator of angle
βπ
2 . Then

tγ‖Sα,β(t)‖L(X) = O(1), tγ‖ϕ1 ∗ Sα,β(t)‖L(X) = O(1), and

tγ‖ϕ1+α−β ∗ Sα,β(t)‖L(X) = O(1) as t→ +∞. (4.1)

Set

K∞ = sup
t≥0

K(t), M∞ = sup
t≥0

M(t), S∞ = sup
t≥0
‖Sα,β(t)‖L(X),

Λ∞ = sup
t≥0
‖ϕ1 ∗ Sα,β(t)‖L(X), Θ∞ = sup

t≥0
‖ϕ1+α−β ∗ Sα,β(t)‖L(X),

Γ∞ = sup
t≥0

t∫
0

‖Sα,β(t− τ)‖L(X)m1(τ)M(τ)dτ,

Υ∞ = sup
t≥0

t∫
0

‖Sα,β(t− s)‖L(X)

[
m(τ) +m1(τ)K(τ)

]
dτ.

Lemma 4.2. Let (B∗), (A∗), (F∗), (H∗) hold and

Λ∞ lim inf
n→∞

θ(n)

n
+ Υ∞ < 1, (4.2)

N + 2γN1K
∞ < 1. (4.3)

Then Φ(BγR(ρ)) ⊂ BγR(ρ) for all 0 < γ < min{α, β − α}.

Proof. 1. By using similar argument to the proof in Lemma 3.1, we have Φ(BR) ⊂ BR
only if (4.2), where BR is the ball in BCg.
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2. Next, we prove that there is a positive number ρ such that Φ(BγR(ρ)) ⊂ BγR(ρ).
Indeed, assume to the contrary that for each n ∈ N there exists un ∈ BγR(ρ) such that
sup
t∈R+

tγ‖un(t)‖X ≤ n but sup
t∈R+

tγ‖Φ(un)(t)‖X > n. We have

‖Φ(un)(t)‖X ≤
∥∥Sα,β(t)

(
g(0)

)
+ (ϕ1 ∗ Sα,β)(t)

(
ψ − h(un)

)
+ µ(ϕ1+α−β ∗ Sα,β)(t)

(
g(0)

)∥∥
+
∥∥∥ t∫

0

Sα,β(t− τ)f
(
τ, un(τ), unτ

)
dτ
∥∥∥

:= P (un)(t) +Q(un)(t). (4.4)

We also have

tγP (un)(t) ≤ tγ‖Sα,β(t)‖L(X)‖g(0)‖X + tγ‖(ϕ1 ∗ Sα,β)(t)‖L(X)

(
‖ψ‖X

+ ‖h(un)‖X
)

+ tγµ‖(ϕ1+α−β ∗ Sα,β)(t)‖L(X)‖g(0)‖X
≤ tγ‖Sα,β(t)‖L(X)‖g(0)‖X + tγ‖(ϕ1 ∗ Sα,β)(t)‖L(X)

(
‖ψ‖X + θ(R)

)
tγµ‖(ϕ1+α−β ∗ Sα,β)(t)‖L(X)‖g(0)‖X

Applying Lemma 4.1, we achieve

sup
t≥0

tγP (un)(t) = C1 < +∞. (4.5)

By using the assumption (F∗), we have

tγQ(un)(t) ≤ tγ
t∫

0

‖Sα,β(t− τ)‖L(X)

∥∥f(τ, un(τ), unτ
)∥∥
X
dτ

= tγ
t∫

0

‖Sα,β(t− τ)‖L(X)m(τ)‖un(τ)‖Xdτ

+ tγ
t∫

0

‖Sα,β(t− τ)‖L(X)m1(τ)|un[g]τ |Bdτ

:= R1(un)(t) +R2(un)(t) (4.6)

We also have

R1(un)(t) = tγ

t
2∫

0

‖Sα,β(t− τ)‖L(X)m(τ)‖un(τ)‖Xdτ

+ tγ
t∫
t
2

‖Sα,β(t− τ)‖L(X)m(τ)‖un(τ)‖Xdτ

:= L1(un)(t) + L2(un)(t). (4.7)



752 DO VAN LOI, VU TRONG LUONG AND NGUYEN THANH TUNG

Looking at L1, by applying Lemma 2.3, we have

L1(un)(t) ≤ tγ
t
2∫

0

C

1 + |ω|
(
(t− τ)α+1 + µ(t− τ)β

)m(τ)‖un(τ)‖Xdτ

≤ CRM∞tγ

|ω|

t
2∫

0

1

(t− τ)α+1
dτ

≤ 2αCRM∞

α|ω|
tγ−α.

As γ < α, the last estimate deduces that

L1(un)(t) = O(1) as t→ +∞.
Thus

sup
t≥0

L1(un)(t) = C∗1 (4.8)

Looking at L2, we have

L2(un)(t) = tγ
t∫
t
2

‖Sα,β(t− τ)‖L(X)m(τ)τ−γτγ‖un(τ)‖Xdτ

≤ n2γN, (4.9)

owing to τ−γ ≤
(
t
2

)−γ
. From (4.7)-(4.9), we have

sup
t≥0

R1(un)(t) ≤ C∗1 + n2γN. (4.10)

Next, we have

R2(un)(t) = tγ

t
2∫

0

‖Sα,β(t− τ)‖L(X)m1(τ)|un[g]τ |Bdτ

+ tγ
t∫
t
2

‖Sα,β(t− τ)‖L(X)m1(τ)|un[g]τ |Bdτ

:= L3(un)(t) + L4(un)(t). (4.11)

We see that

L3(un)(t) ≤ tγ
t
2∫

0

‖Sα,β(t− τ)‖L(X)m1(τ)
[
K(τ) sup

r∈[0,τ ]

‖un(r)‖X +M(τ)|g|B
]
dτ

≤M∞1
(
K∞R+M∞|g|B

)
tγ

t/2∫
0

‖Sα,β(t− τ)‖L(X)dτ.
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By applying Lemma 2.3, we obtain

L3(un)(t) ≤ Ctγ
t/2∫
0

1

ω(t− τ)α+1
dτ = C

2α − 1

α|ω|
tγ−α.

Since γ < α, the last estimate deduces that

L3(un)(t) = O(1) as t→ +∞.

Thus

sup
t≥0

L3(un)(t) = C̃1. (4.12)

Looking at L4, we have

|un[g]τ |B ≤ K(τ/2) sup
r∈[τ/2,τ ]

‖un(r)‖X +M(τ/2)|un[g]τ/2|B.

|un[g]τ/2|B ≤ K(τ/2) sup
r∈[0,τ/2]

‖un(r)‖X +M(τ/2)|g|B

≤ K∞R+M∞|g|B = C∗.

It is inferred

|un[g]τ |B ≤ K(τ/2) sup
r∈[τ/2,τ ]

‖un(r)‖X + C∗M(τ/2).

So

(τ/2)γ |un[g]τ |B ≤ K(τ/2)
(
τ/2
)γ

sup
r∈[τ/2,τ ]

‖un(r)‖X + C∗
(
τ/2
)γ
M(τ/2)

≤ K(τ/2) sup
r∈[τ/2,τ ]

rγ‖un(r)‖X + C∗C̃ ≤ K∞n+ C∗C̃.

Hence

L4(un)(t) = tγ
t∫
t
2

‖Sα,β(t− τ)‖L(X)m1(τ)|un[g]τ |Bdτ

≤ 2γ(K∞n+ C∗C̃)

t∫
t
2

‖Sα,β(t− τ)‖L(X)m1(τ)dτ

≤ 2γ(K∞n+ C∗C̃)N1. (4.13)

From (4.11)-(4.13), we have

sup
t≥0

R2(un)(t) ≤ C2 + 2γ(K∞n+ C∗C̃)N1 ≤ C3 + 2γN1K
∞n. (4.14)

It follows from (4.6), (4.10), and (4.14) that

sup
t≥0

tγQ(un)(t) ≤ C4 + (N + 2γN1K
∞)n. (4.15)
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Gathering the results of (4.4), (4.5), and (4.15), we have

sup
t≥0

tγ‖Φ(un)(t)‖X ≤ C5 + (N + 2γN1K
∞)n.

It is inferred that

1 <
1

n
sup
t≥0

tγ‖Φ(un)(t)‖X ≤
C5

n
+ (N + 2γN1K

∞).

Passing the last relation into limits as n→ +∞, we get a contradiction to (4.3). �

Now, we set

Ω∞ =


0, if Sα,β(·) is compact,

sup
t≥0

t∫
0

‖Sα,β(t− τ)‖L(X)k(τ)dτ, otherwise.

Lemma 4.3. Let (B∗), (A∗), (F∗), (H∗) hold and

l∞ := Λ∞η + 4Ω∞ < 1. (4.16)

Then the solution operator Φ is χ∗−condensing.

Proof. Let D ⊂ BγR(ρ) be a bounded set. We have

χ∗
(
Φ(D)

)
= χ∞

(
Φ(D)

)
+ d∞

(
Φ(D)

)
. (4.17)

1. Applying the Hausdorf MNC χ and using the results in Lemma 3.2, we have

χ∞(Φ1(D)) = 0

χ∞(Φ2(D)) ≤ Λ∞ηχ∞(D)

χ∞(Φ3(D)) ≤ 4Ω∞χ∞(D).

Take the decompositions of Φ as in Lemma 3.2, we obtain

χ∞(Φ(D)) ≤ χ(Φ1(D)) + χ∞(Φ2(D)) + χ∞(Φ3(D))

≤ (Λ∞η + 4Ω∞)χ∞(D). (4.18)

2. Let D ⊂ BγR(ρ) be a bounded set. Then, for all u ∈ D, we have

tγ‖Φ(u)(t)‖X ≤ ρ as t→∞.

This means that ‖Φ(u)(t)‖X ≤ ρt−γ , ∀u ∈ D, for all large t. Similarly, for a large T,
one has dT (Φ(D)) ≤ ρT−γ . Thus

d∞
(
Φ(D)

)
= lim
T→∞

dT (Φ(D)) = 0. (4.19)

From (4.17), (4.18) and (4.19), the proof is completed. �

From the combination of Lemma (4.2) and Lemma (4.3), we obtain the following
theorem.

Theorem 4.4. Under the assumptions of Lemma 4.2 and Lemma 4.3, problem (1.1)-
(1.3) has at least a mild solution on R, such that tγ‖u(t)‖ = O(1) as t→ +∞.
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Proof. By the inequality (4.16), the solution operator Φ is a χ∗−condensing, owing
to Lemma 4.3. Indeed, if D ⊂ BγR(ρ) is bounded such that χ∗(D) ≤ χ∗

(
Φ(D)

)
.

Applying Lemma 4.3, we obtain

χ∗(D) ≤ χ∗
(
Φ(D)

)
≤ l∞χ∗(D).

Therefore χ∗(D) = 0, and so D is relatively compact.
From assumptions (4.2), (4.3) and Lemma 4.2, we have Φ(BγR(ρ)) ⊂ BγR(ρ). So ap-
plying Theorem 2.9, the solution operator Φ defined by (3.5) has a compact and
nonempty fixed point set Fix(Φ) ⊂ BγR(ρ). Hence, the problem (1.1)−(1.3) has a
mild solution u[g](t), t ∈ R with u ∈ BCγR(β). �

5. An example

Let Ω be a bounded domain in Rn with sufficiently smooth boundary ∂Ω and

L =

n∑
i,j=1

aij(x)
∂2

∂i∂j

be a uniformly elliptic second order differential operator, i.e, there exists a positive
constant c such that

n∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2, ∀ ξ ∈ Rn, x ∈ Ω.

With 0 < α ≤ β ≤ 1, µ > 0, a0 > 0, and each t ∈ [0, T ], x ∈ Ω, we consider the
following problem:

Dα+1
C u(t, x) + µDβ

Cu(t, x)− Lu(t, x) + a0u(t, x) = F
(
t, u(t, x), ut

)
, (5.1)

u(s) = g(s), s ≤ 0, (5.2)

u′(0) + h(u) = ψ. (5.3)

Let X = L2(Ω), A = L−a0 with D(A) = H2(Ω)∩H1
0 (Ω) and g ∈ B = Cγ , γ ∈ (0, α),

ψ ∈ X; 0 < t1 < t2 < · · · < tN <∞; Ci (i = 1, · · · , N) are constants. Then problems
(5.1)-(5.3) is in the form of the abstract model (1.1)-(1.3) with

f
(
t, x, u(t, x), ut

)
:= ϕα ∗ F

(
t, x, u(t, x), ut

)
= f̂1

(
t, x, u(t, x)

)
+ µ(t, x)

0∫
−∞

∫
Ω

ν(s, y)f̂2

(
y, u(t+ s, y)

)
dyds

and h(u) =

N∑
i=1

Ciu(t, ·).

(A) It is known that (see [25, Theorem 3.6]), L is a sectorial operator of angle π
2 (and

hence of angle βπ
2 ). Therefore, we have A is an ω−sectorial operator of angle βπ

2 with
ω = −a0 < 0.
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(F) The nonlinear function f, in which

f̂1 : R+ × Ω× R→ R, µ : (−∞, 0]× Ω→ R,

ν : (−∞; 0]× Ω→ R, f̂2 : Ω× R→ R
such that

(a) f̂1 is a continuous function such that f̂1(t, x, 0) = 0 and

|f̂1(x, t, z1)− f̂1(t, x, z2)| ≤ p(t)|z1 − z2|
for all x ∈ Ω and ∀ z1, z2 ∈ R, where p ∈ L1

loc(R+).
(b) µ ∈ BC(R+;L2(Ω)).
(c) ν is continuous and satisfies |ν(s, y)| ≤ Cνe

ν0s, ∀ s ∈ (−∞, 0], y ∈ Ω, where
ν0 > γ.

(d) f̂2 is continuous and |f̂2(y, z)| ≤ q(y)|z| for q ∈ L2(Ω).

Let f : R+ ×X × B → X such that

f(t, v, w)(x) = f1(t, v)(x) + f2(t, w)(x)

where

f1(t, v)(x) = f̂1(t, x, v(x))

f2(t, w)(x) = µ(t, x)

∫ 0

−∞

∫
Ω

ν(s, y)f̂2(y, w(s, y))dyds.

Concerning f1, we have

‖f1(t, v1)− f1(t, v2)‖X ≤ p(t)‖v1 − v2‖X , ∀v1, v2 ∈ X.
This implies

χ(f1(t, V )) ≤ p(t)χ(V ), for all bounded set V ⊂ X.
Regarding f2, using the Hölder inequality, we have

‖f2(t, w)‖2X = ‖µ(t, ·)‖2X
(∫ 0

−∞

∫
Ω

ν(s, y)f̂2(y, w(s, y))dyds

)2

≤ ‖µ(t, ·)‖2XC2
ν

(∫ 0

−∞
eν0s

∫
Ω

q(y)|w(s, y)|dyds
)2

≤ ‖µ(t, ·)‖2XC2
ν‖q‖2X

(∫ 0

−∞
eν0s‖w(s)‖Xds

)2

≤ ‖µ(t, ·)‖2XC2
ν‖q‖2X |w|2B

(∫ 0

−∞
e(ν0−γ)sds

)2

≤ 1

(ν0 − γ)2
‖µ(t, ·)‖2XC2

ν‖q‖2X |w|2B,

where we have taken the hypothesis ν0 > γ into consideration. Then we obtain

‖f2(t, w)‖X ≤
1

ν0 − γ
‖µ(t, ·)‖XCν‖q‖X |w|B.
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On the other hand, for any bounded set W ⊂ B, we see that

f2(t,W ) ⊂ {λµ(t, ·) : λ ∈ R},

that is, f2(t,W ) lies in an one dimensional subspace of X. Hence

χ(f2(t,W )) = 0.

Therefore, f fulfills (F ∗) with k(t) = p(t) and

m(t) = p(t),m1(t) =
1

ν0 − γ
‖µ(t, ·)‖XCν‖q‖X .

Therefore

N = sup
t≥0

t∫
0

‖Sα,β(t− τ)‖L(X)p(τ)dτ,

N1 =
Cν‖q‖X
ν0 − γ

sup
t≥0

t∫
0

‖Sα,β‖L(X)‖µ(τ, ·)‖Xdτ

(H) Regarding the function h, we have

‖h(u1)− h(u2)‖X ≤
N∑
i=1

|Ci|‖u1(ti, ·)− u2(ti, ·)‖X ≤

(
N∑
i=1

|Ci|

)
‖u1 − u2‖C .

Then

χ(h(Ω)) ≤

(
N∑
i=1

|Ci|

)
χ∞(Ω).

The assumption (H*)(ii) is satisfied with η =
∑N
i=1 |Ci|. On the other hand, it is

easily seen that

‖h(u)‖ ≤

(
N∑
i=1

|Ci|

)
‖u‖∞,

which implies (H*)(i), we have

θ(‖u‖∞) =

(
N∑
i=1

|Ci|

)
‖u‖∞.

By the above settings and simple computations, we get

K∞ = 1

Applying Theorem 4.4, we can conclude that, the problem (5.1)-(5.3) has at least one
mild solution on R satisfying tγ‖u(t)‖L2(Ω) = O(1) as t→ +∞ provided that

Λ∞
N∑
i=1

Ci + Υ∞ < 1, N + 2γN1 < 1, Λ∞
N∑
i=1

Ci + Ω∞ < 1.
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