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Abstract. We introduce a new fixed point theorem on complete metric spaces, which generalizes
some former results, and we apply this to obtain a surjectivity theorem for Gateaux differentiable
mappings between Banach spaces.
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1. INTRODUCTION

In 1922, Banach [8] stated a fixed point theorem, which became one of the most
notable results in the history of mathematical analysis, inspiring many other impor-
tant works. Amongst them, Caristi’s result [9] have been generally accepted as a very
useful one. It has been also referred as Caristi-Kirk’s (or Caristi-Kirk-Browder’s)
fixed point theorem, and it is essentially equivalent to Ekeland’s variational principle
[13] and even to completeness of the given metric space [22]. Caristi’s result asserts
that any self-mapping T of a complete metric space (X, d) such that

d(z,Tx) < p(x) = p(T)

for all z € X, has a fixed point, where ¢ is a nonnegative valued lower semi-continuous
function of X.

While there has been many generalizations of Caristi’s theorem [1, 2, 3, 4, 5, 6, 7,
10, 11, 12, 15, 16, 17, 18, 19, 20, 21], here we target especially those two: Downing-
Kirk’s fixed point theorem [12] and a theorem by Amini-Harandi [5], which we refer
to as Amini-Harandi’s fixed point theorem.

Throughout this paper, XY denotes the set of all functions from Y to X, and S[X]
stands for the image of a set X under a mapping S. Downing and Kirk strengthen
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Caristi’s result considering two complete metric spaces (X, d) and (Y, p), a self map-
ping T of X, a mapping S : X — Y with closed graph, a constant ¢ > 0 and a lower
semi-continuous function ¢ : S[X] — [0, 00) such that

max{d(z,Tx),cp(Sz,STx)} < ¢(Sz) — $(STx)

for all z € X. On the other hand, Amini-Harandi improved the left side of inequality
by a self-mapping 1 of [0,00) and the right side by a function ¢ : X x X — R with
certain properties, such that self-mappings T' of X satisfying

n(d(% T.’L‘)) <¢(Tz, .%')

for all € X, would have a fixed point. This is Corollary 2.4 in [5]. For more about
background, details on 7 and v, other results obtained and various applications given
by Amini-Harandi in the study in subject see [5].

It is worth noting that, beyond generalizing Caristi’s theorem, Amini-Harandi’s
result is strong enough to conclude Downing-Kirk’s fixed point theorem, but not in
a canonical manner, in the sense that, for given complete metric spaces (X,d) and
(Y, p), a self mapping T of X, a mapping S : X — Y with closed graph, a constant
¢ > 0 and a lower semi-continuous function ¢ : S[X] — [0,00), it is not always
possible to find an 1 and a ¢ such that n(d(z,Tx)) = max{d(z,Tx),cp(Sx,STx)}
and ¥(Tz,z) = ¢(Sz) — ¢(STx) for all x € Y. Instead, this generalization depends
on defining a new metric. In fact, it is apparent that Downing-Kirk’s theorem can
be derived as a rather simple conclusion of even Caristi’s theorem, since the metric
d' defined as d'(z,y) = max{d(z,y),cp(Sx,Sy)} on X, makes X complete thanks
to closed graph of S and completenesses of (X,d) and (Y,d), and it also makes the
function ¢ : X — [0, 00) defined as ¢(z) = ¢(Sx) lower semi-continuous.

We devote this study to introducing a common canonical generalization of
Downing-Kirk’s and Amini-Harandi’s fixed point theorems, which can not be triv-
ially obtained as their corollary. Thereafter, we prove our main result and obtain a
surjectivity theorem as an application of it.

2. MAIN RESULTS

In the sequel, RT denotes the set of all nonnegative real numbers, ¥ 4 denotes the
set of all mappings ¢ : A x A — R such that ¢(-,a) : A — R is upper semi-continuous
for all a € A, there exists an @ € A making ¢ (a, -) lower semi-continuous and bounded
below, 1 (a,b) + (b, c) < (a,c) for all a,b,c € A and ¥(a,a) =0 for all a € A, where
A is a subspace of a metric space, while I" denotes the set of all mappings v : R™ — RT
such that v is nondecreasing and continuous, y(a+ 3) < v(a)+v(8) for all a, 8 € R

and y~[{0}] = {0}.

Lemma 2.1. Let (X,d) and (Y, p) be complete metric spaces, T : X — X, 5 : X —
Y, 7,6 €T and ¢p € Uy, where A is a set such that S[X] C A C Y. Define the
relation < on X with

r <y & max{y(d(z,y)),(p(S, Sy))} < ¢(Sz, Sy) (2.1)
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forall xz,y € X. If S has closed graph, then (X, <) is a partially ordered set and has
at least one minimal element.

Proof. Tt is easy to show that < is a partial order on X.

Suppose that C'is a chain on (X, <). There exists a totally ordered infinite set (I, <p),
such that it can be written C' = {z; € X : i € I'}, where j <; i implies z; < x; for all
1,7 € I. Then

0< V(d(xlvxj)) < ’L[J(S(El, S(ﬂ]) < 1/)(&75%) - 1/)(&75%)7

which gives ¥(a, Sz;) < (a,Sz;), where 1(a,-) is lower semi-cointinuous and
bounded below. Hence {1(a, Sz;)}icr is a decreasing net of reals bounded below.
Thus we can find an increasing sequence (i,,) on I such that

HILII;O Y(a, Sz;,) = %EW("’ Sx;).

Let ¢ > 0. For y(e) > 0, there exists ng € N such that m > n > ng implies
0 <(a,Sz;,) —(a,Sx;,,) < ~v(e) for all m,n € N, and

Yd(zs,,,2i,)) < Y(Swi,,,Sxi,) < b(a, Szy,) —p(a, Swy,) < v(e).

v(d(z;,, ,xi,)) < ~v(e) implies d(x;,, ,x;,) < €, that is (z;,) is a Cauchy sequence on
(X,d), and there is an z € X such that (x;,) — x. Then, since 7 is continuous we
have

y(d(z,z;,)) = limsupy(d(z;,,, z;,)) < limsupy(Sx;,,, Sz;,). (2.2)

m,n—oco m,n—co

On the other hand by (2.1) we similarly have
0(p(Sxi,,, Sz;,)) < (S, Sx;,) < ¥(a, Sx;,) —(a, Sz,,,) < y(e),
that is 0 (p(Sz;,,, Sx;,)) < d(g), or p(Sx;,,,, Sx;, ) < e. So (Sx;,) is a Cauchy sequence
on (Y,p) and (Sz;,) — y for some y € Y. Since S has closed graph, (z;,) — = and
(Sx;,) — y give y = Sz. Also
d(p(Sz, Sx;,)) = limsup d(p(Sx;,, , Sz;, ) < limsupyp(Sx;,,, Sz;,). (2.3)

m,n— oo m,n— 00

(
)

Since (-, x;,) is upper semi-continuous we have

lim sup $:(Sz,,, Szs,) < ¥(Sz, Sz, (2.4)

m,n— 0o

Then max{vy(d(z,z;,)),d(p(Sz,Sz;, )} < (Sx,Sz;,) by (2.2), (2.3) and (2.4), that
isxz =<z, foralln e N.

Assume that x is not a lower bound for C. So there exists an xg € C such that
x & xo. Since C is a chain and z < z;,, we also have xg < z;,, for all n € N. Then

0 < ~y(d(xo,xi,)) < (@, Szi,) — ¥(a, Szo)
which gives ¥(a, Sxo) < ¢(a, Sz;,) for all n € N so that

¥(a, Sxg) = %gz/}(a, Sx;) = nh—>120 ¥(a, Sx;,)
and therefore

0 < lim y(d(zo,x;,)) < lim (a,Sz;, ) — (G, Szo) = 0.

n—oo n—oo
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Then the sequence y(d(xo, z;, )) converges to 0 = v(0) which implies by the properties
of v that (d(zo,z;,)) — 0, so that (z;,) — zo. That is, we have the contradiction
x = xy. Hence z must be a lower bound of C' and by Zorn’s Lemma, (X, <) has a
minimal element. t

In the following, for any mapping v : Rt — R, Q, denotes the set of all such
mappings 1 : Rt — RT that, there exists an &, > 0 such that n(¢) < &, implies
~v(t) < n(t) for all t € RT.

Lemma 2.2. Let (X,d) and (Y, p) be complete metric spaces, T : X — X, S: X —
Y,v,6el,neQ,, 0 € Qs and ¢ € U4, where S[X] C A CY. Define a relation <
(which is not needed to be a partial order) on X with

z 2y < max{n(d(z,y)),0(p(Sz, Sy))} < (Sz, Sy) (2.5)
for all z,y € X. If S has closed graph, then (X, =) has minimal element.

Proof. Let a € A such that 1(a, ) is lower semi-continuous and bounded below and
let

Yo = Iig)f(z/}(&,Sx).

Also let € := min{e,,ep} and Xo := {z € X : ¢(a,x) < 1o +€}. Suppose that (z,,) is
a sequence on Xy and (z,) — x on (X,d). Then ¢(a,x,) <o+ ¢ for all n € N and
lower semi-continuity of 9 (a,-) : X — RT implies

P(a,z) <liminf(a,x,) <o +¢
n—oo
so that x € Xj.
Therefore X is a closed nonempty subset of X such that g < ¥(a,z) < ¢ + ¢ for

all z € Xy. Then also X is complete and yet the restriction of S on X has closed
graph. If we define a relation < on X by

r <y max{y(d(z,y)),(p(Sz, Sy))} < ¥(Sz, Sy)

then by Lemma 2.1 (X, <) has a minimal element x.,.
Given an = € X such that z < z,, that is

0 < n(d(z,z)) < P(a,Sz.) — ¥(a, Sz).
Then,
gives x € Xy. x,x, € X and = = z, yield
n(d(z, z.)) < Y(Sz, Sxy) < Y(a,Sz.) —¥(a,Sz) <e <e,
and
O(p(Sx,Sx,)) < Y(Sz,Sx,) < Y(a,Szy) —P(a, Sz) <e < .
Since n € Q, and 0 € €5, these implies that

V(d(z, x.)) <nld(z,z.)) and 6(p(Sz, Sw.)) < 0(p(Sz, Sz.)).
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Hence
max{y(d(z,z+)), 6(p(Sz, Sz4))} < max{n(d(z,z.)),0(p(Sz, Sz.))}
< w(S:E, S:E*),
that is ¢ < x,. Minimality of z, in (Xo, <) yields = z., which shows that z, is also
minimal in (X, <). d

Theorem 2.3. Let (X,d) and (Y, p) be complete metric spaces, T : X — X, S :
X—-Y,v6el,neq,, 0€Qs andp € Y, where S(IX] CACY. If S has closed
graph and

max{n(d(Tx,x)),0(p(STz,Sx))} < (STz,Sz).
for all x € X, then T has a fized point.

Proof. We have Tx < z for all x € X, where =< is the relation on X defined in
(2.5). Then (X, <) has a minimal element z, by Lemma 2.2 and thus Tz, < z, gives
Tr, = Ts. O

Note that Theorem 2.3 generalizes Amini-Harandi’s fixed point theorem, namely
Corollary 2.4 in [5], with X =Y, S = Ix, the identity mapping for X, A= X, § =1,
U{Q, : vy €T} = Ain [5] and 6 = n. It also generalizes Downing-Kirk’s fixed point
theorem [12] with A = S[X], v = =1z, n = 6§ = f, where f : Rt — R7 is the
function given by f(z) = cx with a constant ¢ > 0, and ¥ (y1,y2) = d(y2) — d(y1),
where ¢ : S[X] — R is lower semi-continuous.

3. APPLICATION

Suppose X and Y are locally convex topological vector spaces.

A mapping S : X — Y is said to be Géteaux differentiable [12, 14] at a point
r € X, if the limit

dSu(y) = lim SEHW) = ST
t—0+ t

exists for each y € Y and dS, : X — Y is a linear operator. If S : X — Y is
Gateaux differentiable, with the derivative dS, at a point x € X, then the dual of
dS, is denoted with dS!, its nullspace is denoted with N(dS%) and N(dS,)* is the

x)

annihilator of N(dS.) in Y. We also use the notations
D,(S,e) ={a(Su—Sz):a>0,u e X, ||Su—Sz| <e}
and
Do(S) = [ Da(S,e).
e>0

We first express the following two lemmas from [2], followed by another lemma,
which will facilitate the proof of our surjectivity result.

Lemma 3.1. [12] Let X be a normed space, x,y,z € X, a« > 1, 8 € (0,1) and
ez —y) = (z —y)l < Bllz =yl
Then 1
o ol < 155 Ay = 21 = e = =1
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Lemma 3.2. [12] Let X be a locally convex topological vector space, Y be a Banach
space and S : X — Y be Gateaux differentiable at the point x € X. Then

Lemma 3.3. Given a complete metric space (X,d) and a Banach space Y. Let
S : X =Y have closed graph, v,0 € I' and n € Q.. Suppose that there exist a
yo € Y, a constant B € (0,1), a function € : X — (0,00) and sequences (o) on
(RT)X, (U,) on XX such that

(a) the sets Vy, :={v € X : n(d(z,v)) < (||Sx — Sv||), Sv =y} are nonempty for
all y € B(Sz,e(x)) N S[X],

(b) (0 (2))(STwz ~ 52) — (yo — Sz)| < Blyo — Sz| for alln € N,

(¢) (SUpx) — Sz,

(d) SU,x # Sz for each n € N.
Then yo € S[X].

Proof. Assume that yo ¢ S[X]. Let x € X. By (c), there exists an n; € N such that
|SU,z — Sz|| < e(x) for all n > ny. On the other hand, since

[[(an (%)) (SUnz — Sx) — (yo — Sz)|| < Bllyo — Szl
and yo ¢ S[X], we have
0# (L= B)llyo — Szl < an(2) - |SUpz — Szl
and ||SU,x — Sz|| — 0 implies «,(z) — co. Pick ny € N such that «,(x) > 1 for all
n > ng, and say ng := max{ny, ng}. Then SU,,xz # Sz and ay,(z) > 1. We have

1+3
0 < [|SUpyz — Szf| < 1-5 (152 = yoll = [[SUnez — yoll)

by Lemma 3.1. Also, SUp,z € B(Sz,e(z)) N S[X] and Vsu,, » # D by (a).
Let T': X — X be a choice function for the family of nonempty sets {Vsu, » : 2 € X}.
Then, n(d(xz,Tz)) < 6(||Sz — STz||) and STz = SU,,x, which give

1+
ST — Sal) < 775 (152~ yoll = 15T~ yol)).

We define a mapping ¢ : S[X] x S[X] — R such that

148
w0 = (155 (b=l = la - wl) )
for all a,b € S[X]. Noting that 6 € T', we observe that ¢» € Ugx]. In addition, we
have
n(d(xz,Tz)) < 6(||Sz — STx|) < (STx, Sz),
which may be written as
max{n(d(Tz,z)),0(p(STx, Sx))} < (ST, Sx),

where § = § € T' C Qs and p is the metric induced by the norm on Y. Then
by Theorem 2.3, T has a fixed point. However, if x, is a fixed point of T, then
Sw, = STx, = SUp,x contradicts with (d). This completes the proof. O
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Theorem 3.4. Let X andY be Banach spaces and S : X —'Y be a Gateaux differen-
tiable mapping with a closed graph. Also suppose that given § € T' ande : X — (0,00)
such that

(1) the sets Vi, :={v € X : n(|lxz —v|))) < (||Sx — Sv|)), Sv =y} are nonempty for
all y € B(Sz,e(x)) N S[X],

(ii) N(dS.) = {0} for each z € X.
Then S is a surjective mapping.

Proof. We assume the contrary. Then there exists a yo € Y such that yg # Sx for
each x € X. Clearly, (i) is equivalent to the condition (a) of Lemma 3.3.
Let x € X. By N(dS’) = {0}, we have N(dS’)* =Y and by Lemma 3.2 we also have

D,(S) =Y, in particular yo — Sz € D,(S). Then for every € > 0, yo — Sz € D, (S, ¢)
and for each n € N, there exists a («,(z))(SU,(z) — Sz) with ay,(x) > 0, U, (z) € X,
[|SU,(z) — Sz|| < 1 such that

(e @) (ST () — 5)) — (90 — S| < 10— 520,

2n
This procedure defines the sequences () on (RT)X and (U,) on XX such that the
conditions (b), (c) and (d) in Lemma 3.3 are satisfied for 3 = %. Thus yo € Y, which
is a contradiction. Hence S is surjective. (]
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