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Abstract. In this article, we introduce concepts of Pompeiu-Hausdorff bipolar metric, multivalued
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to these multivalued mappings. Finally we give an example which presents the applicability of our

obtained results.
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1. Introduction

In 2016, Mutlu and Gürdal [15] introduced the notion of bipolar metric space as
a type of partial distance. Moreover, they stated the link between metric spaces and
bipolar metric spaces, especially in the context of completeness, and gave some exten-
sions of known fixed point theorems as Banach’s and Kannan’s. After that, Mutlu,
Özkan and Gürdal [16] gave some generalizations of coupled fixed point theorems in
these metric spaces.

There exist various generalizations of the Banach contraction principle. One of
them belongs to Nadler. In 1969, Nadler [17] introduced the concept of multival-
ued contraction mapping and he gave some important results, examples and many
elementary fixed point theorems for these contraction mappings. After that, many
authors examined multivalued contraction mappings in various metric spaces and they
expressed Nadler’s and some well known fixed point theorems for these contraction
mappings [4, 9, 10, 12, 14]. Recently, some authors continue to study on this area
[1, 2, 3, 5, 6, 7, 8, 11, 13, 18, 19, 20, 21, 22].

In this paper, we introduce the concepts of Pompeiu-Hausdorff bipolar metric, mul-
tivalued covariant and contravariant contraction mappings in bipolar metric spaces.
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In addition to these, we express the two main fixed point theorems, which are sup-
ported with four important corollaries, related to these multivalued mappings. Finally
we give an example which presents the applicability of our obtained results.

2. Bipolar metric spaces

In this section, we give some definitions and notions related to bipolar metric
spaces.

Definition 2.1. [15] A bipolar metric space is a triple (X,Y, d) such that X,Y 6= ∅
and d : X × Y → R+ is a function which satisfies the properties

(B0) if d (x, y) = 0, then x = y,
(B1) if x = y, then d (x, y) = 0,
(B2) if x, y ∈ X ∩ Y , then d (x, y) = d (y, x),
(B3) d(x1, y2) ≤ d(x1, y1) + d(x2, y1) + d(x2, y2),

for all (x, y), (x1, y1), (x2, y2) ∈ X × Y , where R+ denotes the set of all non-negative
real numbers. Then d is called a bipolar metric on the pair (X,Y ).

Definition 2.2. [15] Let (X1, Y1) and (X2, Y2) be pairs of sets and given a function
f : X1∪Y1 → X2∪Y2. If f(X1) ⊆ X2 and f(Y1) ⊆ Y2, we call f a covariant map from
(X1, Y1) to (X2, Y2) and denote this with f : (X1, Y1) ⇒ (X2, Y2). If f(X1) ⊆ Y2 and
f(Y1) ⊆ X2, then we call f a contravariant map from (X1, Y1) to (X2, Y2) and write
f : (X1, Y1)↘↗ (X2, Y2). In particular, if d1 and d2 are bipolar metrics on (X1, Y1) and
(X2, Y2), respectively, we sometimes use the notations f : (X1, Y1, d1) ⇒ (X2, Y2, d2)
and f : (X1, Y1, d1)↘↗ (X2, Y2, d2).

Definition 2.3. [15] Let (X,Y, d) be a bipolar metric space. A point u ∈ X ∪ Y
is called a left point if u ∈ X, a right point if u ∈ Y and a central point if it is
both left and right point. Similarly a sequence (xn) on the set X is called a left
sequence and a sequence (yn) on Y is called a right sequence. In a bipolar metric
space, a left or a right sequence is called simply a sequence. A sequence (un) is
said to be convergent to a point u, iff (un) is a left sequence, u is a right point and
lim
n→∞

d(un, u) = 0; or (un) is a right sequence, u is a left point and lim
n→∞

d(u, un) = 0.

A bisequence (xn, yn) on (X,Y, d) is a sequence on the set X × Y . If the sequences
(xn) and (yn) are convergent, then the bisequence (xn, yn) is said to be convergent,
and if (xn) and (yn) converge to a common point, then (xn, yn) is called biconvergent.
(xn, yn) is a Cauchy bisequence, if lim

n,m→∞
d(xn, ym) = 0. In a bipolar metric space,

every convergent Cauchy bisequence is biconvergent. A bipolar metric space is called
complete, if every Cauchy bisequence is convergent, hence biconvergent.

Definition 2.4. [15] Let (X1, Y1, d1) and (X2, Y2, d2) be bipolar metric spaces.

(1) A map f : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called left-continuous at a point
x0 ∈ X1, if for every ε > 0, there exists a δ > 0 such that d1 (x0, y) < δ
implies d2 (f (x0) , f (y)) < ε all y ∈ Y1.

(2) A map f : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called right-continuous at a point
y0 ∈ Y1, if for every ε > 0, there exists a δ > 0 such that d1 (x, y0) < δ implies
d2 (f (x) , f (y0)) < ε for all x ∈ X1.
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(3) A map f is called continuous, if it is left-continuous at each point x ∈ X1 and
right-continuous at each point y ∈ Y1.

(4) A contravariant map f : (X1, Y1, d1)↘↗ (X2, Y2, d2) is continuous if and only
if it is continuous as a covariant map f : (X1, Y1, d1) ⇒ (Y2, X2, d2)

It can be seen from the definition that a covariant or a contravariant map f
from (X1, Y1, d1) to (X2, Y2, d2) is continuous if and only if (un) → v on (X1, Y1, d1)
implies (f (un))→ f (v) on (X2, Y2, d2).

3. Main results

Definition 3.1. Let (X,Y, d) be a bipolar metric space. A set A ⊆ X ∪ Y is called
closed if every limit of convergent sequence in A belong to A.

Definition 3.2. Let (X,Y, d) be a bipolar metric space.

(1) A set A ⊆ X is called bounded if δ(A) = sup{d(a, y) : a ∈ A} < ∞ for all
y ∈ Y .

(2) A set B ⊆ Y is called bounded if δ(B) = sup{d(x, b) : b ∈ B} < ∞ for all
x ∈ X.

Definition 3.3. Let (X,Y, d) be a bipolar metric space. We denote

CB(X) = {A : A is a nonempty closed and bounded subset of X}
CB(Y ) = {B : B is a nonempty closed and bounded subset of Y }
D(a,B) = inf{d(a, b) : b ∈ B ⊂ Y }, a ∈ X
D(A, b) = inf{d(a, b) : a ∈ A ⊂ X}, b ∈ Y
H(A,B) = max{sup{D(a,B) : a ∈ A}, sup{D(A, b) : b ∈ B}}

for all A ∈ CB(X) and B ∈ CB(Y ). Then H is a bipolar metric on (CB(X), CB(Y )),
called the Pompeiu-Hausdorff bipolar metric induced by bipolar metric d.

Definition 3.4. Let (X,Y, d) be a bipolar metric space.

(1) A covariant mapping T : (X,Y ) ⇒ (CB(X), CB(Y )) is said to be a mul-
tivalued covariant contraction mapping if there exists a fixed real number
λ ∈ (0, 1) such that

H(Tx, Ty) ≤ λd(x, y) (3.1)

for all x ∈ X and y ∈ Y .
(2) A contravariant mapping T : (X,Y )↘↗ (CB(X), CB(Y )) is said to be a mul-

tivalued contravariant contraction mapping if there exists a fixed real number
λ ∈ (0, 1) such that

H(Ty, Tx) ≤ λd(x, y) (3.2)

for all x ∈ X and y ∈ Y .
(3) A point u ∈ X ∪ Y is called a fixed point of a multivalued covariant or

contravariant map T , if u ∈ Tu.
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Lemma 3.5. Let (X,Y, d) be a bipolar metric space, A ∈ CB(X), B ∈ CB(Y ) and
ε > 0. Then there exists a b = b(a) ∈ B for any a ∈ A (or there exists an a = a(b) ∈ A
for any b ∈ B) such that

d(a, b) ≤ H(A,B) + ε. (3.3)

Proof. As ε > 0, from definition of D(a,B), D(A, b) and H(A,B), it is clear that
there exists a b ∈ B for any a ∈ A such that

d(a, b) ≤ D(a,B) + ε ≤ H(A,B) + ε

and there exists an a ∈ A for any b ∈ B such that

d(a, b) ≤ D(A, b) + ε ≤ H(A,B) + ε. �

Lemma 3.6. Let (X,Y, d) be a bipolar metric space, A ∈ CB(X), B ∈ CB(Y ) and
h ∈ (0, 1). Then there exists b = b(a) ∈ B for any a ∈ A (or there exists a = a(b) ∈ A
for any b ∈ B) such that

hd(a, b) ≤ H(A,B). (3.4)

Proof. If H(A,B) = 0, then a ∈ B and for b = a the inequality (3.4) is satisfied. If
H(A,B) > 0, then, since h ∈ (0, 1), we can take

ε = (h−1 − 1)H(A,B) > 0. (3.5)

From Lemma 3.5 and equality (3.5), we obtain

hd(a, b) ≤ H(A,B). �

Theorem 3.7. Let (X,Y, d) be a complete bipolar metric space. If

T : (X,Y ) ⇒ (CB(X), CB(Y ))

is a multivalued covariant contraction mapping, then
(i) T has at least one fixed point;
(ii) for each (x0, y0) ∈ X × Y there exists a sequence (xn, yn) ∈ X × Y such that
xn+1 ∈ T (xn), yn+1 ∈ T (yn) and xn → u, yn → u as n→∞, with u ∈ T (u).

Proof.
(i) Let x0 ∈ X, y0 ∈ Y and h =

√
λ. Denote x1 ∈ Tx0. From Lemma 3.6, we can

choose
∃y1 ∈ Ty0 ; hd(x1, y1) ≤ H(Tx0, T y0),
∃x2 ∈ Tx1 ; hd(x2, y1) ≤ H(Tx1, T y0),
∃y2 ∈ Ty1 ; hd(x2, y2) ≤ H(Tx1, T y1),

...
∃yn ∈ Tyn−1 ; hd(xn, yn) ≤ H(Txn−1, Tyn−1),
∃xn+1 ∈ Txn ; hd(xn+1, yn) ≤ H(Txn, T yn−1),

for n ≥ 1. So, we obtain a bisequence (xn, yn) ∈ X × Y . Thus, from (3.1) we get

hd(xn, yn) ≤ λd(xn−1, yn−1) = h2d(xn−1, yn−1)
⇒ d(xn, yn) ≤ hd(xn−1, yn−1)

hd(xn+1, yn) ≤ λd(xn, yn−1) = h2d(xn, yn−1)
⇒ d(xn+1, yn) ≤ hd(xn, yn−1)
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Repeating this process n−times, we get

d(xn, yn) ≤ hnd(x0, y0)
d(xn+1, yn) ≤ hnd(x1, y0).

For any n,m ∈ N with n ≤ m, we obtain

d(xn, ym) ≤ d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1) + d(xn+2, yn+1)
+ · · ·+ d(xm, ym−1) + d(xm, ym),

≤ hnd(x0, y0) + hnd(x1, y0) + hn+1d(x0, y0) + hn+1d(x1, y0)
+ · · ·+ hm−1d(x1, y0) + hmd(x0, y0),

= (hn + hn+1 + · · ·+ hm)d(x0, y0)
+(hn + hn+1 + · · ·+ hm)d(x1, y0),

= ( hn

1−h )d(x0, y0) + ( hn

1−h )d(x1, y0).

Thus, d(xn, ym)→ 0 as n,m→∞. Similarly, for any n,m ∈ N with m < n we obtain

d(xn, ym) ≤ d(xn, yn−1) + d(xn−1, yn−1) + d(xn−1, yn−2) + d(xn−1, yn−2)
+ · · ·+ d(xm+1, ym+1) + d(xm+1, ym),

≤ hn−1d(x1, y0) + hn−1d(x0, y0) + hn−2d(x1, y0) + hn−2d(x0, y0)
+ · · ·+ hm+1d(x0, y0) + hmd(x1, y0),

= (hn−1 + hn−2 + · · ·+ hm)d(x1, y0)
+(hn−1 + hn−2 + · · ·+ hm+1)d(x0, y0),

= (h
n−1

1−h )d(x1, y0) + (h
n−1

1−h )d(x0, y0).

Then d(xn, ym)→ 0 as n,m→∞. We conclude that (xn, yn) is a Cauchy bisequence.
Since (X,Y, d) is complete, (xn, yn) converges (in particular biconverges) to some
u ∈ X ∩ Y . So,

lim
n→∞

xn = u and lim
n→∞

yn = u.

From hypothesis and property (B3) we have that

D(u, Tu) ≤ d(u, yn+1) + d(xn+1, yn+1) +D(xn+1, Tu),
≤ d(u, yn+1) + d(xn+1, yn+1) +H(Txn, Tu),
≤ d(u, yn+1) + d(xn+1, yn+1) + λ(Txn, Tu)→ 0

as n → ∞. Thus, D(u, Tu) = 0. Since Tu is closed, we get u ∈ Tu. Hence u is a
fixed point of T .
(ii) The sequences (xn) and (yn) that are defined in the proof of (i), satisfies the
conditions in (ii). �

Theorem 3.8. Let (X,Y, d) be a complete bipolar metric space. If

T : (X,Y )↘↗ (CB(X), CB(Y ))

is a multivalued contravariant mapping such that

H(Ty, Tx) ≤ αd(x, y) + β[D(x, Tx) +D(Ty, y)] (3.6)

for all x ∈ X and y ∈ Y where α, β ≥ 0 and α+ 2β < 1. Then T has a fixed point.
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Proof. Let x0 ∈ X, y0 ∈ Tx0 and r = α+β
1−β . We choose an x1 ∈ Ty0. Then it follows

from Lemma 3.6 that

∃y1 ∈ Tx1 ; d(x1, y1) ≤ H(Ty0, Tx1) + r,
∃x2 ∈ Ty1 ; d(x2, y1) ≤ H(Ty1, Tx1) + r2,
∃y2 ∈ Tx2 ; d(x2, y2) ≤ H(Ty1, Tx2) + r3,

...
∃yn ∈ Txn ; d(xn, yn) ≤ H(Tyn−1, Txn) + r2n−1,

∃xn+1 ∈ Tyn ; d(xn+1, yn) ≤ H(Tyn, Txn) + r2n,

for n ≥ 1. From (3.6) and Lemma 3.5, we get

d(xn, yn) ≤ αd(xn, yn−1) + β[D(xn, Txn) +D(Tyn−1, yn−1)] + r2n−1

≤ αd(xn, yn−1) + β[d(xn, yn) + d(xn, yn−1)] + r2n−1

implies

d(xn, yn) ≤ α+β
1−β d(xn, yn−1) + r2n−1

1−β
= rd(xn, yn−1) + r2n−1

1−β

and

d(xn, yn−1) ≤ αd(xn−1, yn−1) + β[D(xn−1, Txn−1) +D(Tyn−1, yn−1)] + r2n−2

≤ αd(xn−1, yn−1) + β[d(xn−1, yn−1) + d(xn, yn−1)] + r2n−2

implies

d(xn, yn−1) ≤ α+β
1−β d(xn−1, yn−1) + r2n−2

1−β
= rd(xn−1, yn−1) + r2n−2

1−β .

Then we conclude that

d(xn, yn) ≤ r2d(xn−1, yn−1) + r2n−2

1−β + r2n−1

1−β
...

≤ r2nd(x0, y0) +
∑2n
i=1 r

i 1
1−β

≤ r2nd(x0, y0) + (2n)r2n

1−β .

On the other hand, similarly we get

d(xn+1, yn) ≤ αd(xn, yn) + β[D(xn, Txn) +D(Tyn, yn)] + r2n

≤ αd(xn, yn) + β[d(xn, yn) + d(xn+1, yn)] + r2n

implies

d(xn+1, yn) ≤ α+β
1−β d(xn, yn) + r2n

1−β
= rd(xn, yn) + r2n

1−β
...

≤ r2n+1d(x0, y0) +
∑2n+1
i=1 ri 1

1−β

≤ r2n+1d(x0, y0) + (2n+1)r2n+1

1−β .
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For any n,m ∈ N with n ≤ m, we have

d(xn, ym) ≤ d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1)
+ · · ·+ d(xm, ym−1) + d(xm, ym)

≤ r2nd(x0, y0) + 2nr2n

1−β + r2n+1d(x0, y0) + (2n+1)r2n+1

1−β

+r2n+2d(x0, y0) + (2n+2)r2n+2

1−β + · · ·+ r2m−1d(x0, y0)

+ (2m−1)r2m−1

1−β + r2md(x0, y0) + (2m)r2m

1−β
...
≤ (r2n + r2n+1 + · · ·+ r2m)d(x0, y0)

+ (2n)r2n+(2n+1)r2n+1+···+(2m)r2m

1−β .

Since r < 1, d(xn, ym) → 0 as n,m → ∞. Similarly, if m < n, it is clear that
d(xn, ym)→ 0 for n,m→∞. Then (xn, ym) is a Cauchy bisequence. Since (X,Y, d)
is complete bipolar metric space, (xn, yn) converges (in particular biconverges) to a
point u ∈ X ∩ Y . Then

lim
n→∞

xn = u and lim
n→∞

yn = u.

From hypothesis and property (B3) we have that

D(u, Tu) ≤ d(u, yn+1) + d(xn+1, yn+1) +D(xn+1, Tu)
≤ d(u, yn+1) + d(xn+1, yn+1) +H(Tyn, Tu)
≤ d(u, yn+1) + d(xn+1, yn+1) + αd(u, yn) + β[D(Tyn, yn) +D(u, Tu)]
≤ d(u, yn+1) + d(xn+1, yn+1) + αd(u, yn) + β[d(xn+1, yn) +D(u, Tu)]

for all n ∈ N. As n→∞, we get

D(u, Tu) ≤ βD(u, Tu).

Since b < 1, D(u, Tu) = 0. This implies u ∈ Tu. Then u is a fixed point of T . �

From Theorem 3.8, we obtain the following corollaries.

Corollary 3.9. Let (X,Y, d) be a complete bipolar metric space and

T : (X,Y )↘↗ (X,Y )

be a contravariant mapping such that

d(Ty, Tx) ≤ αd(x, y) + β[d(x, Tx) + d(Ty, y)] (3.7)

for all x ∈ X and y ∈ Y , where α, β ≥ 0 and α+ 2β < 1. Then T has a fixed point.

Corollary 3.10. Let (X,Y, d) be a complete bipolar metric space and

T : (X,Y )↘↗ (CB(X), CB(Y ))

be a multivalued contravariant mapping such that

H(Ty, Tx) ≤ a1d(x, y) + a2D(x, Tx) + a3D(Ty, y) (3.8)

for all x ∈ X and y ∈ Y where a1, a2, a3 ≥ 0 and a1 + a2 + a3 < 1. Then T has a
fixed point.
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Corollary 3.11. Let (X,Y, d) be a complete bipolar metric space. If

T : (X,Y )↘↗ (CB(X), CB(Y ))

is a multivalued contravariant mapping, then T has a fixed point.

Corollary 3.12. Let (X,Y, d) be a complete bipolar metric space and

T : (X,Y )↘↗ (CB(X), CB(Y ))

be a multivalued contravariant mapping such that

H(Ty, Tx) ≤ β[D(x, Tx) +D(Ty, y)] (3.9)

for all x ∈ X and y ∈ Y where β ∈
[
0, 12
)
. Then T has a fixed point.

Example 3.13. Let X = {0, 1, 2} and Y = {1, 2, 3}. Define d : X × Y → R+ such
that

d(1, 1) = d(2, 2) = 0,
d(1, 2) = d(2, 1) = 5,
d(0, 1) = 13, d(0, 2) = 12,
d(0, 3) = 15, d(1, 3) = 14, d(2, 3) = 9.

Then (X,Y, d) is a complete bipolar metric space. A covariant mapping

T : (X,Y ) ⇒ (CB(X), CB(Y ))

be defined by

T (0) = {1}, T (1) = T (2) = {2}, T (3) = {1, 2}.
Note that, Tx and Ty are closed and bounded for all x ∈ X and y ∈ Y with respect
to the bipolar metric space (X,Y, d). Then we conclude that the condition

H(Tx, Ty) ≤ kd(x, y)

for all x ∈ X and y ∈ Y is satisfied for the constant k = 5
9 . From Theorem 3.1, we

say that T has a fixed point. It is 2 ∈ X ∩ Y .
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