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1. Introduction

In this paper we analyse the strong convergence of a generalized method of alter-
nating resolvents in Hilbert spaces, introduced by Boikanyo and Moroşanu.

Let H be a Hilbert space and A and B be two maximal monotone operators.
Motivated by the convex feasibility problem and the alternating projections method
[9, 10], the method of alternating resolvents is recursively defined as follows: x0 ∈ H
and {

x2n+1 = JA
βn

(x2n)

x2n+2 = JB
µn

(x2n+1)

where (βn), (µn) are sequences of positive real numbers. This method was shown to
converge weakly to a common zero of the operators, first in [3] for the case when (βn)
and (µn) are constant and equal, and later in [6] for the general case (also including
error terms). In order to obtain strong convergence, the method of alternating re-
solvents was generalized by Boikanyo and Moroşanu in [8] in the following way. For
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n ∈ N we define {
x2n+1 = JA

βn
(αnu+ (1− αn)x2n + en)

x2n+2 = JB
µn

(λnu+ (1− λn)x2n+1 + e′n)
(MAR)

where u, x0 ∈ H are given, (αn), (λn) ⊂ (0, 1), (βn), (µn) ⊂ (0,+∞), and (en) and
(e′n) are sequences of errors. We denote by (MAR?) the exact counterpart of the
algorithm (MAR), i.e. without error terms, which is defined by{

y2n+1 = JA
βn

(αnu+ (1− αn)y2n)

y2n+2 = JB
µn

(λnu+ (1− λn)y2n+1)
(MAR?)

where y0 = x0.
Motivated by the success of the Halpern iterations in fixed point theory [17], the

Halpern-type proximal point algorithm (HPPA)

xn+1 = αnu+ (1− αn)Jβn(xn) (HPPA)

was considered as a way to upgrade the weak convergence of the proximal point
algorithm to strong convergence (see e.g. [5, 18, 35]). The generalized method of
alternating resolvents can be seen as form of Halpern-type proximal point algorithm
generalized to two operators in an alternating fashion (cf. Section 3.3 – see also [25]).

Boikanyo and Moroşano showed in [8] that (MAR) is strongly convergent under the
following mild assumptions.

(C1) limαn = 0
(C2) limλn = 0
(C3) either

∑∞
n=0 αn =∞ or

∑∞
n=0 λn =∞

(C4) (βn) is bounded away from zero and such that lim
(

1− βn+1

βn

)
= 0

(C5) (µn) is bounded away from zero and such that lim
(

1− µn+1

µn

)
= 0.

Theorem 1.1 ([8, Theorem 3.2]). Let A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H

be maximal monotone operators such that S := A−1(0) ∩ B−1(0) 6= ∅. For x0, u ∈ H,
let (xn) be generated by (MAR). Assume that (C1) − (C5) hold. If

∑∞
n=0 ‖en‖ < ∞

or
∑∞
n=0 ‖e′n‖ <∞, then (xn) converges strongly to the projection point u onto S.

The same authors revisited this result, eliminating the conditions (C4) and (C5), in
a follow up paper [7, Theorem 8]. This improvement results from a different strategy
in the proof: it now relies on a discussion by cases depending on whether a certain
auxiliary sequence is strictly increasing or not, and on a result due to Maingé [28]. The
original results allow for several alternative conditions on the error terms. However,
the proofs focus first on the exact iteration and consider the convergence with error
terms only afterwards. In this regard, our analyses follow the same strategy. The
particular condition on the error terms is not central in our analyses, nevertheless we
comment on the other possibilities in Remark 5.3.

Boikanyo and Moroşano’s results are convergence statements for a certain sequence
(xn). For the purpose of a quantitative analysis it is better to look at the equivalent
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property of being a Cauchy sequence, i.e.

∀k ∈ N ∃n∀i, j ≥ n
(
‖xi − xj‖ ≤

1

k + 1

)
.

In general it is not possible to obtain computable information on the value of n (see
e.g. [30] for details on this matter). Instead one turns to the equivalent finitary version
of the Cauchy property, which has been called metastability [33, 34], i.e.

∀k ∈ N∀f : N→ N∃n∀i, j ∈ [n, n+ f(n)]

(
‖xi − xj‖ ≤

1

k + 1

)
. (1.1)

For the statement (1.1), we obtain a highly uniform computable rate of metastability,
i.e. a computable functional µ : N× NN → N such that

∀k ∈ N∀f : N→ N∃n ≤ µ(k, f)∀i, j ∈ [n, n+ f(n)]

(
‖xi − xj‖ ≤

1

k + 1

)
. (1.2)

Note that a computable rate for (1.1) does not entail computable information for
the equivalent Cauchy property. Indeed, since the argument is by contradiction, this
equivalence is non-effective and thus one cannot construct a bound for the Cauchy
property from a rate of metastability. Nevertheless, results on metastability increase
one’s knowledge on the behaviour of the iteration and may allow for a deeper un-
derstanding of these types of algorithms. This idea has played a significant role in
several recent results, see for example [1, 16, 23, 33].

The methods used in this paper are set in the framework of proof mining [19, 20],
a program that describes the process of using proof-theoretical techniques to analyse
mathematical proofs with the aim of extracting new information. That being said,
our results and proofs do not presuppose any particular knowledge of logical tools
because the latter are only used as an intermediate step and are not visible in the
final product.

Apart from obtaining effective quantitative information and similarly to [13, 11,
12, 31], applying a technique developed in [14], our results are established without
the sequential weak compactness arguments required in the original proofs and only
rely on a weak form of projection. This fact is reflected in the complexity of the
bounds obtained, which are primitive recursive (in the sense of Kleene). For other
proof mining results on the convergence of algorithms based on the proximal point
algorithm see e.g. [21, 22, 26, 27].

The structure of the paper is the following. In Section 2 we recall the relevant
terminology as well as some well-known results from the theory of monotone opera-
tors in Hilbert spaces. We also present some lemmas necessary for our analysis. In
Section 3 we obtain an effective metastability bound on the algorithm (MAR?) un-
der appropriate quantitative versions of conditions (C1) − (C5). We also establish a
connection between (MAR?) and a generalization of (HPPA) for two operators. In
Section 4 a rate of metastability for (MAR?) is obtained without the conditions (C4)
and (C5). Section 5 extends the results from Sections 3 and 4 to the iteration (MAR).
Some final remarks are left to the last section.
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2. Preliminaries

2.1. Monotone Operators and resolvent functions. Throughout we let H be a
real Hilbert space with inner product 〈 ·, · 〉 and norm ‖·‖.

Definition 2.1. A mapping T : H → H is called nonexpansive if

∀x, y ∈ H (‖T (x)− T (y)‖ ≤ ‖x− y‖) ,
and firmly nonexpansive if

∀x, y ∈ H
(
‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖(Id− T )(x)− (Id− T )(y)‖2

)
.

Note that any firmly nonexpansive mapping is also nonexpansive. If T is nonex-
pansive, then the set of its fixed points {x ∈ H : T (x) = x} is a closed and convex
subset of H. We recall that an operator A : H → 2H is said to be monotone if
and only if whenever (x, y) and (x′, y′) are elements of the graph of A, it holds that
〈x− x′, y − y′ 〉 ≥ 0. A monotone operator A is said to be maximal monotone if the
graph of A is not properly contained in the graph of any other monotone operator
on H. For every positive real number γ, we use JA

γ to denote the single-valued re-

solvent function of A defined by JA
γ = (I + γA)−1. The resolvent functions are firmly

nonexpansive and their fixed points coincide with the zeros of the operator.
The following lemmas are well-known.

Lemma 2.2 (Resolvent identity). For a, b > 0, the following identity holds for every
x ∈ H

JA
a (x) = JA

b

(
b

a
x+

(
1− b

a

)
JA
a (x)

)
.

Lemma 2.3 ([29]). If 0 < a ≤ b, then
∥∥JA

a (x)− x
∥∥ ≤ 2

∥∥JA
b (x)− x

∥∥, for all x ∈ H.

Lemma 2.4 ([15]). A mapping T is firmly nonexpansive if and only if the mapping
2T − Id is nonexpansive.

For a comprehensive introduction to convex analysis and the theory of monotone
operators in Hilbert spaces we refer to [2].

We fix A,B maximal monotone operators on H and assume henceforth the set
S := A−1(0) ∩ B−1(0) of the common zeros of A and B to be nonempty.

2.2. Quantitative notions. Consider the strong majorizability relation ≤∗ from [4]
for functions f, g : N→ N

g ≤∗ f := ∀n,m ∈ N (m ≤ n→ (g(m) ≤ f(n) ∧ f(m) ≤ f(n))) .

If f ≤∗ f we say that f is monotone. This corresponds to saying that f is a non-
decreasing function. Universal quantifications over monotone functions are denoted
∀̃f (. . . ). A functional ϕ : N × NN → N is monotone if for all m,n ∈ N and all
f, g : N→ N,

(m ≤ n ∧ g ≤∗ f)→ (ϕ(m, g) ≤ ϕ(n, f)) .

Functions depending on several variables (ranging over N or NN), and taking values
in N, are said to be monotone if they are monotone in all the variables. By the
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theoretical results underlying the extractions in this paper we always obtain bounds
given by monotone functions.

Definition 2.5. Let (an) be a sequence of real numbers.

(i) A rate of convergence for an → 0 is a function γ : N→ N such that

∀k ∈ N ∀n ≥ γ(k)

(
|an| ≤

1

k + 1

)
.

(ii) A quasi-rate of convergence for an → 0 is a functional Γ : N × NN → N such
that

∀k ∈ N∀f : N→ N∃n ≤ Γ(k, f)∀m ∈ [n, f(n)]

(
|am| ≤

1

k + 1

)
.

(iii) A rate for lim sup an ≤ 0 is a function γ : N→ N such that

∀k ∈ N ∀n ≥ γ(k)

(
an ≤

1

k + 1

)
.

(iv) A rate of divergence for
∑
an =∞ is a function γ : N→ N such that

∀k, n ∈ N

γ(k)+n∑
i=0

ai ≥ k

 .

(v) A Cauchy rate for
∑
an <∞ is a function γ : N→ N such that

∀k, n ∈ N

 γ(k)+n∑
i=γ(k)+1

ai ≤
1

k + 1

 .

Definition 2.6. Let (xn) be a sequence in H and x ∈ H.

(i) A rate of convergence for xn → x is a rate of convergence for ‖xn − x‖ → 0.
(ii) A quasi-rate of convergence for xn → x is a quasi-rate of convergence for
‖xn − x‖ → 0.

(iii) A Cauchy rate for (xn) is a function γ : N→ N such that

∀k ∈ N∀i, j ≥ γ(k)

(
‖xi − xj‖ ≤

1

k + 1

)
.

(iv) A rate of metastability is a functional Γ : N× NN → N such that

∀k ∈ N ∀f : N→ N ∃n ≤ Γ(k, f)∀i, j ∈ [n, f(n)]

(
‖xi − xj‖ ≤

1

k + 1

)
.

Definition 2.7. Let (xn) be a sequence in H and consider mappings T, T ′ : H → H.

(i) The sequence (xn) is asymptotically regular w.r.t. T if ‖T (xn)− xn‖ → 0.
A (quasi-)rate of asymptotic regularity for (xn) w.r.t. T is a (quasi-)rate of
convergence for ‖T (xn)− xn‖ → 0.

(ii) A (quasi-)rate of asymptotic regularity for (xn) w.r.t. T and T ′ is a (quasi-)rate
of convergence for max{‖T (xn)− xn‖ , ‖T ′(xn)− xn‖} → 0.
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Remark 2.8. (i) The definition of quasi-rate of asymptotic regularity w.r.t. T and
T ′ entails that

∀k ∈ N ∀f : N→ N ∃n ≤ Γ(k, f)∀m ∈ [n, f(n)](
‖T (xm)− xm‖ ≤

1

k + 1
∧ ‖T ′(xm)− xm‖ ≤

1

k + 1

)
.

(ii) For the sake of simplicity we use the interval [n, f(n)] when talking about
metastability, instead of the usual notion (1.1). One can recover the usual
form by considering the function n 7→ n+ f(n).

(iii) Whenever we write ∀̃f (. . . ) we restrict our arguments to monotone functions
in NN. There is no loss in generality in doing so, as for any function f : N→ N
the monotone function fmaj defined by fmaj(n) := max{f(i) : i ≤ n} satisfies
f ≤∗ fmaj. In this way, we avoid constantly having to switch from f to fmaj, and
simplify the notation. For example, one may assume that a rate of convergence
is monotone.

Notation 2.9. (1) Given M ∈ N and f : N → N, we denote by gf the func-

tion defined by gf (m) := f(2m + 1) and by f̃ [M ] the function defined by

f̃ [M ](m) := f(max{m,M}).
(2) Consider a function ϕ on tuples of variables x̄, ȳ. If we wish to consider the

variables x̄ as parameters we write ϕ[x̄](ȳ). For simplicity of notation we may
then even omit the parameters and simply write ϕ(ȳ).

The next result concerns the conjunction of two rates of metastability in an abstract
way.

Proposition 2.10. Let X be a set, A(k,m, x) and B(k,m, x) be formulas with pa-
rameters k,m, x, and φ1, φ2 be monotone functions satisfying

(i) ∀k ∈ N ∀̃f ∈ NN ∃n ≤ φ1(k, f)∃x ∈ X ∀m ∈ [n, f(n)]A(k,m, x)

(ii) ∀k ∈ N ∀̃f ∈ NN ∃n ≤ φ2(k, f)∃x ∈ X ∀m ∈ [n, f(n)]B(k,m, x).

Then

∀k ∈ N ∀̃f ∈ NN ∃n ≤ Φ(k, f)∃x, x′ ∈ X ∀m ∈ [n, f(n)] (A(k,m, x) ∧B(k,m, x′)) ,

where Φ(k, f) := Φ[φ1, φ2](k, f) := max{θ, φ2(k, f̃ [θ])}, with

f(m) := f̃ [φ2(k, f̃ [m])](m)
θ := φ1(k, f)

Proof. Let k ∈ N and monotone f : N → N be given. By (i) applied to k and f ,
there exist n1 ≤ φ1(k, f) and x1 ∈ X such that ∀m ∈ [n1, f(n1)]A(k,m, x1). By

(ii) applied to k and f̃ [n1], there exist n2 ≤ φ2(k, f̃ [n1]) and x2 ∈ X satisfying

∀m ∈ [n2, f̃ [n1](n2)]B(k,m, x2). We will now check that n := max{n1, n2} satisfies
the desired conclusion. Observe that since φ2 is monotone, n ≤ Φ(k, f). By the
definition of n and the monotonicity of the functions f and φ2, we have

[n, f(n)] ⊆ [n1, f(max{n1, φ2(k, f̃ [n1])})] = [n1, f(n1)] and

[n, f(n)] ⊆ [n2, f(n)] = [n2, f̃ [n1](n2)]
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and the result follows. �

Remark 2.11. The fact that one could change the order of (i) and (ii) in Proposi-
tion 2.10 entails that a better bound is the minimum of those two possibilities. Indeed,
one can take

Φ[φ1, φ2](k, f) := min{Φ[φ1, φ2](k, f),Φ[φ2, φ1](k, f)}.

We finish this subsection with a general result that allows for discussions by cases
in a even/odd distinction.

Proposition 2.12. Let X be a set, A(k,m, x) be a formula with parameters k,m, x,
and ψ be a monotone function satisfying for every k ∈ N and monotone function
f : N→ N

∃n ≤ ψ(k, f)∃x ∈ X ∀m ∈ [n, f(n)] (A(k, 2m,x) ∧A(k, 2m+ 1, x)) .

Then

∀k ∈ N ∀̃f ∈ N→ N∃n ≤ Ψ(k, f)∃x ∈ X ∀m ∈ [n, f(n)]A(k,m, x),

where Ψ(k, f) := Ψ[ψ](k, f) := 2ψ(k, gf ) + 1.

Proof. Let k ∈ N and monotone f : N → N be given. By the assumption there exist
n0 ≤ ψ(k, gf ) and x0 ∈ X such that

∀m ∈ [n0, gf (n0)] (A(k, 2m,x0) ∧A(k, 2m+ 1, x0)) . (2.1)

By taking n := 2n0 + 1, the result follows from (2.1) considering for m ∈ [n, f(n)] the
cases m = 2m′ and m = 2m′ + 1, since in both cases m′ ∈ [n0, gf (n0)]. �

2.3. Quantitative lemmas. In this section we present some useful technical lemmas.
The following result is due to Boikanyo and Moroşano, and generalizes a result by Xu
[35, Lemma 2.5].

Lemma 2.13 ([8, Lemma 2.4]). Let (sn) be a sequence of nonnegative real numbers
satisfying

sn+1 ≤ (1− αn)(1− λn)sn + αnbn + λncn + dn,

where the sequences (αn), (λn) ⊂ (0, 1), (bn), (cn) ⊂ R, and (dn) ⊂ R+
0 are such

that: (i)
∑
αn = ∞ (or equivalently

∏
(1 − αn) = 0); (ii) lim sup bn ≤ 0; (iii)

lim sup cn ≤ 0; and (iv)
∑
dn <∞. Then lim sn = 0.

Adapting [26, Proposition 3.4] and [31, Lemma 14] we obtain Lemmas 2.14 and
2.15 below which are quantitative versions of Lemma 2.13.

Lemma 2.14. Let (sn) be a bounded sequence of nonnegative real numbers and M ∈ N
be a positive upper bound on (sn). Consider sequences of real numbers (αn), (λn) ⊂
[0, 1], (bn), (cn) ⊂ R and (dn) ⊂ R+

0 . Assume that
∑
αn = ∞ (or

∑
λn = ∞),

with rate of divergence A, lim sup bn ≤ 0 and lim sup cn ≤ 0, with rates B and C
respectively, and

∑
dn <∞ with Cauchy rate D. Assume that, for all m ∈ N

sm+1 ≤ (1− αm)(1− λm)sm + αmbm + λmcm + dm.

Then sn → 0 with rate ρ1(k) := ρ1[A,B,C,D,M ](k) := A (ñ+ dln(4M(k + 1))e) + 1,
where ñ := max{B(4k + 3),C(4k + 3),D(4k + 3) + 1}.
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Lemma 2.15. Let (sn) be a bounded sequence of real numbers and M ∈ N a pos-
itive upper bound on (sn). Consider sequences of real numbers (αn), (λn) ⊂ [0, 1],
(vn), (bn), (cn) ⊂ R and assume the existence of a monotone function A which is a
rate of divergence for

∑
αn = ∞ (or

∑
λn = ∞). For natural numbers k, n and p

assume

∀m ∈ [n, p]

(
vm ≤

1

4(k + 1)(p+ 1)
∧ bm ≤

1

4(k + 1)
∧ cm ≤

1

4(k + 1)

)
,

and

∀m ∈ N (sm+1 ≤ (1− αm)(1− λm)(sm + vm) + αmbm + λmcm) .

Then

∀m ∈ [σ1(k, n), p]

(
sm ≤

1

k + 1

)
,

with σ1(k, n) := σ1[A,M ](k, n) := A (n+ dln(4M(k + 1))e) + 1.

Consider the condition

∀m ∈ N

( ∞∏
i=m

(1− αi) = 0

)
. (2.2)

One can equivalently work with this condition (2.2) instead of the condition
∑
αn =

∞. As such, it makes sense to also consider a quantitative hypothesis corresponding
to (2.2):

A′ : N× N→ N is a monotone function satisfying

∀k,m ∈ N

A′(m,k)∏
i=m

(1− αi) ≤
1

k + 1

 ,
(2.3)

implying that for each m ∈ N, A′(m, ·) is a rate of convergence towards zero for
the sequence (

∏n
i=m(1− αi))n. By saying that A′ is monotone we mean that it is

monotone in both variables,

∀k, k′,m,m′ ∈ N (k ≤ k′ ∧m ≤ m′ → A′(m, k) ≤ A′(m′, k′)) .

For some sequences (αn), switching between these two conditions may prove to
be useful since a rate of divergence for (

∑
αn) may have different complexity than

a function satisfying (2.3). An easy example of this is the sequence ( 1
n+1 ) which

has linear rates of convergence towards zero for
(∏n

i=m(1− 1
i+1 )

)
n
, but only an

exponential rate of divergence for
(∑n

i=0
1
i+1

)
n
.

Next we state versions of Lemmas 2.14 and 2.15 with a function A′ satisfying
condition (2.3) – see [24, Lemma 2.4], [26, Proposition 3.5], and [31, Lemma 16].

Lemma 2.16. Let (sn) be a bounded sequence of nonnegative real numbers and M ∈ N
be a positive upper bound on (sn). Consider sequences of real numbers (αn), (λn) ⊂
[0, 1], (bn), (cn) ⊂ R and (dn) ⊂ R+

0 . Assume that
∏

(1−αn) = 0 (or
∏

(1−λn) = 0),
with A′ a function satisfying the condition (2.3), lim sup bn ≤ 0 and lim sup cn ≤ 0,
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with rates B and C respectively, and
∑
dn < ∞ with Cauchy rate D. Assume that,

for all m ∈ N

sm+1 ≤ (1− αm)(1− λm)sm + αmbm + λmcm + dm.

Then sn → 0 with rate ρ2(k) := ρ2[A′,B,C,D,M ](k) := A′ (ñ, 4M(k + 1)− 1)+ñ+1,
where ñ := max{B(4k + 3),C(4k + 3),D(4k + 3) + 1}.

Lemma 2.17. Let (sn) be a bounded sequence of real numbers and M ∈ N a pos-
itive upper bound on (sn). Consider sequences of real numbers (αn), (λn) ⊂ [0, 1],
(vn), (bn), (cn) ⊂ R and assume the existence of a monotone function A′ : N×N→ N
satisfying condition (2.3). For natural numbers k, n and p assume

∀m ∈ [n, p]

(
vm ≤

1

4(k + 1)(p+ 1)
∧ bm ≤

1

4(k + 1)
∧ cm ≤

1

4(k + 1)

)
,

and

∀m ∈ N (sm+1 ≤ (1− αm)(1− λm)(sm + vm) + αmbm + λmcm) .

Then

∀m ∈ [σ2(k, n), p]

(
sm ≤

1

k + 1

)
,

with σ2(k, n) := σ2[A′,M ](k, n) := A′ (n, 4M(k + 1)− 1) + 1.

The next result is due to Suzuki. A (partial) quantitative version of Lemma 2.18
was obtained in [11] through an arithmetization of a certain lim sup.

Lemma 2.18. ([32, Lemma 2.2 ]) Let (zn) and (wn) be bounded sequences in a Banach
space X and let (αn) be a sequence in [0, 1] with 0 < lim inf αn ≤ lim supαn < 1.
Suppose that zn+1 = αnwn + (1 − αn)zn for all n ∈ N, and lim sup(‖wn+1 − wn‖ −
‖zn+1 − zn‖) ≤ 0. Then lim ‖wn − zn‖ = 0.

Lemma 2.19. Let (zn), (wn) be sequences in a normed space X and N ∈ N be such
that ‖zn‖ , ‖wn‖ ≤ N , for all n ∈ N. Let (αn) ⊂ [0, 1] be a sequence of real numbers
and a ∈ N \ {0} be such that ∀n ≥ a

(
1
a ≤ αn ≤ 1− 1

a

)
. Suppose that for all n ∈ N

zn+1 = αnwn + (1−αn)zn and that there exists a monotone function ν : N→ N such
that

∀k ∈ N ∀n ≥ ν(k)

(
‖wn+1 − wn‖ − ‖zn+1 − zn‖ ≤

1

k + 1

)
. (2.4)

Then χ is a quasi-rate of convergence for ‖wm − zm‖ → 0, where χ = χ[a, ν,N ], is
the monotone function χ̃ from [11, Lemma 4.9].

The next two results give a quantitative strengthening of the fact that if b ∈ A(a)
and x is a zero of A, then 〈 a− x, b 〉 ≥ 0.

Lemma 2.20. Let A be a monotone operator and λ > 0 be a real number. For
a, b, x ∈ H and k ∈ N we have

b ∈ A(a)→ 〈 a− x, b 〉 ≥ −
∥∥JA

λ (x)− x
∥∥(∥∥JA

λ (x)− a
∥∥

λ
+ ‖b‖

)
.
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Proof. By the definition of the resolvent function x ∈ JA
λ (x) + λA(JA

λ (x)). Then
w ∈ A(JA

λ (x)), with w = 1
λ (x− JA

λ (x)). Hence, using the monotonicity of A,

〈 a− x, b 〉 = 〈 a− JA
λ (x), b 〉+ 〈 JA

λ (x)− x, b 〉 ≥ 〈 a− JA
λ (x), w 〉+ 〈 JA

λ (x)− x, b 〉

≥ −
∥∥JA

λ (x)− a
∥∥ ‖w‖ − ∥∥JA

λ (x)− x
∥∥ ‖b‖

= −
∥∥JA

λ (x)− x
∥∥(∥∥JA

λ (x)− a
∥∥

λ
+ ‖b‖

)
. �

As a direct consequence of Lemma 2.20 we obtain following lemma.

Lemma 2.21. Let A be a monotone operator and λ > 0 be a real number. For
a, b, x ∈ H and k ∈ N we have(

b ∈ A(a) ∧
∥∥JA

λ (x)− x
∥∥ ≤ λ

2M(k + 1)

)
→ 〈 a− x, b 〉 ≥ − 1

k + 1
,

where M ∈ N \ {0} is such that M ≥ max{
∥∥JA

λ (x)− a
∥∥, λ ‖b‖}.

Notation 2.22. For q ∈ S and N ∈ N, we denote by BN the closed ball centred at
q with radius N , i.e. BN := {z ∈ H : ‖z − q‖ ≤ N}. In the following, a point q is
always made clear from the context.

The following lemma is an easy adaptation of [31, Proposition 7].

Lemma 2.23. Let A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be maximal
monotone operators on a Hilbert space H. Assume that S := A−1(0) ∩ B−1(0) 6= ∅
and consider the resolvent functions JA := (Id+ 1

RA)−1 and JB := (Id+ 1
RB)−1, where

R ∈ N \ {0}. Take u ∈ H and N ∈ N \ {0} a natural number satisfying N ≥ 2‖u− q‖
for some point q ∈ S. For any k ∈ N and monotone function f : N → N, there are
n ≤ ζ(k, f) and x ∈ BN such that

‖JA(x)− x‖ ≤ 1

f(n) + 1
∧ ‖JB(x)− x‖ ≤ 1

f(n) + 1

and for all y ∈ BN(
‖JA(y)− y‖ ≤ 1

n+ 1
∧ ‖JB(y)− y‖ ≤ 1

n+ 1

)
→ 〈u− x, y − x 〉 ≤ 1

k + 1
,

with ζ(k, f) := ζ[N ](k, f) := 24N(w
(E)
f,N (0) + 1)2, where E := E[N, k] := 4N4(k + 1)2

and wf,N := max{f(24N(m+ 1)2), 24N(m+ 1)2}.

As usual, the first step to prove strong convergence is to show that the sequence
given by the algorithm is bounded. An easy induction argument gives upper bounds
on a sequence (yn) generated by (MAR?).

Lemma 2.24. Let N ∈ N be such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some
q ∈ S. Then ‖yn − q‖ ≤ N , for all n ∈ N. In particular, (yn) is bounded with
‖yn‖ ≤ 2N , for all n ∈ N.
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3. Metastability for (MAR?)

In the following we assume that A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H are
maximal monotone operators such that S := A−1(0) ∩ B−1(0) 6= ∅. For arbitrary but
fixed vectors x0, u ∈ H, we will denote by (xn) a sequence generated by (MAR) and by
(yn) the corresponding “error-free” sequence generated by (MAR?) (with y0 = x0). We
assume that there exist R ∈ N \ {0} and monotone functions a, `,A, rβ , rµ, t : N→ N
such that

(Q1) a is a rate of convergence for αn → 0
(Q2) ` is a rate of convergence for λn → 0
(Q3) A is a rate of divergence for (

∑
αn) or (

∑
λn)

(Q4) ∀n ∈ N
(
min{βn, µn} ≥ 1

R

)
(Q5) ∀n ∈ N (max{βn, µn} ≤ t(n))

(Q6) rβ is a rate of convergence for βn+1

βn
→ 1

(Q7) rµ is a rate of convergence for µn+1

µn
→ 1.

We write JA := JA
R−1 and JB := JB

R−1 .
In Subsection 3.1 we obtain an effective partial metastability bound on the iteration

(MAR?) (cf. Corollary 3.3 below). This metastability property is partial in the sense
that it is obtained under the conditions (Q3)− (Q5) together with:

(Qη) η is a monotone quasi-rate of asymptotic regularity for (yn) w.r.t. JA and JB

(Qη′) η′ is a monotone quasi-rate of convergence for ‖yn+1 − yn‖ → 0.

Subsection 3.2 shows that it is possible to satisfy conditions (Qη) and (Qη′),
and indeed obtain an effective metastability bound, under the assumptions
(Q1), (Q2), (Q4), (Q6) and (Q7) – cf. Remarks 3.6 and 3.9.

3.1. Conditional metastability. The next quantitative lemma replaces the original
sequential weak compactness argument.

Lemma 3.1. Let N ∈ N \ {0} be such that N ≥ max{2 ‖u− q‖ , ‖x0 − q‖ , ‖q‖} for
some point q ∈ S. For any k ∈ N and monotone function f : N → N, there are
n ≤ Ωη(k, f) and x ∈ BN such that

‖JA(x)− x‖ ≤ 1

f(n) + 1
∧ ‖JB(x)− x‖ ≤ 1

f(n) + 1

and

∀m ∈ [n, f(n)]

(
〈u− x, ym − x 〉 ≤

1

k + 1

)
,

where Ωη(k, f) := Ωη[N ](k, f) := η(ζ(k, f̂), f), with ζ = ζ[N ] as in Lemma 2.23, and

f̂(m) := f(η(m, f)).

Proof. By Lemma 2.23, there exist n0 ≤ ζ(k, f̂) and x ∈ BN such that

‖JA(x)− x‖ ≤ 1

f̂(n0) + 1
∧ ‖JB(x)− x‖ ≤ 1

f̂(n0) + 1
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and for all y ∈ BN(
‖JA(y)− y‖ ≤ 1

n0 + 1
∧ ‖JB(y)− y‖ ≤ 1

n0 + 1

)
→ 〈u− x, y − x 〉 ≤ 1

k + 1
.

By (Qη), there exists n ≤ η(n0, f) such that

∀m ∈ [n, f(n)]

(∥∥JA(ym)− ym
∥∥ ≤ 1

n0 + 1
∧
∥∥JB(ym)− ym

∥∥ ≤ 1

n0 + 1

)
.

Since f is monotone we have f̂(n0) ≥ f(n). The result then follows from the fact that
(yn) ⊂ BN . �

Next we show the main result of this section, which allows to obtain a rate of
metastability for (yn).

Theorem 3.2. For x0, u ∈ H, let (yn) be generated by (MAR?). Consider N ∈ N\{0}
such that N ≥ max{2 ‖u− q‖ , ‖x0 − q‖ , ‖q‖} for some point q ∈ S. Assume the
condition (Qη) and let Ωη be as in Lemma 3.1. Assume that there exist R ∈ N \ {0}
and monotone functions A, t : N→ N satisfying conditions (Q3)−(Q5). For all k ∈ N
and monotone function f : N→ N
∃n ≤ µ̃(k, f)∃x ∈ BN ∀m ∈ [n, f(n)](

‖y2m − x‖ ≤
1

k + 1
∧ ‖JA(x)− x‖ ≤ 1

k + 1
∧ ‖JB(x)− x‖ ≤ 1

k + 1

)
,

where µ̃(k, f) := µ̃[η,N,R,A, t](k, f) := σ1(k̃,Ωη(k′, 2g + 2)), with σ1 := σ1[A, 4N2]
as in Lemma 2.15 and

g(n) := 64NR(k + 1)2(p(n) + 1)t(p(n))− 1
k′ := 16(k + 1)2 − 1

p(n) := f(σ1(k̃, n))

k̃ := (k + 1)2 − 1.

Proof. We may assume that for all m ≤ µ̃(k, f) it holds that f(m) ≥ m, otherwise
the result is trivial. By Lemma 3.1 there exist n0 ≤ Ωη(k′, 2g + 2) and x̃ ∈ BN such
that

‖JA(x̃)− x̃‖ ≤ 1

g(n0) + 1
∧ ‖JB(x̃)− x̃‖ ≤ 1

g(n0) + 1
(3.1)

and

∀m ∈ [n0, 2p+ 2]

(
〈u− x̃, ym − x̃ 〉 ≤

1

16(k + 1)2

)
, (3.2)

with p := p(n0). From (3.2) we derive that for all m ∈ [n0, p]

〈u− x̃, y2m+1 − x̃ 〉 ≤
1

16(k + 1)2
and 〈u− x̃, y2m+2 − x̃ 〉 ≤

1

16(k + 1)2
. (3.3)

For all m ∈ N, by the definition of y2m+2 we have

B(y2m+2) 3 1

µm
(λm(u− x̃) + (1− λm)(y2m+1 − x̃)− (y2m+2 − x̃)) .
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We have that

max

{∥∥JB(x̃)− y2m+2

∥∥ , 1

R

∥∥∥∥ 1

µm
(λmu+ (1− λm)y2m+1 − y2m+2)

∥∥∥∥} ≤ 2N.

Hence, by Lemma 2.21 and (3.1)

〈 y2m+2 − x̃,
1

µm
(λm(u− x̃) + (1− λm)(y2m+1 − x̃)− (y2m+2 − x̃)) 〉

≥ − 1

16(k + 1)2(p+ 1)t(p)

Hence

2 ‖y2m+2 − x̃‖2 ≤ 2(1− λm)〈 y2m+2 − x̃, y2m+1 − x̃ 〉

+ 2λm〈 y2m+2 − x̃, u− x̃ 〉+
µm

8(k + 1)2(p+ 1)t(p)

≤ (1− λm)
(
‖y2m+2 − x̃‖2 + ‖y2m+1 − x̃‖2

)
+ 2λm〈 y2m+2 − x̃, u− x̃ 〉+

µm
8(k + 1)2(p+ 1)t(p)

,

which implies that

‖y2m+2 − x̃‖2 ≤ (1− λm) ‖y2m+1 − x̃‖2 + 2λm〈 y2m+2 − x̃, u− x̃ 〉

+
µm

8(k + 1)2(p+ 1)t(p)
.

(3.4)

Similarly,

‖y2m+1 − x̃‖2 ≤ (1− αm) ‖y2m − x̃‖2 + 2αm〈 y2m+1 − x̃, u− x̃ 〉

+
βm

8(k + 1)2(p+ 1)t(p)
.

(3.5)

Combining (3.4) and (3.5) we derive

‖y2m+2 − x̃‖2 ≤ (1− αm)(1− λm)(‖y2m − x̃‖2 + vm) + αmbm + λmcm, (3.6)

where

vm :=
µm + βm

8(k + 1)2(p+ 1)t(p)
,

bm := 2

(
〈 y2m+1 − x̃, u− x̃ 〉+

µm + βm
16(k + 1)2(p+ 1)t(p)

)
, and

cm := 2

(
〈 y2m+2 − x̃, u− x̃ 〉+

µm
16(k + 1)2(p+ 1)t(p)

)
.

For m ∈ [n0, p], we have

vm ≤
4t(p)

16(k + 1)2(p+ 1)t(p)
≤ 1

4(k + 1)2(p+ 1)

and

cm ≤ 2

(
〈 y2m+2 − x̃, u− x̃ 〉+

t(p)

16(k + 1)2t(p)

)
≤ 1

4(k + 1)2
.
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Notice that σ1(k̃, n0) ≤ µ̃(k, f), using the monotonicity of σ1. By the assumption on

f , p ≥ σ1(k̃, n0) ≥ 1 which entails, for m ∈ [n0, p]

bm ≤ 2

(
〈 y2m+1 − x̃, u− x̃ 〉+

2t(p)

32(k + 1)2t(p)

)
≤ 1

4(k + 1)2
.

By Lemma 2.15 we conclude that for m ∈ [σ1(k̃, n0), f(σ1(k̃, n0))]

‖y2m − x̃‖2 ≤
1

(k + 1)2
,

and the result follows with n := σ1(k̃, n0) and x = x̃. �

Corollary 3.3. Under the conditions of Theorem 3.2 and (Qη′), we have that for all
k ∈ N and monotone function f : N→ N

∃n ≤ µ(k, f)∀i, j ∈ [n, f(n)]

(
‖yi − yj‖ ≤

1

k + 1

)
,

where µ(k, f) := Ψ[Φ[ψ1, ψ2]](k, f), with Ψ as in Proposition 2.12, Φ as in Re-
mark 2.11, ψ1(k, f) := η′(4k + 3, 2f) and ψ2(k, f) := µ̃(4k + 3, f) for µ̃ is as in
Theorem 3.2.

Proof. From (Qη′) we obtain

∀k ∈ N ∀̃f : N→ N ∃n ≤ ψ1(k, f)∀m ∈ [n, f(n)]

(
‖y2m+1 − y2m‖ ≤

1

4(k + 1)

)
,

and by Theorem 3.2

∀k ∈ N ∀̃f : N→ N ∃n ≤ ψ2(k, f)∃x ∈ BN ∀m ∈ [n, f(n)]

(
‖y2m − x‖ ≤

1

4(k + 1)

)
.

By Remark 2.11, for all k ∈ N and monotone f : N→ N there exist n ≤ Φ[ψ1, ψ2](k, f)
and x ∈ BN such that

∀m ∈ [n, f(n)]

(
‖y2m+1 − y2m‖ ≤

1

4(k + 1)
∧ ‖y2m − x‖ ≤

1

4(k + 1)

)
.

For m ∈ [n, f(n)],

‖y2m+1 − x‖ ≤ ‖y2m+1 − y2m‖+ ‖y2m − x‖ ≤
1

2(k + 1)
.

Hence, by Proposition 2.12, there exists n ≤ µ(k, f) such that for i, j ∈ [n, f(n)]

‖yi − yj‖ ≤ ‖yi − x‖+ ‖yj − x‖ ≤
1

2(k + 1)
+

1

2(k + 1)
=

1

k + 1
,

which entails the result. �
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3.2. Asymptotic regularity and metastability. We now show that under the
assumptions (Q1), (Q2), (Q4), (Q6) and (Q7) it is possible to satisfy the conditions
(Qη) and (Qη′). This implies that the results of the previous subsection hold under
the conditions (Q1)− (Q7).

Lemma 3.4. Let N ∈ N be such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some
q ∈ S. Assume that there exist monotone functions a, `, rβ , rµ : N → N satisfying
conditions (Q1), (Q2), (Q6) and (Q7). Then

(i) ‖y2n+1 − y2n−1‖ → 0 with monotone quasi-rate of convergence
η0(k, f) := χ[4, ν, 3N ](k, f)

(ii) ‖y2n+2 − y2n‖ → 0 with monotone quasi-rate of convergence

η1(k, f) := max{η0(2k + 1, f̃ [N1]), N1}
where χ is the monotone function from Lemma 2.19 and

ν(k) := max{a(38N(k + 1)− 1), `(22N(k + 1)− 1) + 1, rβ(11N(k + 1)− 1),

rµ(16N(k + 1)− 1) + 1},
N1 := max{`(16N(k + 1)− 1) + 1, rµ(16N(k + 1)− 1) + 1}.

Proof. By the resolvent identity we have, for some R ∈ N \ {0}

y2n+2 = JB

(
1

Rµn
(λnu+ (1− λn)y2n+1) +

(
1− 1

Rµn

)
y2n+2

)
. (3.7)

By Lemma 2.24, we have that ‖u− yn‖ ≤ 2N and ‖yn+1 − yn‖ ≤ 2N , for all n ∈ N.
Then, using the fact that JB is nonexpansive we derive

‖y2n+2 − y2n‖ ≤
∥∥∥∥ 1

Rµn
(λnu+ (1− λn)y2n+1) +

(
1− 1

Rµn

)
y2n+2

− 1

Rµn−1
(λn−1u+ (1− λn−1)y2n−1)−

(
1− 1

Rµn−1

)
y2n)

∥∥∥∥
=

∥∥∥∥( λn
Rµn

− λn−1
Rµn−1

)
u+

1− λn
Rµn

(y2n+1 − y2n−1)

+ y2n−1

(
1− λn
Rµn

− 1− λn−1
Rµn−1

)
+

(
1− 1

Rµn

)
y2n+2 −

(
1− 1

Rµn−1

)
y2n

∥∥∥∥
=

∥∥∥∥( λn
Rµn

− λn−1
Rµn−1

)
(u− y2n−1) +

1− λn
Rµn

(y2n+1 − y2n−1)

+

(
1

Rµn
− 1

Rµn−1

)
(y2n−1 − y2n) +

(
1− 1

Rµn

)
(y2n+2 − y2n)

∥∥∥∥
≤ 1− λn

Rµn
‖y2n+1 − y2n−1‖+

(
1− 1

Rµn

)
‖y2n+2 − y2n‖

+ 2N

(∣∣∣∣ λnRµn
− λn−1
Rµn−1

∣∣∣∣+

∣∣∣∣ 1

Rµn
− 1

Rµn−1

∣∣∣∣) .
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Hence,

‖y2n+2 − y2n‖ ≤ (1− λn) ‖y2n+1 − y2n−1‖

+ 2N

(
λn + λn−1 + (λn−1 + 1)

∣∣∣∣1− µn
µn−1

∣∣∣∣) . (3.8)

Define TA
n := 2JA

βn
− Id. For all n ∈ N, since the resolvent function is firmly nonex-

pansive, by Lemma 2.4, TA
n is nonexpansive. By the definition of (MAR?) we have

y2n+1 =
zn+T

A
nzn

2 , where zn := αnu + (1 − αn)y2n. Using the resolvent identity it
holds

‖TA
n+1zn+1−TA

n zn‖ ≤
∥∥TA

n+1zn+1 − TA
n+1zn

∥∥+
∥∥TA

n+1zn − TA
n zn

∥∥
≤ ‖zn+1 − zn‖+ 2

∥∥∥JA
βn+1

zn − JA
βn
zn

∥∥∥
= ‖zn+1 − zn‖+ 2

∥∥∥∥JA
βn+1

zn − JA
βn+1

z

(
βn+1

βn
zn +

(
1− βn+1

βn

)
JA
βn
zn

)∥∥∥∥
≤ 2N(αn+1 + αn) + ‖y2n+2 − y2n‖+ 2

∣∣∣∣1− βn+1

βn

∣∣∣∣ ∥∥∥zn − JA
βn+1

zn

∥∥∥ .
Similarly we have y2n+2 =

wn+F
B
nwn

2 , where FB
n is the nonexpansive function defined

by FB
n := 2JB

µn
− Id, and where wn := λnu+ (1− λn)y2n+1. As above we have

∥∥FB
nwn − FB

n−1wn−1
∥∥ ≤ ‖wn − wn−1‖+ 2

∥∥∥JB
µn
wn−1 − JB

µn−1
wn−1

∥∥∥
≤ 2N(λn + λn−1) + ‖y2n+1 − y2n−1‖

+ 2

∣∣∣∣1− µn
µn−1

∣∣∣∣ ∥∥wn−1 − JB
µn
wn−1

∥∥ .
The definitions above imply that

y2n+1 =
1

4
y2n−1 +

3

4
vn, (3.9)

where (vn) is the bounded sequence defined by

vn :=
λn−1(1 − αn)(u− y2n−1) + αn(2u− y2n−1 − FB

n−1wn−1) + (FB
n−1wn−1 + 2TA

n zn)

3
.

Since ‖u− yn‖ ≤ 2N and ‖yn‖ ≤ 2N , for all n ∈ N we have∥∥2u− y2n+1 − FB
nwn

∥∥ = ‖2u− y2n+1 − 2y2n+2 − λnu− (1− λn)y2n+1‖
≤ 2 ‖u− y2n+2‖+ ‖y2n+1 + λnu+ (1− λn)y2n+1‖
≤ 2 ‖u− y2n+2‖+ ‖u− y2n+1‖+ 2 ‖y2n+1‖ ≤ 10N.



EFFECTIVE METASTABILITY FOR MAR 77

Hence

3 ‖vn+1 − vn‖ ≤ 2N(λn + λn−1) + 10N(αn+1 + αn) +
∥∥FB

nwn − FB
n−1wn−1

∥∥
+ 2

∥∥TA
n+1zn+1 − TA

n zn
∥∥

≤ 4N(λn + λn−1) + 14N(αn+1 + αn) + 3 ‖y2n+1 − y2n−1‖

+ 2

∣∣∣∣1− µn
µn−1

∣∣∣∣ ∥∥wn−1 − JB
µn
wn−1

∥∥+ 4

∣∣∣∣1− βn+1

βn

∣∣∣∣ ∥∥∥zn − JA
βn+1

zn

∥∥∥
+ 4N

(
λn + λn−1 + (λn−1 + 1)

∣∣∣∣1− µn
µn−1

∣∣∣∣) .
Using Lemma 2.24 we have∥∥∥zn − JA

βn+1
zn

∥∥∥ ≤ ‖zn − q‖+
∥∥∥JA

βn+1
zn − q

∥∥∥ ≤ 2 ‖zn − q‖

= 2 ‖αn(u− q) + (1− αn)(y2n − q)‖ ≤ 2N

and, similarly,
∥∥wn−1 − JB

µn
wn−1

∥∥ ≤ 2N . Since λn−1 ≤ 1 we then have

‖vn+1 − vn‖ − ‖y2n+1 − y2n−1‖ ≤
8

3
N(λn + λn−1) +

14

3
N(αn+1 + αn)

+ 4N

∣∣∣∣1− µn
µn−1

∣∣∣∣+
8

3
N

∣∣∣∣1− βn+1

βn

∣∣∣∣ .
The latter inequality entails that

∀k ∈ N∀n ≥ ν(k)

(
‖vn+1 − vn‖ − ‖y2n+1 − y2n−1‖ ≤

1

k + 1

)
,

where ν(k) := max{a(38N(k + 1) − 1), `(22N(k + 1) − 1) + 1, rβ(11N(k + 1) − 1),
rµ(16N(k + 1)− 1) + 1}. Indeed, by condition (Q2) for n ≥ `(22N(k + 1)− 1) + 1

8

3
N(λn + λn−1) ≤ 16N

3(22N(k + 1))
≤ 1

4(k + 1)
,

by condition (Q1) for n ≥ a(38N(k + 1)− 1)

14

3
N(αn+1 + αn) ≤ 28N

3(38N(k + 1))
≤ 1

4(k + 1)
,

by condition (Q7) for n ≥ rµ(16N(k + 1)− 1) + 1

4

∣∣∣∣1− µn
µn−1

∣∣∣∣ ≤ 4N

16N(k + 1)
=

1

4(k + 1)
,

and by condition (Q6) for n ≥ rβ(11N(k + 1)− 1)

8

3

∣∣∣∣1− βn+1

βn

∣∣∣∣ ≤ 8N

3(11N(k + 1))
≤ 1

4(k + 1)
.

By Lemma 2.19 and (3.9), it follows that part (i) holds.
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For n ≥ N1, we have 2N
(
λn + λn−1 + (λn−1 + 1)

∣∣∣1− µn

µn−1

∣∣∣) ≤ 1
2(k+1) . By

part (i), there is n0 ≤ η0(2k + 1, f̃ [N1]) such that

∀n ∈ [n0, f̃ [N1](n0)]

(
‖y2n+1 − y2n−1‖ ≤

1

2(k + 1)

)
.

With n1 := max{n0, N1} ≤ η1(k, f), part (ii) follows from (3.8) and the fact that

[n1, f(n1)] ⊆ [n0, f̃ [N1](n0)]. �

Lemma 3.5. Let N ∈ N be such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some
q ∈ S. Assume that there exist monotone functions a, `, rβ , rµ : N → N satisfying
conditions (Q1), (Q2), (Q6) and (Q7). Then ‖yn+1 − yn‖ → 0 with monotone quasi-
rate of convergence

η2(k, f) := η2[N ](k, f) := 2 max{η1(8N(k + 1)2 − 1, f̌), N2}+ 1,

where η1 is as in Lemma 3.4 and

f̌(n) := f(2 max{n,N2}+ 1)
N2 := max{a(32N2(k + 1)2 − 1), `(32N2(k + 1)2 − 1)}.

Proof. By the definition of (yn) we have

βn+1Ay2n+1 3 αn (u− y2n) + y2n − y2n+1

Then by the monotonicity of A

〈 y2n+1 − y2n − αn (u− y2n) , y2n+1 − q 〉 ≤ 0

Now, the latter implies that

〈 y2n+1 − y2n+2, y2n+1 − q 〉 ≤ 〈αn (u− y2n)− y2n+2 + y2n, y2n+1 − q 〉
≤ ‖y2n+1 − q‖ (αn ‖u− y2n‖+ ‖y2n+2 − y2n‖)
≤ 2N2αn +N ‖y2n+2 − y2n‖

Similarly,

µn+1By2n+2 3 λn (u− y2n+1) + y2n+1 − y2n+2

Then, by the monotonicity of B

〈 y2n+2 − y2n+1 − λn (u− y2n+1) , y2n+2 − q 〉 ≤ 0

The latter implies that

〈 y2n+2 − y2n+1, y2n+2 − q 〉 ≤ 〈λn (u− y2n+1) , y2n+2 − q 〉
≤ λn ‖u− y2n+1‖ ‖y2n+2 − q‖
≤ 2N2λn

Let k, f be given. By Lemma 3.4 there exists n0 ≤ η1(8N(k + 1)2 − 1, f̌) such that
‖y2n+2 − y2n‖ ≤ 1

8N(k+1)2 , for all n ∈ [n0, f̌(n0)]. Define n1 := max{n0, N2}. We
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have, for n ∈ [n1, f(2n1 + 1)] ⊆ [n0, f̌(n0)]

‖y2n+2−y2n+1‖2 = 〈 y2n+2 − y2n+1, y2n+2 − q 〉+ 〈 y2n+1 − y2n+2, y2n+1 − q 〉
≤ 2N2(αn + λn) +N ‖y2n+2 − y2n‖

≤ 2N2

(
1

32N2(k + 1)2
+

1

32N2(k + 1)2

)
+N

1

8N(k + 1)2
≤ 1

4(k + 1)2
,

and then ‖y2n+2 − y2n+1‖ ≤ 1
2(k+1) . With n2 := 2n1+1 ≤ η2(k, f), let n ∈ [n2, f(n2)].

If n = 2m+ 1, then m ∈ [n1, f(2n1 + 1)] and

‖yn+1 − yn‖ = ‖y2m+2 − y2m+1‖ ≤
1

2(k + 1)
≤ 1

k + 1
.

If n = 2m, then again m ∈ [n1, f(2n1 + 1)] ⊆ [n0, f̌(n0)] and

‖yn+1 − yn‖ ≤ ‖y2m+1 − y2m+2‖+‖y2m+2 − y2m‖ ≤
1

2(k + 1)
+

1

8N(k + 1)2
≤ 1

k + 1
,

and the result holds. �

Remark 3.6. Lemma 3.5 entails that the condition (Qη′) is satisfied with η′ = η2.

Lemma 3.7. Let N ∈ N be such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some
q ∈ S. Assume that there exist R ∈ N\{0} and monotone functions a, `, rβ , rµ : N→ N
satisfying conditions (Q1), (Q2), (Q4), (Q6) and (Q7). Then

(i) ‖JA(y2n+1)− y2n+1‖ → 0 with monotone quasi-rate of convergence

η3(k, f) := max{η2(4k + 3, f̃ [N3]), N3}
(ii) ‖JB(y2n+2)− y2n+2‖ → 0 with monotone quasi-rate of convergence

η4(k, f) := max{η2(4k + 3, f̃ [N4]), N4}
where η2 is as in Lemma 3.5 and

N3 := a(8N(k + 1)− 1)
N4 := `(8N(k + 1)− 1).

Proof. For all n ∈ N we have,

‖JA
βn

(y2n+1)− y2n+1‖ ≤ ‖JA
βn

(y2n+1)− JA
βn

(y2n)‖+ ‖JA
βn

(y2n)− y2n+1‖

≤ ‖y2n+1 − y2n‖+ ‖JA
βn

(y2n)− JA
βn

(αnu+ (1− αn)y2n)‖
≤ ‖y2n+1 − y2n‖+ αn‖u− y2n‖
≤ ‖y2n+1 − y2n‖+ 2Nαn. (3.10)

By Lemma 3.5 there exists n0 ≤ η2(4k + 3, f̃ [N3]) such that ‖y2n+1 − y2n‖ ≤ 1
4(k+1) ,

for all n ∈ [n0, f̃ [N3](n0)]. With n1 := max{n0, N3} ≤ η3(k, f), condition (Q4),
Lemma 2.3 and (3.10) entail that, for all n ∈ [n1, f(n1)]

‖JA(y2n+1)− y2n+1‖ ≤ 2‖JA
βn

(y2n+1)− y2n+1‖ ≤
1

k + 1
.
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The proof of the second part of the lemma is similar using

‖JB
µn

(y2n+2)−y2n+2‖ ≤ ‖JB
µn

(y2n+2)− JB
µn

(y2n+1)‖+ ‖JB
µn

(y2n+1)− y2n+2‖

≤ ‖y2n+2 − y2n+1‖+ ‖JB
µn

(y2n+1)− JB
µn

(λnu+ (1− λn)y2n+1)‖
≤ ‖y2n+2 − y2n+1‖+ λn‖u− y2n+1‖
≤ ‖y2n+2 − y2n+1‖+ 2Nλn. �

From Lemmas 3.5 and 3.7, using Remark 2.11, we obtain that the sequence (yn)
is asymptotically regular with respect to both JA and JB.

Lemma 3.8. Let N ∈ N be such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some
q ∈ S. Assume that there exist R ∈ N\{0} and monotone functions a, `, rβ , rµ : N→ N
satisfying conditions (Q1), (Q2), (Q4), (Q6) and (Q7). Then

(i)
∥∥JA(yn)− yn

∥∥→ 0, with monotone quasi-rate of convergence
η5(k, f) := Ψ[Φ[η̃2, η̃3]](k, f)

(ii)
∥∥JB(yn)− yn

∥∥→ 0, with monotone quasi-rate of convergence
η6(k, f) := Ψ[Φ[η̃2, η̃4]](k, f),

where Φ is as in Remark 2.11, Ψ is as in Proposition 2.12 and

η̃2(k, f) := η2(4k + 3, 2f)
η̃3(k, f) := η3(2k + 1, f)
η̃4(k, f) := η4(2k + 1, hf ) + 1
hf (n) := f(n+ 1).

Proof. Since JA is nonexpansive∥∥JA(y2n)− y2n
∥∥ ≤ ∥∥JA(y2n)− JA(y2n+1)

∥∥+
∥∥JA(y2n+1)− y2n+1

∥∥+ ‖y2n+1 − y2n‖

≤ 2 ‖y2n+1 − y2n‖+
∥∥JA(y2n+1)− y2n+1

∥∥ .
By Lemma 3.5 and Lemma 3.7 we may apply Remark 2.11 to conclude that for all
k ∈ N and monotone f : N→ N
∃n ≤ Φ[η̃2, η̃3](k, f)∀m ∈ [n, f(n)](∥∥JA(y2m)− y2m

∥∥ ≤ 1

k + 1
∧
∥∥JA(y2m+1)− y2m+1

∥∥ ≤ 1

k + 1

)
.

The first part follows from Proposition 2.12.
The proof of the second part is analogous using∥∥JB(y2n+1)− y2n+1

∥∥ ≤ ∥∥JB(y2n+1)− JB(y2n)
∥∥+

∥∥JB(y2n)− y2n
∥∥+ ‖y2n − y2n+1‖

≤ 2 ‖y2n+1 − y2n‖+
∥∥JB(y2n)− y2n

∥∥ .
�

Remark 3.9. Using Remark 2.11, we obtain from Lemma 3.8 that the function
η(k, f) := Φ[η5, η6](k, f) satisfies the condition (Qη), i.e.

∀k ∈ N ∀f ∈ N→ N∃n ≤ η(k, f)∀m ∈ [n, f(n)](∥∥JA(ym)− ym
∥∥ ≤ 1

k + 1
∧
∥∥JB(ym)− ym

∥∥ ≤ 1

k + 1

)
.
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Then, using also Remark 3.6, we may apply Corollary 3.3 to obtain an effective
metastability bound for (MAR?) under the assumptions (Q1)− (Q7).

3.3. Relation with Halpern’s definition. In this subsection we argue that the
algorithm (MAR?) is essentially a Halpern-type iteration for two maximal monotone
operators A′,B′. Define for n ∈ N{

z2n+1 = α̃nu+ (1− α̃n)JA′

β̃n
(z2n)

z2n+2 = λ̃nu+ (1− λ̃n)JB′

µ̃n
(z2n+1)

(HPPA?2)

where z0 ∈ H is given, (α̃n), (λ̃n) ⊂ (0, 1), (β̃n), (µ̃n) ⊂ (0,+∞).

Proposition 3.10. Let (yn) be generated by (MAR?) with yn → x ∈ H. Consider

A′ = A,B′ = B and that α̃n = λn, λ̃n = αn+1, β̃n = βn, µ̃n = µn, for all n ∈ N.
If αn, λn → 0, and (zn) is generated by (HPPA?2) with z0 = α0u + (1 − α0)y0, then
zn → x.

Moreover, given rates of convergence a, ` : N → N for αn → 0 and λn → 0
respectively, and N ∈ N such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some q ∈ S,

we have that ‖yn − zn‖ → with rate of convergence γ(k) := 2 max{ã(k), ˜̀(k)}+ 2. If
ρ is a rate of metastability for (yn), then ρ̃ is a rate of metastability for (zn), where

ρ̃(k, f) := max
{
ρ
(

2k + 1, f̃ [γ(4k + 3)]
)
, γ(4k + 3)

}
,

ã(k) := a(2N(k + 1)− 1)˜̀(k) := `(2N(k + 1)− 1)

Proof. By induction, y2n+1 = JA′

β̃n
(z2n) and y2n+2 = JB′

µ̃n
(z2n+1), for all n ∈ N. Hence{

z2n+1 = α̃nu+ (1− α̃n)y2n+1

z2n+2 = λ̃nu+ (1− λ̃n)y2n+2

(3.11)

Since α̃n = λn → 0 and λ̃n = αn+1 → 0, we conclude zn → x. Now let k, f be

given. From (3.11), we have that ‖z2n+1 − y2n+1‖ → 0 with rate of convergence ˜̀
and ‖z2n+2 − y2n+2‖ → 0 with rate of convergence ã. This shows that γ is a rate of

convergence for ‖zn − yn‖ → 0. There exists n0 ≤ ρ(2k + 1, f̃ [γ(4k + 3)]) such that

∀i, j ∈ [n0, f̃ [γ(4k + 3)](n0)]

(
‖yi − yj‖ ≤

1

2(k + 1)

)
.

The result follows with n := max{n0, γ(4k + 3)} ≤ ρ̃(k, f) by the triangle inequality.
�

Proposition 3.11. Let (zn) be generated by (HPPA?2) with zn → x ∈ H. Consider

A = B′,B = A′ and that αn = α̃n, λn = λ̃n, βn = µ̃n, µn = β̃n+1, for all n ∈ N. If

α̃n, λ̃n → 0, and (yn) is generated by (MAR?) with y0 = JA′

β̃0
(z0), then yn → x.

Moreover, given rates of convergence a, ` : N → N for α̃n → 0 and λ̃n → 0
respectively, and N ∈ N such that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some q ∈ S,
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we have that ‖zn+1 − yn‖ → 0 with rate of convergence γ(k) := 2 max{ã(k), ˜̀(k)}+1.
If ρ is a rate of metastability for (zn), then ρ̃ is a rate of metastability for (yn), where

ρ̃(k, f) := max
{
ρ
(

2k + 1, f̃ [γ(4k + 3)] + 1
)
, γ(4k + 3)

}
,

with ã, ˜̀ defined as in Proposition 3.10.

Proof. By induction, for all n ∈ N{
z2n+1 = αnu+ (1− αn)y2n

z2n+2 = λnu+ (1− λn)y2n+1

(3.12)

which implies yn → x. Now let k, f be given. From (3.12), we have that
‖z2n+1 − y2n‖ → 0 with rate of convergence ã, and ‖z2n+2 − y2n+1‖ → 0 with rate

of convergence ˜̀. This shows that γ is a rate of convergence for ‖zn+1 − yn‖ → 0.

There exists n0 ≤ ρ(2k + 1, f̃ [γ(4k + 3)] + 1) such that

∀i, j ∈ [n0, f̃ [γ(4k + 3)](n0) + 1]

(
‖zi − zj‖ ≤

1

2(k + 1)

)
,

which entails ‖zi+1 − zj+1‖ ≤
1

2(k + 1)
, for i, j ∈ [n0, f̃ [γ(4k + 3)](n0)]. Again the

result follows by the triangle inequality, with n := max{n0, ρ′(4k+ 3)} ≤ ρ̃(k, f). �

Remark 3.12.

(i) In the first part of Proposition 3.11, if x∈S′ := A′−1(0) ∩ B′−1(0), then we can

drop the assumptions α̃n, λ̃n → 0. Indeed, from (3.12), y2n+1 = JA
βn

(z2n+1) and

y2n+2 = JB
µn

(z2n+2) for all n ∈ N. Since x ∈ S′ and the resolvent functions are
nonexpansive,

‖y2n+1 − x‖ ≤ ‖z2n+1 − x‖ and ‖y2n+2 − x‖ ≤ ‖z2n+2 − x‖ ,

from which we conclude yn → x. Moreover, a (quasi-)rate of convergence for
zn → x easily gives rise to a (quasi-)rate of convergence for yn → x.

(ii) Let r be a positive real number. In Proposition 3.10, if ρ is a quasi-rate of as-
ymptotic regularity for (yn) w.r.t. JA

r and JB
r , i.e. a quasi-rate of convergence for

max{
∥∥yn − JA

r (yn)
∥∥ ,∥∥yn − JB

r (yn)
∥∥} → 0, then ρ̃ is a quasi-rate of asymptotic

regularity for (zn), using the inequality

‖zn − Jr(zn)‖ ≤ 2 ‖zn − yn‖+ ‖yn − Jr(yn)‖ ,

where Jr denotes either JA
r or JB

r .
(iii) Similarly to the previous point, in Proposition 3.11 the same transformations

yield a quasi-rate of asymptotic regularity for (yn) from a quasi-rate of asymp-
totic regularity for (zn), now using the inequality

‖yn − Jr(yn)‖ ≤ 2 ‖zn+1 − yn‖+ ‖zn+1 − Jr(zn+1)‖ .

(iv) The previous arguments actually entail that if ρ is a Cauchy rate (resp. rate of
asymptotic regularity) for one iteration, then ρ̃ is also a Cauchy rate (resp. rate
of asymptotic regularity) for the other iteration.
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(v) In light of Proposition 3.10 (and point (ii) in this remark), the extraction of
metastability rates and quasi-rates of asymptotic regularity for (MAR?), carried
out in this paper, entail similar quantitative information for (HPPA?2).

4. Improving the metastability for (MAR?)

In a follow up paper [7] Boikanyo and Moroşanu improved Theorem 1.1 by removing
conditions (C4) and (C5). In this section we give an analysis of the improved result. In
order to obtain a quantitative version of this improved result, we work with conditions
(Q1)−(Q4) and assume the existence of a monotone function P : N→ N\{0} satisfying

∀n ∈ N
(
αn + λn ≥

1

P(n)

)
. (Q8)

From a logical point of view, the proof is now more involved since it requires a
discussion by cases depending on whether the sequence defined by sxn := ‖y2n − x‖2,
for x ∈ BN is eventually decreasing or not and uses a (quantitative version of a)
lemma due to Maingé [28, Lemma 3.1]. The latter is often used in results which relax
the conditions on the parameters of the resolvent functions. The first quantitative
analyses using Maingé’s result were developed in [13, 21].

Throughout this section we fix a, `, A,R and P satisfying conditions (Q1) − (Q4)
and (Q8) respectively, and N ∈ N. Let us start by defining the following constants
and functions, which are useful for our analysis.

Definition 4.1. Given k ∈ N, we define the following constants

(i) (cf. Corollary 4.4) M0 := max{a(16N(k + 1)− 1), `(16N(k + 1)− 1)}
(ii) (cf. Lemma 4.6) M1 := max{a((8N(k + 1))2)− 1, `(3(4N(k + 1))2)− 1}

(iii) (cf. Lemma 4.7) M2 := max{a((64N(k + 1))2)− 1, `(3(32N(k + 1))2)− 1}

Definition 4.2. We define the following functions

(i) (cf. Lemma 4.5) Given D, k, n ∈ N and f : N→ N
(a) φ1[D](k, n, f) := f(φ2[D](k, n, f)) + 1
(b) φ2[D](k, n, f) := max{n, (f + 1)(D(k+1))(n)}

(ii) (cf. Lemma 4.6) Given k, n ∈ N and f : N→ N
(a) Ψ1(k, n, f) := φ1[4N2](2(k + 1)2 − 1, n, f̃ [M1])

(b) Ψ2(k, n, f) := max{φ2[4N2](2(k + 1)2 − 1, n, f̃ [M1]),M1}
(iii) (cf. Lemma 4.7) Given k, n ∈ N and f : N→ N

(a) Ψ3(k, n, f) := φ1[4N2](128(k + 1)2 − 1, n, f̃ [M2])

(b) Ψ4(k, n, f) := max{φ2[4N2](128(k + 1)2 − 1, n, f̃ [M2]),M2}
(iv) (cf. Lemma 4.8) Let σ1 := σ1[A, 4N2] be as in Lemma 2.15. Given k, n ∈ N,

f : N→ N
(a) jf [k, f ](n) := f(2σ1(k̃, n) + 1), with k̃ ≡ 16(k + 1)2 − 1
(b) Ψ5(k, n, f) := Ψ3(max{k, n}, n, jf [k, f ])

(c) Ψ6(k, n, f) := 2σ1(k̃, ñ) + 1, with ñ ≡ Ψ4(max{k, n}, n, jf [k, f ]) and k̃ as
in (a)

(d) ξ1[k, f ](n) := 16 · 64N(k + 1)2(f(Ψ6(k, n, f)) + 1)− 1
(v) (cf. Lemma 4.10) Given k, n ∈ N and f : N→ N
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(a) ξ2[k, f ](n) := 16 · 96NP(f(2n+ 1))(k + 1)2 − 1
(b) m(n) := max{a(16 · 64N2n− 1), `(12 · 64N2n− 1)}
(c) r(n, k) := max{m(2(n+ 1)2),m((k + 1)2)}

(vi) (cf. Theorem 4.3) Let ζ = ζ[N ] be as in Lemma 2.23. For all k, n ∈ N and
f : N→ N
(a) r+(n, k) := max{r(n, k), n}
(b) Ξ1[k, f ](n) := ξ1[k, f ](r+(n, k))
(c) Ξ2[k, f ](n) := ξ2[k, f ](Ψ5(k, r+(n, k), f))
(d) Ξ(n) := Ξ[k, f ](n) := Ξ[k, f ](n) := max{Ξ1[k, f ](n),Ξ2[k, f ](n)}
(e) µ(k, f) := max{Ψ6(k, r+(ζ(k,Ξ), k), f), 2Ψ5(k, r+(ζ(k,Ξ), k), f) + 1}, with

k = 3 · 96(k + 1)2 − 1.

We are now able to formulate the main result of this section.

Theorem 4.3. For x0, u ∈ H, let (yn) be generated by (MAR) (with y0 = x0).
Consider N ∈ N \ {0} such that N ≥ max{2 ‖u− q‖ , ‖x0 − q‖ , ‖q‖}, for some q ∈ S.
Then, for all k ∈ N and monotone function f : N→ N

∃n ≤ µ(k, f)∀i, j ∈ [n, f(n)]

(
‖yi − yj‖ ≤

1

k + 1

)
.

From the metastability property of Theorem 4.3 it is possible to show the following
asymptotic regularity result. We write JA := JA

R−1 and JB := JB
R−1 .

Corollary 4.4. The sequence (yn) is asymptotically regular w.r.t. JA and JB, with
quasi-rate of asymptotic regularity ϑ(k, f) := 2 max{µ(8k + 7, 2g̃f [M0] + 2),M0}+ 1.

Proof. Let k ∈ N and monotone f : N → N be given. By Theorem 4.3, there exists
n0 ≤ µ(8k + 7, 2g̃f [M0] + 2) such that

∀i, j ∈ [n0, 2g̃f [M0](n0) + 2]

(
‖yi − yj‖ ≤

1

8(k + 1)

)
.

Define n1 := max{n0,M0}. For all i ∈ [n1, gf (n1)], we have 2i, 2i + 1, 2i + 2 ∈
[n0, 2g̃f [M0](n0) + 2] and then

‖y2i+2 − y2i+1‖ ≤
1

8(k + 1)
and ‖y2i+1 − y2i‖ ≤

1

8(k + 1)
.

From the definition of (MAR?), using ‖y2i − u‖ ≤ 2N and the fact that JA
βi

are
nonexpansive, we derive∥∥JA

βi
(y2i)− y2i

∥∥ ≤ ∥∥JA
βi

(y2i)− y2i+1

∥∥+
1

8(k + 1)

≤ αi ‖y2i − u‖+
1

8(k + 1)

≤ 2N

16N(k + 1)
+

1

8(k + 1)
=

1

4(k + 1)
.

Similarly, one obtains ∥∥JB
µi

(y2i+1)− y2i+1

∥∥ ≤ 1

4(k + 1)
.
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By Lemma 2.3 and condition (Q4) we conclude∥∥JA(y2i)− y2i
∥∥ ≤ 1

2(k + 1)
and

∥∥JB(y2i+1)− y2i+1

∥∥ ≤ 1

2(k + 1)
.

Finally, since JA and JB are nonexpansive, we have for i ∈ [n1, gf (n1)]∥∥JA(y2i+1)− y2i+1

∥∥ ≤ 2 ‖y2i+1 − y2i‖+
∥∥JA(y2i)− y2i

∥∥ ≤ 1

k + 1∥∥JB(y2i)− y2i
∥∥ ≤ 2 ‖y2i+1 − y2i‖+

∥∥JB(y2i+1)− y2i+1

∥∥ ≤ 1

k + 1
.

With n2 := 2n1 + 1 ≤ ϑ(k, f) the result follows by considering the cases m = 2i and
m = 2i+ 1, for i ∈ [n2, f(n2)] as in both cases i ∈ [n1, gf (n1)]. �

In order to prove Theorem 4.3 we start with the following inequalities. Let x ∈ BN .
For all m ∈ N, by the definition of y2m+2 we have

B(y2m+2) 3 1

µm
(λm(u− x) + (1− λm)(y2m+1 − x)− (y2m+2 − x)) .

We have that

max

{
R
∥∥JB(x)− y2m+2

∥∥ ,∥∥∥∥ 1

µm
(λmu+ (1− λm)y2m+1 − y2m+2)

∥∥∥∥} ≤ 2RN.

By Lemma 2.20

〈 y2m+2 − x,
1

µm
(λm(u− x) + (1− λm)(y2m+1 − x)− (y2m+2 − x)) 〉

≥ −4RN
∥∥JB(x)− x

∥∥ ,
and so, using the fact that µmR ≤ 1 and the equality 2〈 a, b 〉 = ‖a‖2+‖b‖2−‖a− b‖2,

2 ‖y2m+2 − x‖2 ≤ 2λm〈 y2m+2 − x, u− x 〉+ 2(1− λm)〈 y2m+2 − x, y2m+1 − x 〉

+ 8N
∥∥JB(x)− x

∥∥
= (1− λm)

(
‖y2m+2 − x‖2 + ‖y2m+1 − x‖2 − ‖y2m+2 − y2m+1‖2

)
+ 2λm〈 y2m+2 − x, u− x 〉+ 8N

∥∥JB(x)− x
∥∥ .

Hence

(1 + λm) ‖y2m+2 − x‖2 ≤ (1− λm) ‖y2m+1 − x‖2 + 2λm〈u− x, y2m+2 − x 〉

− (1− λm) ‖y2m+2 − y2m+1‖2 + 8N
∥∥JB(x)− x

∥∥ . (4.1)

Using

A(y2m+1) 3 1

βm
(αm(u− x) + (1− αm)(y2m − x)− (y2m+1 − x)) ,

with similar arguments we obtain

(1 + αm) ‖y2m+1 − x‖2 ≤ (1− αm) ‖y2m − x‖2 + 2αm〈u− x, y2m+1 − x 〉

− (1− αm) ‖y2m+1 − y2m‖2 + 8N
∥∥JA(x)− x

∥∥ . (4.2)
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From (4.1) and (4.2) we obtain

(1 + λm) ‖y2m+2 − x‖2 ≤ (1− αm)(1− λm) ‖y2m − x‖2

+ 2αm(1− λm)〈u− x, y2m+1 − x 〉

+ 2λm〈u− x, y2m+2 − x 〉 − (1− αm)(1− λm) ‖y2m+1 − y2m‖2

− (1− λm) ‖y2m+2 − y2m+1‖2 + 8N
(∥∥JA(x)− x

∥∥+
∥∥JB(x)− x

∥∥) .
(4.3)

Denote sxn := ‖y2n − x‖2, for x ∈ BN . It follows from Lemma 2.24 and (4.3)

sxm+1 − sxm + ‖y2m+1 − y2m‖2 + ‖y2m+2 − y2m+1‖2

≤ αm
(

2 ‖u− x‖ ‖y2m+2 − x‖+ ‖y2m+2 − y2m+1‖2 + ‖y2m+1 − y2m‖2
)

+ λm

(
2 ‖u− x‖ ‖y2m+1 − x‖+ ‖y2m+1 − y2m‖2

)
≤ 16N2αm + 12N2λm. (4.4)

On the other hand, from the definition of (yn), condition (Q4) and Lemmas 2.3 and
2.24, ∥∥JB(y2m+2)− y2m+2

∥∥ ≤ 2
∥∥JB

µm
(y2m+2)− y2m+2

∥∥
≤ 2 ‖λm(u− y2m+1) + (y2m+1 − y2m+2)‖
≤ 4Nλm + 2 ‖y2m+2 − y2m+1‖

(4.5)

and ∥∥JA(y2m+1)− y2m+1

∥∥ ≤ 4Nαm + 2 ‖y2m+1 − y2m‖ . (4.6)

The proof of Theorem 4.3 now follows a discussion by cases.

4.1. First case. Let us consider first the case where (sxn) is eventually decreasing.
In this subsection we assume that N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖} for some q ∈ S.
We begin with an easy adaptation of [19, Proposition 2.27] (see also Remark 2.29 in
the same reference).

Lemma 4.5. Let (sn) be a sequence of real numbers and D ∈ N \ {0} be such that
0 ≤ sm ≤ D, for all m ∈ N. For k, n ∈ N, f : N→ N monotone, if

∀m ∈ [n, φ1(k, n, f)] (sm+1 ≤ sm) ,

then there exists n′ ≤ φ2(k, n, f) such that

∀m ∈ [n′, f(n′)]

(
sm − sm+1 ≤

1

k + 1

)
. (4.7)

Moreover, there is n′ ∈ {(f + 1)(i)(n) : i ≤ D(k + 1)} satisfying (4.7).

From Lemma 4.5 it follows the following result tailored for our analysis.

Lemma 4.6. For all k, n ∈ N and monotone f : N→ N, if there exists x ∈ BN such
that

∀m ∈ [n,Ψ1(k, n, f)]
(
sxm+1 ≤ sxm

)
,
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then there exists n′ ≤ Ψ2(k, n, f) such that

∀m ∈ [n′, f(n′)]

(
‖y2m+2 − y2m+1‖ ≤

1

k + 1
∧ ‖y2m+1 − y2m‖ ≤

1

k + 1

)
.

Proof. First note that, using Lemma 2.24, it holds that 0 ≤ sxm ≤ 4N2, for all m ∈ N.

By Lemma 4.5 there exists n0 ≤ φ2[4N2](2(k + 1)2 − 1, n, f̃ [M1]) such that for all

m ∈ [n0, f̃ [M1](n0)] it holds that sxm − sxm+1 ≤
1

2(k + 1)2
. By (4.4) the result follows

with n′ := max{n0,M1} (≤ Ψ2(k, n, f)). �

Lemma 4.7. For all k, n ∈ N and monotone f : N→ N, if there exists x ∈ BN such
that

∀m ∈ [n,Ψ3(k, n, f)]
(
sxm+1 ≤ sxm

)
,

then there exists n′ ≤ Ψ4(k, n, f) such that for all i ∈ [n′, f(n′)]∥∥JA(y2i+2)− y2i+2

∥∥ ≤ 1

k + 1
∧
∥∥JA(y2i+1)− y2i+1

∥∥ ≤ 1

k + 1
and ∥∥JB(y2i+2)− y2i+2

∥∥ ≤ 1

k + 1
∧
∥∥JB(y2i+1)− y2i+1

∥∥ ≤ 1

k + 1
.

Proof. By Lemma 4.6, take n0 ≤ Ψ2(8k+7, n, f̃ [M2]) such that for n′ :=max{n0,M2},

∀i ∈ [n′, f(n′)]

(
max{‖y2i+1 − y2i‖ , ‖y2i+2 − y2i+1‖} ≤

1

8(k + 1)

)
. (4.8)

Notice that, since M2 ≥ max{a(8N(k + 1)− 1), `(8N(k + 1)− 1)}

∀i ∈ [n′, f(n′)]

(
max{4Nαi, 4Nλi} ≤

1

2(k + 1)

)
. (4.9)

Hence, by (4.5) and (4.6), for i ∈ [n′, f(n′)]∥∥JA(y2i+1)− y2i+1

∥∥ ≤ 3

4(k + 1)
and

∥∥JB(y2i+2)− y2i+2

∥∥ ≤ 3

4(k + 1)
. (4.10)

Using the fact that JA and JB are nonexpansive, we have∥∥JA(y2i+2)− y2i+2

∥∥ ≤ 2 ‖y2i+2 − y2i+1‖+
∥∥JA(y2i+1)− y2i+1

∥∥
and ∥∥JB(y2i+1)− y2i+1

∥∥ ≤ 2 ‖y2i+2 − y2i+1‖+
∥∥JB(y2i+2)− y2i+2

∥∥ .
By (4.8) and (4.10), for all i ∈ [n′, f(n′)]∥∥JA(y2i+2)− y2i+2

∥∥ ≤ 1

k + 1
and

∥∥JB(y2i+1)− y2i+1

∥∥ ≤ 1

k + 1
. (4.11)

The result follows from (4.10) and (4.11) and the fact that n′ ≤ max{Ψ2(8k +

7, n, f̃ [M2]), M2} = Ψ4(k, n, f). �

The following result gives the quantitative version of the argument for the first
case.
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Lemma 4.8. For all k, n ∈ N, monotone f : N→ N and x ∈ BN , if

(i) ∀m ∈ [n,Ψ5(k, n, f)]
(
sxm+1 ≤ sxm

)
(ii)

∥∥JA(x)− x
∥∥ ≤ 1

ξ1(n) + 1
∧
∥∥JB(x)− x

∥∥ ≤ 1

ξ1(n) + 1
(iii) for all y ∈ BN(∥∥JA(y)− y

∥∥ ≤ 1

n+ 1
∧
∥∥JB(y)− y

∥∥ ≤ 1

n+ 1

)
→ 〈u− x, y − x 〉 ≤ 1

256(k + 1)2

then there exists n′ ≤ Ψ6(k, n, f) such that

∀i ∈ [n′, f(n′)]

(
‖yi − x‖ ≤

1

2(k + 1)

)
.

Proof. We may assume that for all m ≤ Ψ6(k, n, f) it holds that f(m) ≥ m, otherwise
the result is trivial. By Lemma 4.7 and the first hypothesis, there is n0 ≤ ñ such that
for all i ∈ [n0, jf (n0)]∥∥JA(y2i+1)− y2i+1

∥∥ ≤ 1

n+ 1
∧
∥∥JB(y2i+1)− y2i+1

∥∥ ≤ 1

n+ 1

and ∥∥JA(y2i+2)− y2i+2

∥∥ ≤ 1

n+ 1
∧
∥∥JB(y2i+2)− y2i+2

∥∥ ≤ 1

n+ 1
.

Furthermore, from (4.8) in the proof of Lemma 4.7 we know that for i ∈ [n0, jf (n0)]

‖y2i+1 − y2i‖ ≤
1

4(k + 1)
. (4.12)

Hence, using the third hypothesis and the fact that (ym) ⊂ BN , for all i ∈ [n0, jf (n0)]

〈u− x, y2i+1 − x 〉 ≤
1

256(k + 1)2
∧ 〈u− x, y2i+2 − x 〉 ≤

1

256(k + 1)2
. (4.13)

From (4.3) we obtain

‖y2i+2 − x‖2 ≤ (1− αi)(1− λi)
(
‖y2i − x‖2 + vi

)
+ αibi + λici

with vi := 8N
(∥∥JA(x)− x

∥∥+
∥∥JB(x)− x

∥∥), bi := 2〈u − x, y2i+1 − x 〉 + vi and
ci := 2〈u − x, y2i+2 − x 〉 + vi. By the second hypothesis and the monotonicity of f
and σ1

8N
(∥∥JA(x)− x

∥∥+
∥∥JB(x)− x

∥∥) ≤ 16N

1024N(k + 1)2(f(2σ1(k̃, ñ) + 1) + 1)

≤ 1

64(k + 1)2(f(2σ1(k̃, n′) + 1) + 1)
.

(4.14)

With p = jf (n0) = f(2σ1(k̃, n0) + 1), we have

∀i ∈ [n0, p]

(
vi ≤

1

64(k + 1)2(p+ 1)
∧ bi ≤

1

64(k + 1)2
∧ ci ≤

1

64(k + 1)2

)
,
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using (4.13), (4.14) and p ≥ σ1(k̃, n0) ≥ 1. By Lemma 2.15 we conclude that

∀i ∈ [σ1(k̃, n0), p]

(
‖y2i − x‖ ≤

1

4(k + 1)

)
.

Since σ1(k̃, n0) ≥ n0, we have that [σ1(k̃, n0), p] ⊆ [n0, jf (n0)] and so by (4.12)

∀i ∈ [σ1(k̃, n0), p]

(
‖y2i+1 − x‖ ≤

1

2(k + 1)

)
.

The result follows with n′ := 2σ1(k̃, n0) + 1. �

4.2. Second case. We are now going to consider the case where the sequence (sxn) is
not eventually decreasing. In this subsection, we again assume that for some q ∈ S,
N ≥ max{‖u− q‖ , ‖x0 − q‖ , ‖q‖}.

For s : N→ N and m ∈ N we define a monotone function τ as follows.

τsm(n) :=


n n < m

max{k ∈ [m,n] : sk < sk+1} n ≥ m ∧ ∃k ∈ [m,n] (sk < sk+1)

n n ≥ m ∧ ∀k ∈ [m,n] (sk+1 ≤ sk) .

Lemma 4.9 ([13, Lemma 3.27]). Let s : N→ N and m, r ∈ N be arbitrary. If m ≥ r
and sm < sm+1, then

∀i ≥ m
(
τsm(i) ≥ r ∧max{sτs

m(i), si} ≤ sτs
m(i)+1

)
.

The following result gives the quantitative version of the argument for the second
case.

Lemma 4.10. For k,m, n ∈ N, f : N→ N monotone and x ∈ BN , assume that

(i) n ≥ r(m, k) ∧ sxn < sxn+1,

(ii)
∥∥JA(x)− x

∥∥ ≤ 1
ξ2(n)+1 ∧

∥∥JB(x)− x
∥∥ ≤ 1

ξ2(n)+1 ,

(iii) for all y ∈ BN(∥∥JA(y)− y
∥∥ ≤ 1

m+ 1
∧
∥∥JB(y)− y

∥∥ ≤ 1

m+ 1

)
→ 〈u− x, y − x 〉 ≤ 1

3 · 96(k + 1)2
.

Then, there exists n′ ≤ 2n+ 1 such that

∀i ∈ [n′, f(n′)]

(
‖yi − x‖ ≤

1

2(k + 1)

)
.

Proof. With x ∈ BN , as in the statement of the lemma, we simplify the notation by
writing sn := sxn, and τn := τs

x

n . From Lemma 4.9 we know that

∀i ≥ n
(
τn(i) ≥ r(m, k) ∧max{sτn(i), si} ≤ sτn(i)+1

)
.

Let i ∈ [n, f(2n+ 1)]. Since sτn(i) ≤ sτn(i)+1 and

r(m, k) ≥ max{a(32 · 64N2(m+ 1)2 − 1), `(24 · 64N2(m+ 1)2 − 1)},
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by (4.4) we have

max{
∥∥y2τn(i)+1 − y2τn(i)

∥∥2 , ‖y2τn(i)+2 − y2τn(i)+1‖2}

≤ 16N2

32 · 64N2(m+ 1)2
+

12N2

24 · 64N2(m+ 1)2

=
1

64(m+ 1)2
,

which entails

max
{∥∥y2τn(i)+1 − y2τn(i)

∥∥ ,∥∥y2τn(i)+2 − y2τn(i)+1

∥∥} ≤ 1

8(m+ 1)
.

By the monotonicity of a and `, we have

τn(i) ≥ r(m, k) ≥ max{a(16N(m+ 1)− 1), `(16N(m+ 1)− 1)},

which implies

4Nατn(i) ≤
1

4(m+ 1)
and 4Nλτn(i) ≤

1

4(m+ 1)
.

From (4.5) and (4.6) it follows that∥∥JA(y2τn(i)+1)− y2τn(i)+1

∥∥ ≤ 1

2(m+ 1)
∧
∥∥JB(y2τn(i)+2)− y2τn(i)+2

∥∥ ≤ 1

2(m+ 1)
.

Hence∥∥JB(y2τn(i)+1)− y2τn(i)+1

∥∥ ≤ 2
∥∥y2τn(i)+2 − y2τn(i)+1

∥∥+
∥∥JB(y2τn(i)+2)− y2τn(i)+2

∥∥
≤ 1

m+ 1

and∥∥JA(y2τn(i)+2)− y2τn(i)+2

∥∥ ≤ 2
∥∥y2τn(i)+2 − y2τn(i)+1

∥∥+
∥∥JA(y2τn(i)+1)− y2τn(i)+1

∥∥
≤ 1

m+ 1
.

Then, by the third hypothesis and the fact that (yn) ⊂ BN (cf. Lemma 2.24),

〈u− x, y2τn(i)+1 − x 〉 ≤
1

3 · 96(k + 1)2
and 〈u− x, y2τn(i)+2 − x 〉 ≤

1

3 · 96(k + 1)2
.

(4.15)
Since sτn(i) ≤ sτn(i)+1, it follows from (4.3) that

(ατn(i) + 2λτn(i) − ατn(i)λτn(i))sτn(i)+1 ≤ (ατn(i) + 2λτn(i))(2〈u− x, y2τn(i)+1 − x 〉
+ 〈u− x, y2τn(i)+2 − x 〉)

+ 8N
(∥∥JA(x)− x

∥∥+
∥∥JB(x)− x

∥∥) ,
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and, since sτn(i)+1 ≤ 4N2 and ατn(i)λτn(i) ≤ ατn(i)(ατn(i) + 2λτn(i)),

(ατn(i) + 2λτn(i))sτn(i)+1 ≤ (ατn(i) + 2λτn(i))(2〈u− x, y2τn(i)+1 − x 〉
+ 〈u− x, y2τn(i)+2 − x 〉)

+ 8N
(∥∥JA(x)− x

∥∥+
∥∥JB(x)− x

∥∥)
+ 4N2ατn(i)(ατn(i) + 2λτn(i)).

By the second hypothesis,

8N
(∥∥JA(x)− x

∥∥+
∥∥JB(x)− x

∥∥) ≤ 1

96P(f(2n+ 1))(k + 1)2

and so

sτn(i)+1 ≤ 2〈u− x, y2τn(i)+1 − x 〉+ 〈u− x, y2τn(i)+2 − x 〉

+
1

ατn(i) + λτn(i)
· 1

96P(f(2n+ 1))(k + 1)2
+ 4N2ατn(i).

We have τn(i) ≤ i ≤ f(2n+ 1). Hence by (4.15) and the monotonicity of P,

sτn(i)+1 ≤
2

96(k + 1)2
+ 4N2ατn(i).

By the monotonicity of a, we have r(m, k) ≥ a(4 · 96N2(k + 1)2 − 1), and thus

4N2ατn(i) ≤
1

96(k + 1)2
.

We conclude that sτn(i)+1 ≤
1

32(k + 1)2
, and so si ≤

1

32(k + 1)2
. Consequently,

∀i ∈ [n, f(2n+ 1)]

(
‖y2i − x‖ ≤

1

4(k + 1)

)
. (4.16)

By (4.4) and the fact that si+1 ≥ 0, we conclude

‖y2i+1 − y2i‖2 ≤ 16N2αi + 12N2λi +
1

32(k + 1)2
.

Since i ≥ n ≥ r(m, k) ≥ max{a(16 · 64N2(k + 1)2 − 1), `(12 · 64N2(k + 1)2 − 1)}, it
follows ‖y2i+1 − y2i‖ ≤ 1

4(k+1) . Hence, using (4.16)

∀i ∈ [n, f(2n+ 1)]

(
‖y2i+1 − x‖ ≤

1

2(k + 1)

)
. (4.17)

Now let i ∈ [2n+1, f(2n+1)]. If i = 2i′, then i′ ∈ [n, f(2n+1)] and the result follows
from (4.16). If i = 2i′+1, then the result follows from (4.17) as again i′ ∈ [n, f(2n+1)].
This concludes the proof. �
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4.3. Putting it together. We are now able to prove the main result of this section.

Proof of Theorem 4.3. Let k ∈ N and a monotone function f : N→ N be given. Since
N ≥ 2 ‖u− q‖, by Lemma 2.23, there exist n0 ≤ ζ(k,Ξ) and x ∈ BN such that

‖JA(x)− x‖ ≤ 1

Ξ(n0) + 1
∧ ‖JB(x)− x‖ ≤ 1

Ξ(n0) + 1

and for all y ∈ BN(
‖JA(y)− y‖ ≤ 1

n0 + 1
∧ ‖JB(y)− y‖ ≤ 1

n0 + 1

)
→ 〈u− x, y− x 〉 ≤ 1

3 · 96(k + 1)2
.

Assume that for all m ∈ [r+(n0, k),Ψ5(k, r+(n0, k), f)] it holds that sm+1 ≤ sm.
Notice that Ξ(n0) ≥ Ξ1(n0) = ξ1(r+(n0, k)) and r+(n0, k) ≥ n0. Applying Lemma 4.8
(with n = r+(n0, k)) we conclude that

∃n ≤ Ψ6(k, r+(n0, k), f)∀i ∈ [n, f(n)]

(
‖yi − x‖ ≤

1

2(k + 1)

)
. (4.18)

Now assume that sn1 < sn1+1, for some n1 ∈ [r+(n0, k),Ψ5(k, r+(n0, k), f)]. Since
ξ2 is monotone, we have Ξ(n0) ≥ Ξ2(n0) = ξ2(Ψ5(k, r+(n0, k), f)) ≥ ξ2(n1). Then,
applying Lemma 4.10 (with m = n0 and n = n1) we conclude that

∃n ≤ 2n1 + 1 ∀i ∈ [n, f(n)]

(
‖yi − x‖ ≤

1

2(k + 1)

)
. (4.19)

Hence, there is n ≤ µ(k, f) such that for all i, j ∈ [n, f(n)],

‖yi − yj‖ ≤ ‖yi − x‖+ ‖yj − x‖ ≤
1

k + 1
. �

Remark 4.11. The proof of Theorem 4.3 actually shows that for all k ∈ N and for
all f : N→ N
∃n ≤ µ(k,f)∃x ∈ BN ∀m ∈ [n, f(n)](

‖ym − x‖ ≤
1

2(k + 1)
∧
∥∥JA(x)− x

∥∥ ≤ 1

k + 1
∧
∥∥JB(x)− x

∥∥ ≤ 1

k + 1

)
.

5. A generalization with error terms

In this section we show that ‖xn − yn‖ → 0 and compute rates of convergence.
These rates entail that the main results of Sections 3 and 4 can be extended from
(MAR?) to (MAR).

Lemma 5.1. Assume that
∑
αn = ∞ (or

∑
λn = ∞) with rate of divergence A,

and
∑
‖en‖ < ∞ and

∑
‖e′n‖ < ∞ with Cauchy rates E,E′, respectively. Consider

M ∈ N such that M ≥
∑E(1)
i=0 ‖en‖+

∑E′(1)
i=0 ‖e′n‖+ 1. Then ‖xn − yn‖ → 0 with rate

of convergence

ρ(k) := ρ[A,E,E′,M ](k) := max{2ρ1(2k + 1) + 1, 2E(2k + 1) + 3},

where ρ1(k) = ρ1[A,0,0,D,M ](k) is as in Lemma 2.14, with D(k) := max{E(2k+1),
E′(2k + 1)} and 0 denotes the zero function.
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Proof. Since the resolvent functions are nonexpansive, we have that

‖x2n+1 − y2n+1‖ ≤ (1− αn) ‖x2n − y2n‖+ ‖en‖ (5.1)

and

‖x2n+2 − y2n+2‖ ≤ (1− λn) ‖x2n+1 − y2n+1‖+ ‖e′n‖ . (5.2)

Observe that
∑n
i=0 ‖ei‖ +

∑n
i=0 ‖e′i‖ ≤ M . By induction, using (5.1) and (5.2), one

shows that ‖xn − yn‖ ≤M , for all n ∈ N. Also from (5.1) and (5.2) one derives

‖x2n+2 − y2n+2‖ ≤ (1− αn)(1− λn) ‖x2n − y2n‖+ ‖e′n‖+ ‖en‖ .

It is easy to see that D is a Cauchy rate for (
∑

(‖en‖+‖e′n‖)). Hence by Lemma 2.14

∀k ∈ N ∀n ≥ ρ1[A,0,0,D,M ](2k + 1)

(
‖x2n − y2n‖ ≤

1

2(k + 1)

)
.

Since, for n ≥ E(2k+ 1) + 1, it holds that ‖e′n‖ ≤ 1
2(k+1) . The result now follows from

(5.1). �

In a similar way one can obtain a rate of convergence, using Lemma 2.16 instead.

Lemma 5.2. Assume that
∏

(1 − αn) = 0 (or
∏

(1 − λn) = 0) with a function A′

satisfying (2.3), and
∑
‖en‖ < ∞ and

∑
‖e′n‖ < ∞ with Cauchy rates E and E′

respectively. Consider M ∈ N such that M ≥
∑E(1)
i=0 ‖en‖ +

∑E′(1)
i=0 ‖e′n‖ + 1. Then

‖xn − yn‖ → 0 with rate of convergence

ρ(k) := ρ[A′,E,E′,M ](k) := max{2ρ2(2k + 1) + 1, 2E(2k + 1) + 3},

where ρ2(k) = ρ2[A′,0,0,D,M ](k) is as in Lemma 2.16, with D(k) := max{E(2k+1),
E′(2k + 1)} and 0 denotes the zero function.

Remark 5.3. In [8, Theorem 3.2] and [7, Theorem 8] several other conditions on
the error terms are considered. Under those conditions, one can obtain rates of
convergence for ‖xn − yn‖ → 0 by following the steps in the proofs of Lemmas 5.1
and 5.2. Indeed, the only difference is in the choice of parameters for the functions ρ1
and ρ2. For example, under the condition

∑
‖en‖ <∞ and ‖e′n‖ /αn → 0, one would

assume the existence of a Cauchy rate E for (
∑
‖en‖) as before, B a rate of convergence

for ‖e′n‖ /αn → 0, and consider M ′ ≥ maxi<B(0) {1, ‖e′i‖ /αi}+
∑E(0)
i=0 ‖ei‖+ 1. Then

ρ(k) is defined as in Lemmas 5.1 and 5.2 but instead with (respectively)

ρ1[A,B,0,E,M ′] and ρ2[A′,B,0,E,M ′].

Remark 5.4. Using the same arguments as in Lemmas 5.1 and 5.2 (and Remark 5.3)
one shows that ρ is also a rate of convergence for ‖wn − zn‖ → 0, where (zn) is
generated by (HPPA?2) and (wn) is given by the generalized algorithm with error
terms (HPPA2), i.e. the following iteration:{

w2n+1 = α̃nu+ (1− α̃n)JA′

β̃n
(w2n) + en

w2n+2 = λ̃nu+ (1− λ̃n)JB′

µ̃n
(w2n+1) + e′n

(HPPA2)

where w0 = z0 ∈ H is given, (α̃n), (λ̃n) ⊂ (0, 1), (β̃n), (µ̃n) ⊂ (0,+∞).
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6. Final remarks

In this final section we discuss in what way our results establish a finitization of the
strong convergence of the method of alternating resolvents towards a common zero.

Section 3 gives an effective metastability bound for (yn) given by the algorithm
(MAR?). Recall that the restriction to monotone functions and to the interval [n, f(n)]
are only for convenience as explained in Remark 2.8. We begin by computing a par-
tial bound on the metastability of the iteration which depends on the conditions
(Q3) − (Q5) together with (Qη) and (Qη′). In Subsection 3.2, using the conditions
(Q1), (Q2), (Q4), (Q6) and (Q7), we compute functions η and η′ satisfying conditions
(Qη) and (Qη′) and thus obtain a metastability bound depending only on the condi-
tions (Q1) − (Q7) (cf. Remark 3.9). From the metastability of the iteration (yn) it
follows (ineffectively) that (yn) is a Cauchy sequence. Hence it converges strongly to
some point y ∈ H. From Remark 3.9 and the continuity of JA and JB, we conclude
that y must be a common zero of the operators A and B. Furthermore, one can argue
that y must be the projection point of u onto S. Consider ỹ such projection point.
Since yn → y ∈ S, we have 〈u− ỹ, y − ỹ 〉 ≤ 0 and thus

∀k ∈ N ∃n ∈ N ∀m ≥ n
(
〈u− ỹ, ym − ỹ 〉 ≤

1

k + 1

)
.

Hence, for all k and f , (3.1) and (3.2) (in the proof of Theorem 3.2) hold with x̃ = ỹ,
and n0 big enough. Following the proof of Theorem 3.2 we conclude that y2m → ỹ
and therefore y = ỹ.

Section 4 studies the metastability of (yn) given by (MAR?), under different as-
sumptions. Here one drops the conditions (Q5), (Q6) and (Q7). It is however nec-
essary to consider additionally the condition (Q8). By Theorem 4.3 the sequence
(yn) is metastable and hence convergent to some point y ∈ H. From Corol-
lary 4.4 and the continuity of JA and JB, such point y must be a common zero
of the operators A and B. Let ỹ be the projection point of u onto S. Then
the conclusions of Lemmas 4.8 and 4.10 hold with x = ỹ, which implies y = ỹ.
Notice that one cannot guarantee the third assumption in neither of those lem-
mas. However, those conditions are only required to show equations (4.13) and
(4.15), respectively, which follow from the fact that 〈u − ỹ, y − ỹ 〉 ≤ 0 and the
fact that yn → y. Indeed, let k and monotone f be given. For n0 big enough,
we have 〈u − ỹ, y2n+1 − ỹ 〉 ≤ 1

3·96(k+1)2 and 〈u − ỹ, y2n+2 − ỹ 〉 ≤ 1
3·96(k+1)2 , for

n ≥ n0. If sỹm+1 ≤ sỹm for all m ∈ [r+(n0, k),Ψ5(k, r+(n0, k), f)], the conclusion
of Lemma 4.8 holds with n = r+(n0, k) by following its proof after (4.13) (with

x = ỹ). If sỹn1
< sỹn1+1, for some n1 ∈ [r+(n0, k),Ψ5(k, r+(n0, k), f)], then the

conclusion of Lemma 4.10 holds with n = n1. In fact, since for i ≥ n1 one has
τn1

(i) ≥ n1 ≥ r+(n0, k) ≥ n0, we have (4.15) (with x = ỹ) and can follow the proof
of Lemma 4.10 (with m = n0) after that point. This argument shows

∀k ∈ N∀f : N→ N∃n∀i ∈ [n, f(n)]

(
‖yi − ỹ‖ ≤

1

k + 1

)
,

implying yn → ỹ and consequently y = ỹ.
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Finally, we argue that Section 5 extends the results from Sections 3 and 4 to
an iteration (xn) given by (MAR), which is a generalized version of the algorithm
(MAR?) that allows error terms. Lemmas 5.1 and 5.2 give rates of convergence for
‖xn − yn‖ → 0. As such, we also have that (xn) converges to the projection point
of u onto S. Moreover, one has a rate of metastability for (xn). Indeed, let ρ be
a rate of convergence for ‖xn − yn‖ → 0 (as in Lemmas 5.1 or 5.2) and µ be a
rate of metastability for (yn) (as in Corollary 3.3 – together with Remark 3.9 – or
Theorem 4.3). Given k ∈ N and monotone f : N → N, there exists n0 ≤ µ(2k + 1,

f̃ [ρ(4k + 3)]) such that

∀i, j ∈ [n0, f̃ [ρ(4k + 3)](n0)]

(
‖yi − yj‖ ≤

1

2(k + 1)

)
.

With n := max{n0, ρ(4k + 3)}, we have for all i, j ∈ [n, f(n)]

‖xi − xj‖ ≤ ‖xi − yi‖+ ‖yi − yj‖+ ‖xj − yj‖

≤ 1

4(k + 1)
+

1

2(k + 1)
+

1

4(k + 1)
≤ 1

k + 1
,

and so max{µ(2k + 1, f̃ [ρ(4k + 3)]), ρ(4k + 3)} is a rate of metastability for (xn). In
a similar way one can extend the quasi-rate of asymptotic regularity for (MAR?) (cf.
Remark 3.9 and Corollary 4.4) to a quasi-rate of asymptotic regularity for (MAR).
The same constructions also hold for the Halpern-type algorithm (HPPA2). In light
of Proposition 3.10 and Remarks 3.12 and 5.4, one also obtains a rate of metastability
and a quasi-rate of asymptotic regularity for (wn) generated by (HPPA2).

Altogether our results give a finitization of the proofs of [8, Theorem 3.2] (Theo-
rem 1.1) and [7, Theorem 8]. Moreover, our quantitative results avoid the use of the
metric projection (relying instead on Lemma 2.23) and bypass the sequential weak
compactness argument used in the original proofs, applying the macro introduced in
[14, Proposition 4.3].
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