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Abstract. We consider a mixed hemivariational-variational problem, i.e., a system which gathers

a hemivariational inequality with a constrained variational inequality. We list the assumptions on

the data and prove the existence of a unique solution to the problem. Subsequently, we prove the
continuous dependence of the solution with respect to the data. Then, we deduce a criterion of

convergence to the solution of the mixed hemivariational-variational inequality, i.e., we formulate

necessary and sufficient conditions which guarantee the convergence of a sequence to the unique
solution of the system. The proof of our results is based on the particular structure of the problem

which allows us to employ a fixed point argument. Finally, we provide two examples which illustrate

our abstract results.
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1. Introduction

Mixed variational problems represent a class of problems with a convex structure
which arise in the analysis of a large number of nonlinear boundary value problems
with constraints. The major ingredient in their structure consists to introduce a new
variable, the Lagrange multiplier, associated to the set of constraints. Existence and
uniqueness results can be found in [5, 8, 9, 11, 13, 26], for instance. References on their
numerical treatment include [1, 12, 14, 15]. As it follows from these references, the
numerical treatment of nonlinear problems based on mixed variational formulations is
efficient and accurate. This explains why such formulations are widely used in Solid
and Contact Mechanics as well as in various Engineering Applications.

Currently, there is an increasing interest in the study of mixed hemivariational-
variational problems, i.e., problems which couple a hemivariational inequality with a
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variational inequality. Such kind of problems are formulated by using the Clarke ge-
neralized derivative of a locally Lipschitz function and, consequently, they have both
a convex and nonconvex structure. Abstract results and examples arising in Contact
Mechanics can be found in [2, 17, 19]. For recent results in the related field we also
refer the reader to [16, 20, 21, 32, 31].

In the current paper we study the well-posedness of a mixed hemivariational-varia-
tional problem with a perturbed term, the hemivariational inequality being governed
by a strongly monotone Lipschitz continuous operator. The functional framework
is the following. First, X, Y and Z are real Hilbert spaces endowed with the inner
products (·, ·)X , (·, ·)Y and (·, ·)Z , and the associated norms ‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z ,
respectively. We denote by K1 ×K2 the product of the sets K1 and K2 and X × Y
will represent the product space endowed with the canonical inner product. A typical
element of X × Y will be denoted by (u, λ) and, moreover, 0X , 0Y represent the zero
elements of X and Y , respectively. In addition, we use the notation L(X,Y ) for the
space of linear continuous operators defined on X with values in Z, equipped with
the canonical norm ‖ · ‖L(X,Z).

The problem data are the operators A : X → X, G : X → Z, the bilinear forms
b : X × Y → R and c : Y × Y → R, the function J : Z → R, the set Λ ⊆ Y and the
element f ∈ X. We use the notation J0(u; v) for the generalized derivative of J in
the point u ∈ Z in the direction v ∈ Z, when J is locally Lipschitz. Then, the mixed
hemivariational-variational problem we consider consists of the following system.

Problem P. Find (u, λ) ∈ X × Λ such that

(Au, v − u)X + b(v − u, λ) + J0(Gu;Gv −Gu) ≥ (f, v − u)X , ∀ v ∈ X, (1.1)

b(u, µ− λ)− c(µ, µ) + c(λ, λ) ≤ 0 ∀µ ∈ Λ. (1.2)

Note that Problem P can be seen as a generalization of the mixed variational
problem

a(u, v) + b(v, λ) = (f, v)X ∀ v ∈ X, (1.3)

b(u, µ)− t2c(λ, µ) = 0 ∀µ ∈ Λ. (1.4)

in which t > 0 is a given parameter. The system (1.3)–(1.4) represents a saddle point
problem with penalty term which can be encountered in the study of elastic plates.
Details on this topic can be found in [4, p.131–132] and [3, p.137-138].

Our aim in this paper is threefold. The first one is to provide sufficient conditions
which guarantee the unique solvability of Problem P. The second one is to prove the
continuous dependence of the solution with respect to the data. The third one is to
introduce a general criterion of convergence to the solution. Besides the novelty of
the results we present in this paper, we underline that the analysis we provide here
is carried out by using as crucial ingredient the fixed-point structure of Problem P.
The results we present in this paper find applications in the study of boundary value
problems which, in a variational formulation, lead to such kind of mixed problems.

The rest of the paper is structured as follows. In Section 2 we introduce some
preliminary material that we need in the next sections. In Section 3 we state and
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prove our main existence and uniqueness result, Theorem 3.1. The proof is based on
a recent result in [18] combined with a fixed point argument. In Section 4 we use the
fixed point structure of the Problem P in order to prove a convergence result, Theorem
4.1. In Section 5 we provide a criterion of convergence to the solution of Problem
P, Theorem 5.1. Finally, in Section 6 we provide two examples which illustrate the
abstract results provided by Theorems 3.1–5.1.

2. Preliminaries

We now recall some notation and preliminary results which will be used in the
rest of the manuscript. For simplicity we restrict ourselves to the Hilbertian case.
Therefore, below in this section we assume that (H, (·, ·)H , ‖ · ‖H) is a real Hilbert
space.

Definition 2.1. An operator A : H → H is said to be strongly monotone if there
exists mA > 0 such that

(Au−Av, u− v)H ≥ mA‖u− v‖2H ∀u, v ∈ H. (2.1)

The operator A is Lipschitz continuous if there exists LA > 0 such that

‖Au−Av‖H ≤ LA‖u− v‖H ∀u, v ∈ H. (2.2)

The following result will be used in Section 3 of this paper.

Lemma 2.2. Let A : H → H be a strongly monotone Lipschitz continuous operator
with constants mA and LA and let ρ > 0. Then:

a) the operator A is invertible and its inverse A−1 : H → H is strongly monotone
Lipschitz continuous with constant mA−1 = mA

L2
A

and LA−1 = 1
mA

;

b) the operator Bρ : H → H defined by Bρu = u − ρAu for all u ∈ H satisfies the
inequality

‖Bρu1 −Bρu2‖H ≤ k(ρ)‖u1 − u2‖H ∀ u1, u2 ∈ H

with k(ρ) = (1− 2ρmA + ρ2L2
A)

1
2 . Moreover, if ρ ∈

(
0, 2mA

L2
A

)
then 0 < k(ρ) < 1 and,

therefore, Bρ is a contraction on H.

The proof of Lemma 2.2 a) can be found in [28, p. 23]. The proof of Lemma 2.2 b)
follows from arguments identical to those used on [28, p. 22] and, therefore, we skip
it.

Definition 2.3. A function j : H → R is said to be locally Lipschitz if for any x ∈ H
there exist a neighborhood of x, Ux, and a constant Lx such that

|j(u)− j(v)| ≤ Lx‖u− v‖H ∀u, v ∈ Ux.
The Clarke directional derivative of the locally Lipschitz function j : H → R at the
point u ∈ H in the direction v ∈ H is defined by

j0(u; v) = lim sup
w→u,λ↓0

j(w + λv)− j(w)

λ
.
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Moreover, the generalized gradient (Clarke subdifferential) of j at u is the subset of
H given by

∂j(u) = { ξ ∈ H : j0(u; v) ≥ (ξ, v)H ∀ v ∈ H }. (2.3)

Recall also that if j is Lipschitz continuous of rank Lj > 0 then

|j0(u; v)| ≤ Lj‖v‖H ∀u, v ∈ H. (2.4)

For details on this topic see, e.g., [6, 22, 23, 24, 25, 29].

Given ρ > 0 we now consider the following particular case of the mixed
hemivariational-variational problem (1.1)–(1.2).

Problem P0. Find (u, λ) ∈ X × Λ such that

(u, v − u)X + ρb(v − u, λ) + ρJ0(Gu;Gv −Gu) ≥ (g, v − u)X , ∀ v ∈ X,(2.5)

b(u, µ− λ)− c(µ, µ) + c(λ, λ) ≤ 0 ∀µ ∈ Λ. (2.6)

In the study of this problem we introduce the following assumptions.

H(b) b : X × Y → R is a bilinear form such that
there exist Mb > 0 and αb > 0 :

(a) |b(v, µ)| ≤Mb‖v‖X‖µ‖Y ∀v ∈ X, µ ∈ Y ;

(b) inf
µ∈Y,µ 6=0Y

sup
v∈X,v 6=0X

b(v, µ)

‖v‖X‖µ‖Y
≥ αb.

(2.7)

H(c) c : Y × Y → R is a symmetric, continuous and Y -elliptic bilinear form.

H(J) J : Z → R is a Lipschitz continuous function of rank LJ > 0 and
there exists mJ ≥ 0 sucht that

J0(u1; v2 − v1) + J0(u2; v1 − v2) ≤ mJ ‖u1 − u2‖X‖v1 − v2‖X , (2.8)

∀u1, u2, v1, v2 ∈ X.

H(G) G : X → Z is a linear compact operator, i.e.,
un ⇀ u in X as n→∞ =⇒ Gun → Gu in Z as n→∞.

H(sr) ρmJ‖G‖2L(X,Z) < 1.

H(Λ) Λ is a closed convex subset of Y such that 0Y ∈ Λ.

H(g) g ∈ X.

The following result represents a version of Theorem 7 recently proved in [18].
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Proposition 2.4. Assume H(b), H(c), H(J), H(G), H(sr), H(Λ) and H(g). Then
Problem P0 has a unique solution (u, λ) ∈ X × Λ.

The proof of this proposition is based on a number of preliminary results of convex
analysis combined with the properties of the subdifferential in the sense of Clarke, a
crucial tool being a fixed point theorem for set-valued mappings, see [30].

Proposition 2.4 allows us to introduce the operators Q : X → X and R : X → Λ
defined as follows:

u = Qg, λ = Rg ⇐⇒ (u, λ) is the solution to Problem P0 (2.9)

for any g ∈ X. Note that Problem P0 as well as its solution depend on the parameter
ρ > 0. Therefore, the operators Q and R depend on ρ, too. Nevertheless, for sim-
plicity, since no confusion arises, we do not mention this dependence. The properties
of these operators will play a crucial role in the analysis of Problem P we shall carry
out in the next two sections.

3. An existence and uniqueness result

In this section we provide the unique solvability of the hemivariational-variational
problem P. To this end, besides the assumptions already introduced in Section 2,
we consider the following assumptions on the operator A, the function J and the
element f .

H(A) A is a strongly monotone Lipschitz continuous operator with constants

mA > 0 and LA > 0, i.e., it satisfies inequalities (2.1) and (2.2) with H = X.

H(J)1 There exists βJ ≥ 0 such that

J0(Gu1;Gw) + J0(Gu2;−Gw) ≤ βJ ‖u1 − u2‖X‖w‖X ∀u1, u2, w ∈ X. (3.1)

H(s) mJ‖G‖2L(X,Z) < mA.

H(f) f ∈ X.

Note that below in this paper we need the inequality

J0(Gv1;Gv2 −Gv1) + J0(Gv2;Gv1 −Gv2) ≤ mJ‖G‖2L(X,Z) ‖v1 − v2‖2X (3.2)

∀ v1, v2 ∈ X,
with some mJ ≥ 0 which satisfies the smallness assumption H(s). Assume that

condition (3.1) is satisfied. Then it follows that (3.2) holds with mJ = βJ

‖G‖2L(X,Z)

and,

in this case, H(s) implies that βJ < mA. Nevertheless, some elementary examples
can be considered in which inequalities (2.8) and (3.1) hold with mJ‖G‖2L(X,Z) < βJ .

For this reason, to recover the case when mJ‖G‖2L(X,Z) < mA < βJ , below in this

paper we consider conditions (2.8) and (3.1) separately.

Our main result in this section is the following.
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Theorem 3.1. Assume H(A), H(b), H(c), H(J), H(G), H(J)1, H(Λ), H(s) and
H(f). Then, Problem P has a unique solution (u, λ) ∈ X × Λ.

Proof. We fix ρ > 0 such that ρ < 1
mJ‖G‖2L(X,Z)

to be determined later and, besides

the operators Q and R introduced in Section 2, we consider the operators S, T and
U defined as follows:

S : X → X, Su = ρf − ρAu+ u ∀u ∈ X, (3.3)

T : X → Λ, Tu = Q(Su) ∀u ∈ X, (3.4)

W : X → Λ, Wu = R(Su) ∀u ∈ X. (3.5)

Note that these operators depend on ρ. Nevertheless, for simplicity, in this section
we do not mention this dependence. We now proceed in three steps, as follows.

Step i) We prove that the following equivalence holds:

(u, λ) ∈ X × Λ is a solution to Problem P ⇐⇒ u = Tu and λ = Wu. (3.6)

Indeed, using (1.1)–(1.2), (2.5)–(2.6) and the definitions (2.9), (3.3)–(3.5) it is easy
to see that the following equivalences hold.

(u, λ) ∈ X × Λ is a solution to Problem P

⇐⇒


(u, v − u)X + ρb(v − u, λ) + ρJ0(Gu;Gv −Gu)

≥ (ρf − ρAu+ u, v − u)X ∀ v ∈ X,

b(u, µ− λ)− c(µ, µ) + c(λ, λ) ≤ 0 ∀µ ∈ Λ.

⇐⇒ u = Q(ρf − ρAu+ u), λ = R(ρf − ρAu+ u)

⇐⇒ u = Q(Su), λ = R(Su)

⇐⇒ u = Tu, λ = Wu.

It follows from here that the statement (3.6) holds.

Step ii) We now prove the following inequalities concerning the operators Q and R:

‖Qg1 −Qg2‖X ≤
1

1− ρmJ‖G‖2L(X,Z)

‖g1 − g2‖X ∀ g1, g2 ∈ X. (3.7)

‖Rg1 −Rg2‖Y ≤
2 + ρ(βJ −mJ‖G‖2L(X,Z))

ραb(1− ρmJ‖G‖2L(X,Z))
‖g1 − g2‖X ∀ g1, g2 ∈ X. (3.8)

These inequalities are necessary to study the existence of a unique fixed point of the
operator T , suggested by equality u = Tu in (3.6). Their proof is as follows. Let
g1, g2 ∈ X and, for simplicity, denote

u1 = Qg1, u2 = Qg2, λ1 = Rg1, λ2 = Rg2. (3.9)
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Then, using the definition (2.9) we deduce that

(u1, v−u1)X + ρb(v−u1, λ1) + ρJ0(Gu1;Gv−Gu1) ≥ (g1, v−u1)X ∀ v ∈ X, (3.10)

b(u1, µ− λ1)− c(µ, µ) + c(λ1, λ1) ≤ 0 ∀µ ∈ Λ (3.11)

and, moreover,

(u2, v−u2)X + ρb(v−u2, λ2) + ρJ0(Gu2;Gv−Gu2) ≥ (g2, v−u2)X ∀ v ∈ X, (3.12)

b(u2, µ− λ2)− c(µ, µ) + c(λ2, λ2) ≤ 0 ∀µ ∈ Λ. (3.13)

We now take v = u2 in (3.10), then v = u1 in (3.12) and add the resulting inequalities
to find that

‖u1 − u2‖2X ≤ ρb(u2 − u1, λ1 − λ2)

+ρJ0(Gu1;Gu2 −Gu1) + ρJ0(Gu2;Gu1 −Gu2) + (g1 − g2, u1 − u2)X .

Next, we use inequality (3.2) to deduce that

(1−ρmJ‖G‖2L(X,Z))‖u1−u2‖2X ≤ ρb(u2−u1, λ1−λ2)+‖g1−g2‖X‖u1−u2‖X . (3.14)

On the other hand, we take µ = λ2 in (3.11), then µ = λ1 in (3.13) and add the
resulting inequalities to find that

b(u2 − u1, λ1 − λ2) ≤ 0. (3.15)

We now combine inequalities (3.14) and (3.15) to deduce that

(1− ρmJ‖G‖2L(X,Z))‖u1 − u2‖X ≤ ‖g1 − g2‖X .

As 1− ρmJ‖G‖2L(X,Z) > 0, we immediately get (3.7).

Consider now an arbitrary element w ∈ X, w 6= 0X . We take v = u1 +w in (3.10),
then v = u2 − w in (3.12) and add the resulting inequalities to find that

ρb(w, λ2 − λ1) ≤ (u1 − u2, w)X + (g1 − g2, w)X + ρJ0(Gu1;Gw) + ρJ0(Gu2;−Gw).

Then, using assumption H(J)1 yields

ρb(w, λ2 − λ1) ≤
[
(1 + ρβJ)‖u1 − u2‖X + ‖g1 − g2‖X

]
‖w‖X . (3.16)

Assume now that λ1 6= λ2. Then inequality (3.16) implies that

ρ
b(w, λ2 − λ1)

‖w‖X‖λ1 − λ2‖Y
≤
[
(1 + ρβJ)‖u1 − u2‖X + ‖g1 − g2‖X

] 1

‖λ1 − λ2‖Y
and, using assumption (2.7)(b) we find that

‖λ1 − λ2‖Y ≤
1

ραb

[
(1 + ρβJ)‖u1 − u2‖X + ‖g1 − g2‖X

]
. (3.17)

Note that, obviously, this inequality holds even in the case when λ1 = λ2. We now use
(3.17), equalities (3.9) and inequality (3.7) to deduce that (3.8) holds, which concludes
the proof of this step.

Step iii) We prove that, with a convenient choice of ρ, the operator T : X → X is
a contraction. Indeed, assume that u1, u2 ∈ X and recall the definition (3.4) which



728 MIRCEA SOFONEA AND ANDALUZIA MATEI

shows that Tu1 = Q(Su1) and Tu2 = Q(Su2). Then, using inequality (3.7) with
g1 = Su1 and g2 = Su2 we find that

‖Tu1 − Tu2‖X = ‖Q(Su1)−Q(Su2)‖X ≤
1

1− ρmJ‖G‖2L(X,Z)

‖Su1 − Su2‖X

and, therefore, (3.3) yields

‖Tu1 − Tu2‖X ≤
1

1− ρmJ‖G‖2L(X,Z)

‖(u1 − ρAu1)− (u2 − ρAu2)‖X .

We now use assumption H(A) and Lemma 2.2 to deduce that

‖Tu1 − Tu2‖X ≤
k(ρ)

1− ρmJ‖G‖2L(X,Z)

‖u1 − u2‖X (3.18)

where, recall, k(ρ) = (1− 2ρmA + ρ2L2
A)

1
2 .

Consider now the real valued function F given by

F (ρ) = k(ρ) + ρmJ‖G‖2L(X,Z) = (1− 2ρmA + ρ2L2
A)

1
2 + ρmJ‖G‖2L(X,Z),

for all ρ ∈
(

0, 1
mJ‖G‖2L(X,Z)

)
. Then, using the smallness assumption H(s) we deduce

that F ′(0) = mJ‖G‖2L(X,Z) −mA < 0. This implies that F is strictly decreasing in

a neighborhood of the origin and, since F (0) = 1, we deduce that for ρ > 0 small
enough we can assume that F (ρ) < 1. We now use inequality (3.18) to see that for
such ρ the operator T is a contraction, as claimed.

Step iv) Existence and uniqueness. We use Step iii) to chose ρ such that the operator
T is a contraction on X. Then, the Banach contraction principle implies that there
exists a unique element u ∈ X such that u = Tu. We now define λ = Wu and
use (3.6) to see that the pair (u, λ) is a solution to Problem P. This concludes the
existence part of the theorem. The uniqueness part is a direct consequence of the
equivalence (3.6) and the uniqueness of the fixed point of the operator T . �

4. A continuous dependence result

In this section we study the continuous dependence of the solution of Problem P
with respect to the data A, b, c and f . To this end, we assume in what follows that
H(A), H(b), H(c), H(J), H(G), H(J)1, H(Λ), H(s) and H(f) hold and we consider
the sequences {An}, {bn}, {cn} and {fn} such that, for each n ∈ N, the following
conditions hold.

H(An) An : X → X is a strongly monotone Lipschitz continuous operator
with positive constants mn and Ln.

H(bn) bn : X × Y → R is a bilinear form which satisfies condition (2.7)
with positive constants αn and Mn.

H(cn) cn : Y × Y → R is a symmetric, continuous and Y -elliptic bilinear form.
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H(sn) mJ‖G‖2L(X,Z) < mn.

H(fn) fn ∈ X.

Then, using Theorem 3.1 it follows that for each n ∈ N there exists a unique
solution to the following problem.

Problem Pn. Find (un, λn) ∈ X × Λ such that

(Anun, v − un)X + bn(v − un, λn) + J0(Gun;Gv −Gun) ≥ (fn, v − un)X ∀ v ∈ X,

bn(un, µ− λn)− cn(µ, µ) + cn(λn, λn) ≤ 0 ∀µ ∈ Λ.

Consider now the following additional assumptions.

Anv → Av for all v ∈ X, as n→∞. (4.1)

There exist m0, L0 > 0 such that m0 ≤ mn ≤ Ln ≤ L0 ∀n ∈ N. (4.2)

There exists α0 > 0 such that α0 ≤ αn ∀n ∈ N. (4.3)
For each n ∈ N there exists dn ≥ 0 such that

(a) |bn(u, λ)− b(u, λ)| ≤ dn‖u‖X‖λ‖Y for all u ∈ X, λ ∈ Y.

(b) dn → 0 as n→∞.

(4.4)


For each n ∈ N there exists θn ≥ 0 such that

(a) |cn(µ, λ)− c(µ, λ)| ≤ θn‖µ‖Y ‖λ‖Y for all µ, λ ∈ Y.

(b) θn → 0 as n→∞.

(4.5)

fn → f in X. (4.6)

Our main result in this section is the following.

Theorem 4.1. Assume H(A), H(b), H(c), H(J), H(G), H(J)1, H(Λ), H(s) and
H(f) and, for each n ∈ N assume H(An), H(bn), H(cn), H(sn) and H(fn). More-
over, assume that (4.1)–(4.6) hold. Then, the solution (un, λn) of Problem Pn con-
verges to the solution (u, λ) of Problem P, i.e.,

un → u in X, as n→∞. (4.7)

λn → λ in Y, as n→∞. (4.8)

Proof. The proof is split into four steps, as follows.

Step i) Preliminaries. Let n ∈ N, ρ ∈
(

0, 1
mJ‖G‖2L(X,Z)

)
and denote by Problem P0

n

the problem obtained replacing in Problem P0 the bilinear forms b and c by the forms
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bn and cn, respectively. It follows from Proposition 2.4 that we are in a position to
introduce the operators Qn : X → X and Rn : X → Λ defined by the equivalence
below.

u = Qng, λ = Rng ⇐⇒ (u, λ) is the solution to Problem P0
n (4.9)

for any g ∈ X. Consider also the operators Sn, Tn and Wn defined as follows

Sn : X → X, Snu = ρfn − ρAnu+ u ∀u ∈ X, (4.10)

Tn : X → X, Tnu = Qn(Snu) ∀u ∈ X, (4.11)

Wn : X → Λ, Wnu = Rn(Snu) ∀u ∈ X.

Then, it follows from the proof of Step i) in Theorem 3.1 that

un = Tnun = Qn(Snun) and λn = Wnun = Rn(Snun).

Moreover, inequalities (3.7) and (3.8) combined with assumption (4.3) imply that

‖Qng1 −Qng2‖X ≤
1

1− ρmJ‖G‖2L(X,Z)

‖g1 − g2‖X ∀ g1, g2 ∈ X, (4.12)

‖Rng1 −Rng2‖Y ≤
2 + ρ(βJ −mJ‖G‖2L(X,Z))

ρα0(1− ρmJ‖G‖2L(X,Z))
‖g1 − g2‖X ∀ g1, g2 ∈ X. (4.13)

Let m = min {m0,mA}, L = max {L0, LA} and let k(ρ) = (1 − 2ρm + ρ2L2)
1
2 .

Then, it follows from H(A), H(An) and (4.2) that the operators An and A are strongly
monotone and Lipschitz continuous with constants m and L. In other words, we may
assume that the constants of strong monotonicity and Lipschitz continuity of the
operators An and A are the same, and are denoted by m and L, respectively. This
property combined with (3.4), (3.7) and Lemma 2.2 shows that

‖Tu1 − Tu2‖X ≤
k(ρ)

1− ρmJ‖G‖2L(X,Z)

‖u1 − u2‖X ∀ u1, u2 ∈ X.

A similar argument based on (4.11) and (4.12) yields

‖Tnu1 − Tnu2‖X ≤
k(ρ)

1− ρmJ‖G‖2L(X,Z)

‖u1 − u2‖X ∀u1, u2 ∈ X.

As a consequence, a careful analysis of the proof of Step iii) in Theorem 3.1 shows

that we can choose a positive real ρ0 ∈
(

0, 1
mJ‖G‖2L(X,Z)

)
such that the operators T

and Tn are contractions with the same constant k0 ∈ [0, 1), which does not depend
on n. Therefore,

‖Tnu1 − Tnu2‖X ≤ k0‖u1 − u2‖X , ‖Tu1 − Tu2‖X ≤ k0‖u1 − u2‖X (4.14)

for all u1, u2 ∈ X.
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Step ii) We prove that for each g ∈ X the following convergences hold.

Qng → Qg in X, as n→∞, (4.15)

Rng → Rg in Y, as n→∞. (4.16)

Let g ∈ X and, for simplicity, denote

wn = Qng, w = Qg, δn = Rng, δ = Rg. (4.17)

Then, using the definition (2.9) and (4.9) we deduce that

(w, v − w)X + ρb(v − w, δ) + ρJ0(Gw;Gv −Gw) ≥ (g, v − w)X ∀ v ∈ X, (4.18)

b(w, µ− δ)− c(µ, µ) + c(δ, δ) ≤ 0 ∀µ ∈ Λ (4.19)

and

(wn, v − wn)X + ρbn(v − wn, δn) + ρJ0(Gwn;Gv −Gwn) ≥ (g, v − wn)X (4.20)

∀ v ∈ X,

bn(wn, µ− δn)− cn(µ, µ) + cn(δn, δn) ≤ 0 ∀µ ∈ Λ. (4.21)

We now take v = w in (4.20), then v = wn in (4.18) and add the resulting inequal-
ities to find that

‖wn − w‖2X ≤ ρb(wn − w, δ) + ρbn(w − wn, δn)

+ρJ0(Gwn;Gw −Gwn) + ρJ0(Gw;Gwn −Gw).

Next, we use (3.2) to deduce that

(1− ρmJ‖G‖2L(X,Z))‖wn − w‖
2
X ≤ ρb(wn − w, δ) + ρbn(w − wn, δn). (4.22)

On the other hand, since

b(wn − w, δ) + bn(w − wn, δn) = b(wn − w, δ − δn) + b(wn − w, δn) + bn(w − wn, δn),

using (4.4), we get

b(wn − w, δ) + bn(w − wn, δn) ≤ b(wn − w, δ − δn) + dn‖wn − w‖X‖δn‖Y . (4.23)

Consequently, (4.22) and (4.23) yield

(1− ρmJ‖G‖2L(X,Z))‖wn−w‖
2
X ≤ ρb(wn−w, δ− δn) + ρdn‖wn−w‖X‖δn‖Y . (4.24)

Next, we take µ = δ in (4.21), then µ = δn in (4.19) and add the resulting inequalities
to find that

b(w, δn − δ) + bn(wn, δ − δn) ≤ c(δn, δn)− c(δ, δ) + cn(δ, δ)− cn(δn, δn).

Therefore,

b(w − wn, δn − δ) ≤ bn(wn, δn − δ)− b(wn, δn − δ)

+c(δn, δn)− c(δ, δ) + cn(δ, δ)− cn(δn, δn).
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Using again (4.4) we can write

b(w − wn, δn − δ) ≤ dn‖wn‖X‖δn − δ‖Y

+c(δn, δn)− c(δ, δ) + cn(δ, δ)− cn(δn, δn).

As

c(δn, δn)− c(δ, δ) + cn(δ, δ)− cn(δn, δn)

= c(δn, δn − δ)− cn(δn, δn − δ) + c(δn − δ, δ)− cn(δn − δ, δ),
using assumption (4.5) we deduce that

c(δn, δn)− c(δ, δ) + cn(δ, δ)− cn(δn, δn) ≤ θn
(
‖δn‖Y + ‖δ‖Y

)
‖δn − δ‖Y . (4.25)

We now combine inequalities (4.24)–(4.25) to deduce that

(1− ρmJ‖G‖2L(X,Z))‖wn − w‖
2
X ≤ ρdn‖wn‖X‖δn − δ‖Y

+ρθn
(
‖δn‖Y + ‖δ‖Y

)
‖δn − δ‖Y + ρdn‖wn − w‖X‖δn‖Y

and, therefore,

(1− ρmJ‖G‖2L(X,Z))‖wn − w‖
2
X ≤ ρdn‖wn‖X(‖δn‖Y + ‖δ‖Y ) (4.26)

+ρθn
(
‖δn‖Y + ‖δ‖Y

)2
+ ρdn(‖wn‖X + ‖w‖X)‖δn‖Y .

Note that the sequences {wn} ⊂ X and {δn} ⊂ Λ are bounded. Indeed, to prove this
statement we fix n ∈ N. We set µ = 0Y in (4.21) to find that

bn(wn,−δn) ≤ 0 (4.27)

Next, we set v = 0X in (4.20) and use (4.27), (2.4) to deduce that

‖wn‖2X ≤ ρJ0(Gwn;−Gwn) + (g, wn)X ≤ ρLJ ‖G‖L(X,Z)‖wn‖X + ‖g‖X‖wn‖X .
As a result, we have

‖wn‖X ≤ ρLJ ‖G‖L(X,Z) + ‖g‖X . (4.28)

Moreover, using (4.20) with v = wn − w̃
‖w̃‖X where w̃ is an arbitrary element of X

such that w̃ 6= 0X , we find that

ρ
bn(w̃, δn)

‖w̃‖X
≤ −(wn,

w̃

‖w̃‖X
) + ρJ0(Gwn;−G w̃

‖w̃‖X
) + (g,

w̃

‖w̃‖X
)X .

Consequently, (4.3) and (2.4) imply that

ραn ‖δn‖Y ≤ ‖wn‖X + ρLJ ‖G‖L(X,Z) + ‖g‖X .
Using now (4.28) and (4.3) we deduce that

‖δn‖Y ≤
2

ρα0
(ρLJ ‖G‖L(X,Z) + ‖g‖X). (4.29)

Inequalities (4.28) and (4.29) show that the sequences {wn} and {δn} are bounded in
X and Y , respectively, as claimed. Therefore, using (4.26) and assumptions H(sr),
(4.4) (b) and (4.5) (b) we find that

wn → w in X, as n→∞. (4.30)
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Consider now an arbitrary element w̃ ∈ X, w̃ 6= 0X . We take v = w+ w̃ in (4.18),
then v = wn − w̃ in (4.20), add the resulting inequalities and use H(J)1 to find that

ρ bn(w̃, δn)− ρb(w̃, δ) ≤ (w − wn, w̃)X + ρ βJ ‖w − wn‖X‖w̃‖X .

Hence,

ρ b(w̃, δn − δ) ≤ ρ b(w̃, δn)− ρ bn(w̃, δn)

+‖w − wn‖X‖w̃‖X + ρ βJ ‖w − wn‖X‖w̃‖X ,

and, keeping in mind H(b) (b) and (4.4), we get

ραb ‖δn − δ‖Y ≤ ρ dn ‖δn‖Y + (ρ βJ + 1)‖w − wn‖X .

We now use (4.29), (4.4) (b), and (4.30) to obtain that

δn → δ in Y, as n→∞. (4.31)

Finally, we use notation (4.17) and the convergences (4.30), (4.31) to deduce (4.15)
and (4.16), respectively.

Step iii) We prove the convergence (4.7). Let n ∈ N. We use equalities un = Tnun
and u = Tu to deduce that

‖un − u‖X = ‖Tnun − Tu‖X ≤ ‖Tnun − Tnu‖X + ‖Tnu− Tu‖X ,

and, using (4.14) we find that

‖un − u‖X ≤ k0 ‖un − u‖X + ‖Tnu− Tu‖X .

Equivalently,

‖un − u‖X ≤
1

1− k0
‖Tnu− Tu‖X . (4.32)

Next, using (4.11) and (3.4) yields

‖Tnu− Tu‖X ≤ ‖Qn(Snu)−Qn(Su)‖X + ‖Qn(Su)−Q(Su)‖X . (4.33)

We shall prove that each term in the right hand side of this inequality converges to
zero. To this end we use the bound (4.12) to see that

‖Qn(Snu)−Qn(Su)‖X ≤
1

1− ρmJ‖G‖2L(X,Z)

‖Snu− Su‖X . (4.34)

Next, using assumptions (4.1) and (4.6) and definitions (4.10) and (3.3) of the oper-
ators Sn and S it follows that

Snu→ Su in X, as n→∞. (4.35)

We now combine inequality (4.34) and convergence (4.35) to find that

Qn(Snu)−Qn(Su)→ 0X in X, as n→∞. (4.36)

On the other hand we use (4.15) to deduce that

Qn(Su)→ Q(Su) in X, as n→∞. (4.37)

The convergence (4.7) is now a direct consequence of the inequalities (4.32), (4.33)
and the convergences (4.36), (4.37).



734 MIRCEA SOFONEA AND ANDALUZIA MATEI

Step iv) We prove the convergence (4.8). Let n ∈ N. We use equalities λn = Wnun
and λ = Wu to deduce that

‖λn − λ‖Y = ‖Wnun −Wu‖Y ≤ ‖Wnun −Wnu‖Y + ‖Wnu−Wu‖Y ,

and, using (4.11), (3.5), we find that

‖λn − λ‖Y ≤ ‖Rn(Snu)−Rn(Su)‖Y + ‖Rn(Su)−R(Su)‖Y . (4.38)

We shall prove that each term in the right hand side of this inequality converges to
zero. To this end we use the bound (4.13) to see that

‖Rn(Snu)−Rn(Su)‖Y ≤
2 + ρ(βJ −mJ‖G‖2L(X,Z))

ρα0(1− ρmJ‖G‖2L(X,Z))
‖Snu− Su‖X .

Then, using (4.35) we find that

Rn(Snu)−Rn(Su)→ 0Y in Y, as n→∞. (4.39)

On the other hand we use (4.16) to deduce that

Rn(Su)→ R(Su) in Y, as n→∞. (4.40)

The convergence (4.8) is now a direct consequence of the inequality (4.38) and the
convergences (4.39), (4.40). �

5. A convergence criterion

In this section we formulate a criterion of convergence to the solution of the mixed
hemivariational-variational Problem P. Our main result in this section is the follow-
ing.

Theorem 5.1. Assume that H(A), H(b), H(c), H(J), H(G), H(J)1, H(Λ), H(s)
and H(f) hold, let {(un, λn)} ⊂ X × Λ be an arbitrary sequence and let (u, λ) be the
solution of Problem P obtained in Theorem 3.1. Then, the convergences

un → u in X, as n→∞, (5.1)

λn → λ in Y, as n→∞, (5.2)

hold if and only if the following convergences hold, too:

un − Tun → 0X in X, as n→∞, (5.3)

λn −Wun → 0Y in Y, as n→∞. (5.4)

Proof. Assume that (5.1) and (5.2) hold. Let n ∈ N. Then, using equality u = Tu,
see (3.6), we have

‖un − Tun‖X ≤ ‖un − u‖X + ‖Tun − Tu‖X ,

and, using (4.14) we find that

‖un − Tun‖X ≤ (1 + k0) ‖un − u‖X .

We now use this inequality and the convergence (5.1) to see that (5.3) holds.
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On the other hand, using equality λ = Wu in (3.6) and the definition (3.5) we have

‖λn −Wun‖Y ≤ ‖λn − λ‖Y + ‖R(Su)−R(Sun)‖Y . (5.5)

It follows from (3.3) and (5.1) that

Sun → Su in X, as n→∞,

and, using (3.8), we deduce that

‖R(Su)−R(Sun)‖Y → 0 as n→∞. (5.6)

We now combine (5.5), (5.2) and (5.6) and find that (5.4) holds, too.
Conversely, assume now that (5.3) and (5.4) hold. Let n ∈ N. We use equality

u = Tu, again, to see that

‖un − u‖X ≤ ‖un − Tun‖X + ‖Tun − Tu‖X .

Next, using (4.14) we find that

‖un − u‖X ≤ ‖un − Tun‖X + k0 ‖un − u‖X .

This implies that

‖un − u‖X ≤
1

1− k0
‖un − Tun‖X

and, using (5.3) we deduce that (5.1) holds.
Finally, since λ = Wu, using (3.5), again, we find that

‖λn − λ‖Y ≤ ‖λn −Wun‖Y + ‖R(Sun)−R(Su)‖Y . (5.7)

The convergences (5.4) and (5.1), combined with definition (3.3) and inequality (3.8),
show that each term in inequality (5.7) converges to zero. This implies that (5.2)
holds and concludes the proof. �

We complete the statement of Theorem 5.1 with the following remark.

Remark 5.2. Theorem 5.1 provides necessary and sufficient conditions which guar-
antee the convergences (5.1) and (5.2), i.e., it represents a criterion of convergence.
This criterion is intrinsic, since no reference to the solution (u, λ) of Problem P is
made in the statement of conditions (5.3) and (5.4).

6. Two examples

In this section we present two examples of mixed hemivariational-variational prob-
lems. The first one illustrates our abstract results in Theorems 3.1–5.1. The second
one provides an existence, uniqueness and continuous dependence result in the study
of a nonlinear elastic constitutive law with internal state variable.
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Example 1. We consider Problem P in the particular case when X = Y = Z,

Av = v ∀ v ∈ X,

b(v, µ) = (v, µ)X ∀ v, µ ∈ X,

c(µ, λ) =
1

2
(µ, λ)X ∀µ, λ ∈ X,

J ≡ 0,

and we assume that H(Λ), H(f) hold. Note that in this particular case Problem P
is stated as follows.

Problem P̃. Find (u, λ) ∈ X × Λ such that

(u, v − u)X + (v − u, λ)X ≥ (f, v − u)X ∀ v ∈ X, (6.1)

(u, µ− λ)X −
1

2
‖µ‖2X +

1

2
‖λ‖2X ≤ 0 ∀µ ∈ Λ. (6.2)

It is easy to see that in this case assumptions H(A), H(b), H(c), H(J), H(G),
H(J)1, and H(s) hold with mA = LA = 1, mJ = βJ = 0 and any linear compact

operator G. Therefore, Theorem 3.1 guarantees the unique solvability of Problem P̃.

We now provide an explicit formula for the solution of Problem P̃. First, it is easy
to see that (6.1)–(6.2) is equivalent with the system

(u+ λ− f, v − u)X = 0 ∀ v ∈ X,

‖λ− u‖2X ≤ ‖µ− u‖2X ∀µ ∈ Λ

and, denoting by PΛ : X → Λ the projection operator on Λ, we obtain

u+ λ = f, λ = PΛu. (6.3)

Let B : X → X be the operator given by

Bv = v + PΛv ∀ v ∈ X. (6.4)

Then, it is easy to see that B is a strongly monotone Lipschitz continuous operator
with constants mB = 1 and LB = 2. Therefore, Lemma 2.2 a) guarantees that B is
invertible and its inverse B−1 is a strongly monotone Lipschitz continuous operator
with constants mB−1 = 1

4 and LB−1 = 1. In addition, (6.3) shows that the solution

of Problem P̃ above exists, is unique, and is given by

u = B−1f, λ = PΛu = PΛ(B−1f). (6.5)

The unique solvability of Problem P̃ obtained above represents a validation of the
statement in Theorem 3.1.

We now move to Theorem 4.1 and, to this end, we assume that {an} ⊂ R+,
{βn} ⊂ R+, {γn} ⊂ R+ and {fn} ⊂ X are sequences such that (4.6) holds and,
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moreover,

an → 1, (6.6)

βn → 1, γn → 1. (6.7)

Then, for each n ∈ N we define the operators An and the forms bn, cn by equalities

Anv = anv ∀ v ∈ X,

bn(v, µ) = βn(v, µ)X ∀ v, µ ∈ X,

cn(µ, λ) =
γn
2

(µ, λ)X ∀µ, λ ∈ X.

Moreover, as previously, we assume that J ≡ 0 and H(Λ), H(f) hold. Note that in
this particular case Problem Pn is stated as follows.

Problem P̃n. Find (un, λn) ∈ X × Λ such that

(anun, v − un)X + βn(v − un, λn)X ≥ (fn, v − un)X ∀ v ∈ X,

βn(un, µ− λn)X −
γn
2
‖µ‖2X +

γn
2
‖λn‖2X ≤ 0 ∀µ ∈ Λ.

It is easy to see that all the assumptions of Theorems 3.1 and 4.1 hold. This

guarantees the unique solvability of Problem P̃n as well as its convergence of its

solution to the solution of Problem P̃, see (4.7) and (4.8).
This convergence can be proved directly. Indeed, for each n ∈ N denote by Bn :

X → X the operator given by

Bnv = anv + βnPΛ

(βn
γn

v
)

∀ v ∈ X. (6.8)

Then, it is easy to see that Bn is a strongly monotone Lipschitz continuous operator

with constants mn = an and Ln = an +
β2
n

γn
. Therefore, Lemma 2.2 a) guarantees

that Bn is invertible and its inverse B−1
n is a strongly monotone Lipschitz continuous

operator with constants

mB−1
n

=
an(

an +
β2
n

γn

)2 and LB−1
n

=
1

an
. (6.9)

In addition, similar arguments as those used in the proof of (6.5) show that

un = B−1
n fn, λn = PΛ

(βn
γn
un

)
= PΛ

(βn
γn
B−1
n fn

)
. (6.10)

We now state and prove the following claim.

Claim. Under the previous assumptions, the following convergence holds:

B−1
n fn → B−1f in X. (6.11)

Proof. Let n ∈ N and denote

B−1
n f = zn, B−1f = z (6.12)
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which implies that
Bnzn = Bz = f. (6.13)

We use the strong monotonicity of the operator Bn with constant an together with
equality (6.13) to see that

an‖zn − z‖2X ≤ (Bnzn −Bnz, zn − z)X = (Bz −Bnz, zn − z)X
which implies that

‖zn − z‖X ≤
1

an
‖Bnz −Bz‖X . (6.14)

We now use the definitions (6.8) and (6.4) combined with the convergences (6.6) and
(6.7) to deduce that

‖Bnz −Bz‖X → 0. (6.15)

Therefore, (6.12), (6.14) and (6.15) yield

‖B−1
n f −B−1f‖X → 0. (6.16)

Next, we write

‖B−1
n fn −B−1f‖X ≤ ‖B−1

n fn −B−1
n f‖X + ‖B−1

n f −B−1f‖X
and, therefore, the Lipschitz continuity of the operator B−1

n with constant LB−1
n

in

(6.9) implies that

‖B−1
n fn −B−1f‖X ≤

1

an
‖fn − f‖X + ‖B−1

n f −B−1f‖X . (6.17)

We now combine inequality (6.17) with convergences (6.6), (4.6) and (6.16) to deduce
(6.11), which concludes the proof of the claim. �

Next we use equalities (6.10), (6.5) and (6.11) to deduce that (4.7) holds. The con-
vergence (4.8) is now a direct consequence of equalities (6.10), (6.5) and convergences
βn → 1, γn → 1, see (6.7).

We now illustrate the use of Theorem 5.1 in the proof of the convergences (4.7),
(4.8). To this end we start with the remark that, since mJ = 0, mA = LA = 1,
inequality (3.18) shows that the operator T is a contraction for ρ = 1. This allows use
to make the choice ρ = 1 in the proof of Theorem 3.1. Therefore, with this choice we
deduce that in the particular case we present here, both Problems P and P0 reduce

to Problem P̃. Let g ∈ X and recall that the solution of Problem P̃ for f = g is given
by (6.5). It follows now from (2.9) that

Qg = B−1g, Rg = PΛ(Qg) = PΛ(B−1g)

and, since (3.3) implies that Sv = g for all v ∈ X, (3.4) and (3.5) show that

Tg = B−1g, Wg = PΛ(B−1g). (6.18)

In addition, recall that the solution u is a fixed point for the operator T , i.e., Tu = u.
Therefore, using (6.5) and (6.18 )we deduce that

B−1(B−1f) = B−1f. (6.19)

We now use (6.10) and (6.18) to see that

un − Tun = B−1
n fn −B−1(B−1

n fn).



MIXED HEMIVARIATIONAL-VARIATIONAL PROBLEM 739

Then, keeping in mind the convergence (6.11), the continuity of the operator B−1

and equality (6.19) we deduce that un−Tun → 0X in X. Moreover, (6.10) and (6.18)
imply that

λn −Wun = PΛ

(βn
γn

un

)
− PΛ(B−1un) = PΛ

(βn
γn

B−1
n fn

)
− PΛ

(
B−1(B−1

n fn)
)
.

We now use the convergences (6.7), (6.11) and equality (6.19) to see that λn−Wun →
0 in X. We are now in a position to use Theorem 5.1 in order to deduce the conver-
gences (4.7) and (4.8).

Example 2. We now move to the second example which concerns a nonlinear elastic
constitutive law. More details and preliminaries on the rheological arguments we
develop below can be find in [7, 10, 27], for instance.

Everywhere below d ∈ {1, 2, 3}, Sd represents the space of second order symmetric
tensors on Rd. We take X = Y = Z = Sd and we still use the notation by (·, ·)X
and ‖ · ‖X for the canonical inner product and the Euclidean norm on the space on
X = Sd. Recall that, since now X is a finite dimensional space, the identity map of
X is a compact operator.

We now consider a rheological model R obtained by connecting in parallel three
nonlinear elastic springs S1, S2 and S3. Then, it is well known that the stress in the
model R is given by

σ = σ1 + σ2 + σ3 (6.20)

where σi represents the stress in the spring Si, i = 1, 2, 3. Moreover, the strain in the
model R is given by

ε = ε1 = ε2 = ε3 (6.21)

where εi represents the strain in the spring Si, i = 1, 2, 3. We assume that the
constitutive laws of the springs Si are given by

σ1 = Aε1, σ2 ∈ ∂J(ε2), σ3 = βPΛ(γε3) (6.22)

where A : X → X is a nonlinear elasticity operator which satisfies condition H(A),
J : Z → R is a potential function which satisfies condition H(J), G : X → Z Gτ = τ,
Λ ⊂ X is a set which satisfies condition H(Λ) with Y = X, PΛ : X → Λ denotes the
projection operator on Λ and β, γ are positive elastic coefficients.

We turn now to a variational formulation of the constitutive law of the rheological
element R. To this end we introduce a new unknown, λ ∈ X, defined by

λ = PΛ(γε). (6.23)

Note that, from mechanical point of view, we can interpret λ as being an internal state
variable which, obviously, depends on the deformation field. Then, using (6.20)–(6.22)
we deduce that

σ = Aε+ σ2 + βλ

and, therefore,

(Aε, τ − ε)X + (σ2, τ − ε)X + (βλ, τ − ε)X = (σ, τ − ε)X ∀ τ ∈ X.
Then, using (6.22) and the definition (2.3) of the Clarke subdifferential we find that

(Aε, τ − ε)X + β(λ, τ − ε)X + J0(ε; τ − ε) ≥ (σ, τ − ε)X ∀ τ ∈ X. (6.24)
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On the other hand, (6.23) and the variational characterization of the projection yields

λ ∈ Λ, (λ− γε, µ− λ)X ≥ 0 ∀µ ∈ Λ,

which implies that

λ ∈ Λ, β(ε, µ− λ)X −
β

2γ
‖µ‖2X +

β

2γ
‖λ‖2X ≤ 0 ∀µ ∈ X.

Finally, we consider the bilinear forms b : X ×X → R and c : X ×X → R defined by

b(v, µ) = β(v, µ)X , c(µ, λ) =
β

2γ
(µ, λ)X , ∀ v, µ, λ ∈ X. (6.25)

We now combine (6.24)–(6.25) to consider the following problem.

Problem Σ. Given a stress σ ∈ X, find a strain ε ∈ X and an internal state variable
λ ∈ X such that,

(Aε, τ − ε)X + (βλ, τ − ε)X + J0(ε; τ − ε) ≥ (σ, τ − ε)X ∀ τ ∈ X, (6.26)

b(ε, µ− λ)X − c(µ, µ) + c(λ, λ) ≤ 0 ∀µ ∈ X. (6.27)

Inequalities (6.26) and (6.27) represent a variational formulation of the constitutive
law (6.20)–(6.22). All the results presented in Sections 3 and 4 can be applied in
the study of this problem, under appropriate smallness assumptions. In particular,
Theorem 3.1 states its unique solvability and Theorem 4.1 provides the continuous
dependence of the solution with respect to the elasticity operator A and elasticity
coefficients β and γ. Finally, note that if the solution (ε, λ) of Problem Σ is known
then, using (6.20)–(6.22) we can define the stresses σ1, σ2 and σ3 in the springs S1,
S2 and S3, respectively. These variables are determined in a unique way and depend
continuously of the data A, β and γ. All these results are important from mechanical
point of view since they represent a mathematical validation of the well-posedness of
the nonlinear constitutive law described by (6.20)–(6.22).

Acknowledgments. This research was supported by the European Union’s Horizon
2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant
Agreement No 823731 CONMECH.

References

[1] S. Amdouni, P. Hild, V. Lleras, M. Moakher, Y. Renard, A stabilized Lagrange multiplier

method for the enriched finite-element approximation of contact problems of cracked elastic

bodies, ESAIM: M2AN Mathematical Modelling and Numerical Analysis, 46(2012), 813-839.
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