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Abstract. We will study primal-dual fixed point methods for the least-squares problem regularized
by lp-norms with p ∈ [1, 2]. Our methods and results extend some of Ribeiro and Richtarik [9]

and Silva, et al [10] where the case of p = 2 (i.e, the ridge regression) is studied. The case of

p = 1 corresponds to the lasso [11] and the general case of p ∈ [1, 2] corresponds to the iterative
shrinkage/thresholding algorithm (ISTA) of Daubechies, et al [5]. We will apply the proximal-

gradient methods to prove convergence of our primal-dual fixed point methods for the general lp-

regularization, and also for the elastic net problem [14].
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1. Introduction

The ridge regression problem (RRP) is the least-squares problem regularized by
the Euclidean 2-norm ‖ · ‖2 (also known as Tikhonov regularization), that is,

min
x∈Rn

P (x) :=
1

2
‖Ax− b‖22 +

λ

2
‖x‖22, (1.1)

where A is an m× n real matrix, b ∈ Rm, and λ > 0 is a regularization parameter.
The (Fenchel) dual problem of the primal problem (1.1) is also a RRP given by

max
z∈Rm

D(z) := − 1

2λ
‖A>z‖22 + 〈z, b〉 − 1

2
‖z‖22. (1.2)

Here A> is the transpose of A.
Recently, Ribeiro and Richtarik [9], and Silva, et al [10] introduced primal-dual

fixed point methods to the primal and dual problems (1.1) and (1.2) by coupling the
primal and dual variables x and z in the product space Rn+m. [Note: our formulation
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of RRP (1.1) is a slightly rescaled version of those of [9, Eq. (1), page 343] and Silva,
et al [10, Eq. (2), page 1942], so is the corresponding dual problem (1.2); there is,
however, no essential difference.] Let us briefly review the methods of [9, 10]. Consider
the problem of minimizing the difference of the primal and dual objective functions
over the product space Rn+m:

min
w∈Rn+m

ϕ(w) : = P (x)−D(z)

=
1

2
‖Ax− b‖22 +

λ

2
‖x‖22 +

1

2λ
‖A>z‖22 − 〈z, b〉+

1

2
‖z‖22, (1.3)

where w = (x>, z>)> ∈ Rn+m (we will always write w = (x, z) hereafter). This is a
strongly convex, quadratic minimization and hence has a unique solution. Since

∇ϕ(w) =

[
∇xP (x)
−∇zD(z)

]
=

[
A>(Ax− b) + λx
λ−1AA>z − b+ z

]
,

the optimality condition of ∇ϕ(w) = 0 turns out to be the equivalent fixed point
equation

w = Mw + w̄, (1.4)

where

M =

[
−λ−1A>A 0

0 −λ−1AA>
]
, w̄ =

[
λ−1A>b

b

]
.

A more general (equivalent) fixed point equation is the following

w = (1− θ)w + θ(Mw + w̄), (1.5)

where θ ∈ (0, 2]. When θ = 1, (1.5) is reduced to (1.4).
The main primal-dual fixed point methods introduced in [9, 10] are of the form:

wk+1 = (1− θ)wk + θ(Mwk + w̄) = Gwk + θw̄, (1.6)

with G ≡ G(θ) := (1 − θ)I + θM . Observe that the fixed point problem (1.5) is a
linear problem and the convergence of the linear fixed point method (1.6) depends on
the property that the spectral radius ρ(θ) of the matrix G(θ) is strictly less than one
with a suitably chosen parameter θ; see [9, Theorems 3.4 and 3.5] and [10, Theorems
2 and 4].

The aim of the present paper is to extend the primal-dual fixed point methods of
[9, 10] to a general p-norm regularized least-squares problem; namely, the problem

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖22 +

λ

p
‖x‖pp, (1.7)

where A is an m × n real matrix, b ∈ Rm, λ > 0 is a regularization parameter, and
p ∈ [1, 2]. [Here and throughout the rest of the paper, we use F (x), instead of P (x),
to denote the objective function of the primal problem.] Note that when p = 2, (1.7)
returns to RRP (1.1); when p = 1, (1.7) turns out to be the lasso [11]:

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖22 + λ‖x‖1. (1.8)

Note also that the p-norm regularized least-squares problem (1.7) was first introduced
in [5, 6]) for iterative shrinkage/thresholding algorithms (ISTA) for linear inverse
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problems with a sparsity constraint; see also [3] for application in sparse recovery of
signals.

Let F ∗(z), which will be worked out in section 3, denote the dual function of the
primal function F (x) of (1.7). The main contribution of this paper is to extend the
idea of [9, 10] for RRP (1.1) to (1.7). Such an extension is nontrivial because the
optimality condition of the primal-dual function of RRP (1.1) is a linear fixed point
problem (see (1.4) and (1.5)); while that of the primal-dual function of (1.7) is non-
linear. The latter means that more sophisticated tools (such as proximal mappings)
must be employed.

More precisely, we will couple the primal and dual variables x and z and consider
the minimization problem in the product space Rn+m

min
(x,z)∈Rn+m

ϕ(x, z) := F (x)− F ∗(z). (1.9)

Write w = (x, z) as a general point in Rn+m. Our strategy is to convert the optimality
condition ∇ϕ(w) = 0 to a fixed point problem of some nonlinear mapping T to
which we apply appropriate fixed point methods to generate a sequence that will be
convergent to a fixed point of T (hence a solution of (1.9)).

This strategy will also be applied to the elastic net (EN) [14] which is the opti-
mization problem

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖22 + λ‖x‖1 + γ

1

2
‖x‖22 (1.10)

where λ, γ > 0 are regularization parameters.
The structure of the paper is as follows. In the next section we include basic

concepts and tools such as conjugate functions and proximal mappings, and their
properties. The main results will be presented and proved in section 3.

2. Preliminaries

Let H be a Hilbert space with inner product 〈, ·, ·〉 and norm ‖ · ‖. and let Γ0(H)
be the space of proper, lower semicontinuous and convex functions from H to the
extended real line R := (−∞,∞].

2.1. Conjugate and Subdifferential. Let f ∈ Γ0(H). The Fenchel conjugate of f
is defined as

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ H}, x∗ ∈ H.
The following properties are pertinent to our argument:

(i) (λf)∗(x∗) = λf∗(x∗/λ) for λ > 0.

(ii) If f(x) = 1
p‖x‖

p
p for some p ∈ (1,∞), then f∗(x∗) = 1

p′ ‖x
∗‖p

′

p′ , where

p′ = p/(p− 1). In particular, if f(x) = 1
2‖x‖

2
2, then f∗(x∗) = 1

2‖x
∗‖22.

(iii) If f(x) = 1
p‖x− y‖

p
p for some p ∈ (1,∞) and fixed y ∈ H, then

f∗(x∗) = 〈x∗, y〉+ 1
p′ ‖x

∗‖p
′

p′ , where p′ = p/(p− 1).

The following theorem is helpful in finding dual problems.
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Theorem 2.1. Suppose H1 and H2 are Hilbert spaces and A : H1 → H2 is a bounded
linear operator. Let f ∈ Γ0(H1) and g ∈ Γ0(H2) and consider the primal problem

min
x∈H1

F (x) := f(x) + g(Ax). (2.1)

Suppose F ∈ Γ0(H1). Then the dual problem of (2.1) is

max
z∈H2

F ∗(z) := −f∗(A∗z)− g∗(−z). (2.2)

Here A∗ is the adjoint of A. If, in addition, the function H2 3 z 7→ g(Ax0 − z)
is continuous (where x0 ∈ H1 is such that F (x0) < ∞) and F is coercive (i.e.,
F (x) → ∞ as ‖x‖ → ∞), then the prime and dual problems share the same optimal
value, that is, minx∈H1

F (x) = maxz∈H2
F ∗(z).

Recall that a point ξ ∈ H is said to be a subgradient of a function f ∈ Γ0(H) at a
point x ∈ dom(f) if

f(y) ≥ f(x) + 〈ξ, y − x〉
for all y ∈ H. The set of all subgradients at x is denoted as ∂f(x). The mapping
∂f is then referred to as the subdifferential (mapping) of f . For instance, if we
take f(x) = |x| for x ∈ R, then f is nondifferentiable at x = 0. It is however
subdifferentiable at x = 0 with the subdifferential ∂f(0) = [−1, 1]. For more details
of conjugate functions and subdifferential, the reader is referred to the monographs
[1, 2].

2.2. Proximal Mappings.

Definition 2.2. The proximal mapping of a function f ∈ Γ0(H) of level λ > 0 is
defined by

proxλf (x) := arg min
v∈H

{
f(v) +

1

2λ
‖v − x‖2

}
, x ∈ H. (2.3)

The optimal value of (2.3) is known as the Moreau envelope, denoted fλ. Namely,

fλ(x) := min
v∈H

{
f(v) +

1

2λ
‖v − x‖2

}
= f(proxλf (x)) +

1

2λ
‖proxλf (x)− x‖2. (2.4)

We list some of the useful properties in the proximal operators.

Proposition 2.3. (cf. [4, 7, 13]) Let f ∈ Γ0(H) and λ ∈ (0,∞).

(i) If C is a nonempty closed convex subset of H and f = IC is the indicator
function of C, then the proximal mappings proxλf = PC for all λ > 0, where
PC is the metric projection from H onto C, that is,

PCx = arg min
y∈C
‖x− y‖2, x ∈ H.

(ii) proxλf is firmly nonexpansive (hence nonexpansive). Recall that a mapping
T : H → H is said to be firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, x, y ∈ H
and T is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for x, y ∈ H.

(iii) proxλf = (I + λ∂f)−1 = J∂fλ , the resolvent of the subdifferential ∂f of f .
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(iv) y ∈ ∂f(x) ⇔ x = proxf (x+ y).
(v) For each x ∈ H, f(proxλfx) ≤ fλ(x) ≤ f(x), and limλ→0 fλ(x) = f(x).
(vi) The Moreau envelope fλ is Fréchet differentiable with gradient

∇fλ =
1

λ
(I − proxλf ).

A toy example of proximal mappings is the scalar soft-thresholding mapping (more
examples can be found in [4]). This is the proximal mapping of the absolute value
function in the one-dimensional real line:

proxλ|·|(x) = sgn(x) max{|x| − λ, 0}, x ∈ R.

The soft-thresholding mapping of the 1-norm of Rn is given componentwise by

(proxλ‖·‖(x))j = proxλ|·|(xj) = sgn(xj) max{|xj | − λ, 0}, j = 1, 2, · · · , n,

where x = (x1, · · · , xn)> ∈ Rn, and xj stands for the j-th component of x.

2.3. Proximal-Gradient Algorithm. The proximal mappings can be used to min-
imize the sum of two convex functions:

min
x∈H

f(x) + g(x) (2.5)

where f, g ∈ Γ0(H). It is often the case where one of them is differentiable. The
following is an equivalent fixed point formulation of (2.5).

Proposition 2.4. Let f, g ∈ Γ0(H). Let x∗ ∈ H and λ > 0. Assume f is finite-
valued and differentiable on H. Then x∗ is a solution to (2.5) if and only if x∗ solves
the fixed point equation

x∗ = (proxλg ◦ (I − λ∇f))x∗. (2.6)

The fixed point equation (2.6) immediately yields the following fixed point algo-
rithm which is also known as the proximal-gradient algorithm (PGA) for solving (2.5)
as follows.

Initializing x0 ∈ H and iterating

xn+1 = (proxλng ◦ (I − λn∇f))xn (2.7)

where {λn} is a sequence of positive real numbers.

Theorem 2.5. (cf. [4, 12]) Let f, g ∈ Γ0(H) and assume (2.5) has a solution.
Assume in addition that

(i) ∇f is L-Lipschitz continuous on H: ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for
x, y ∈ H.

(ii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

L
.

Then the sequence (xn) generated by the proximal algorithm (2.7) converges weakly
to a solution of (2.5).
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2.4. Notation. We adopt the following notation:

• Rn stands for the real Euclidean n-space with n ≥ 1 integer.
• A> stands for the transpose of real matrix A.
• ‖ · ‖p stands for the p-norm of Rn, with p ∈ [1, 2], that is

‖x‖p =

 n∑
j=1

|xj |p
1/p

, x = (x1, · · · , xn)> ∈ Rn.

3. Prime-dual fixed point methods

3.1. Prime-dual Fixed Point Method for Lasso. Consider the primal lasso op-
timization problem

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖2 + λ‖x‖1. (3.1)

Here A is an m×n real matrix and λ > 0 is a regularization parameter. We can rewrite
F as F (x) = λf(x) + g(Ax), where f(x) := ‖x‖1 for x ∈ Rn and g(v) := 1

2‖v − b‖
2

for v ∈ Rm.
Observe that the conjugate of f(x) = ‖x‖1 is the indicator function of the closed

unit l∞-ball, that is,

f∗(x) =

{
0, if ‖x‖∞ ≤ 1
∞, if ‖x‖∞ > 1.

(3.2)

Applying Theorem 2.1, we get that the dual objective function of F is given by (for
z ∈ Rm),

F ∗(z) = −(λf)∗(A>z)− g∗(−z)

= −λf∗(A>z/λ)− (
1

2
‖ − z‖2 + 〈−z, b〉).

Combining with (3.2) yields

F ∗(z) =

{
− 1

2‖z‖
2 + 〈z, b〉, if ‖A>z‖∞ ≤ λ

−∞, if ‖A>z‖∞ > λ.

Consequently, the difference F (x)− F ∗(z) is given by

F (x)− F ∗(z) =

{
1
2‖Ax− b‖

2 + λ‖x‖1 + 1
2‖z‖

2 − 〈z, b〉, if ‖A>z‖∞ ≤ λ
∞, if ‖A>z‖∞ > λ.

The dual problem turns out to be

min
(x,z)∈Rn+m

F (x)− F ∗(z) = min
x∈Rn

‖A>z‖≤λ

{
1

2
‖Ax− b‖2 + λ‖x‖1 +

1

2
‖z‖2 − 〈z, b〉

}
. (3.3)

Let

K = {z ∈ Rm : ‖A>z‖∞ ≤ λ}
and use iK to denote the indicator of K, namely, iK(z) = 0 if z ∈ K and ∞ if z 6∈ K.
We rewrite F (x)− F ∗(z) = η(x, z) + ξ(x, z), where

η(x, z) =
1

2
‖Ax− b‖2 +

1

2
‖z‖2 − 〈z, b〉, ξ(x, z) = λ‖x‖1 + iK(z).
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We have, for w = (x, z),

∇η(w) =

[
A>(Ax− b)

z − b

]
(3.4)

and

proxµξ(w) =

[
proxµλ‖·‖1(x)

PK(z)

]
. (3.5)

Consequently, the optimization problem (3.3) can be solved by the proximal gradient
algorithm (2.7) which generates a sequence {wk} by the iteration process

wk+1 = proxµξ(wk − µ∇η(wk)), k = 0, 1, · · · . (3.6)

Equivalently, putting wk = (xk, zk),

xk+1 = proxµλ‖·‖1(xk − µA>Axk + µA>b),

zk+1 = PK((1− µ)zk + µb).
(3.7)

The convergence of (3.6) is given below.

Theorem 3.1. Let the stepsize µ be chosen such that 0 < µ < 2
‖A‖22∨1

. [Here we

use the notation: a ∨ b = max{a, b} for real numbers a and b.] Then the sequence
(wk) generated by the proximal gradient algorithm (3.6) converges to a solution of the
prime-dual problem (3.3).

Proof. We claim that η is L-smooth (i.e., ∇η is L-Lipschitz) with L = ‖A‖22 ∨ 1. As
a matter of fact, by (3.4) we have, for w = (x, z), w′ = (x′, z′) ∈ Rn+m,

‖∇η(w)−∇η(w′)‖22 = ‖A>A(x− x′)‖22 + ‖z − z′‖22
≤ ‖A>A‖22‖x− x′‖22 + ‖z − z′‖22
≤ (‖A>A‖22 ∨ 1)(‖x− x′‖22 + ‖z − z′‖22)

= L2‖w − w′‖22.

Here L = ‖A>A‖2 ∨ 1 = ‖A‖22 ∨ 1. Now the convergence of {wk} follows immediately
from Theorem 2.5. �

3.2. lp regularization (1 < p ≤ 2). Let p ∈ (1, 2] and consider the (primal) lp
regularized least-squares problem

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖2 + λ

1

p
‖x‖pp, (3.8)

where A is an m× n matrix, b ∈ Rm, ‖ · ‖ = ‖ · ‖2, and p ∈ (1, 2]. Set

f(x) =
1

p
‖x‖pp (x ∈ Rn), g(v) =

1

2
‖v − b‖2 (v ∈ Rm).

Then we may rewrite F in the form

F (x) = λf(x) + g(Ax), x ∈ Rn.

By Theorem 2.1, the dual problem of (3.8) is given as follows:

max
z∈Rm

F ∗(z) := −(λf)∗(A>z)− g∗(−z). (3.9)
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Since f∗(x) = 1
q‖x‖

q
q, where x ∈ Rn and q = p/(p − 1), and g∗(z) = 〈z, b〉 + 1

2‖z‖
2,

where z ∈ Rm, it follows from (3.9) that

F ∗(z) = −λf∗(A>z/λ)− g∗(−z)

= −λ1

q
‖A>z/λ‖qq − (〈−z, b〉+

1

2
‖ − z‖2)

= −λ1−q 1

q
‖A>z‖qq + 〈z, b〉 − 1

2
‖z‖2.

Consequently,

ϕ(w) := F (x)−F ∗(z) =
1

2
‖Ax−b‖2+λ

1

p
‖x‖pp+λ1−q

1

q
‖A>z‖qq−〈z, b〉+

1

2
‖z‖2, (3.10)

where w = (x, z). We have

∇ϕ(w) =

[
∇xF (x)
−∇zF ∗(z)

]
=

[
A>(Ax− b) + λJp(x)
λ1−qAJq(A

>z)− b+ z

]
where Jp(x) = ∇( 1

p‖x‖
p
p) is the (generalized) duality map from (Rn, ‖ ·‖p) to the dual

space (Rn, ‖ · ‖q), that is, Jp(x) = x∗, with 〈x, x∗〉 = ‖x‖pp and ‖x∗‖q = ‖x‖p−1p .
Setting

ϕ1(w) =
1

2
‖Ax− b‖2 − 〈z, b〉+

1

2
‖z‖2, ϕ2(w) = λ

1

p
‖x‖pp + λ1−q

1

q
‖A>z‖qq

we have ϕ(w) = ϕ1(w) + ϕ2(w) and the problem is reduced to the composite mini-
mization problem

min
w=(x,z)∈Rn+m

ϕ1(w) + ϕ2(w). (3.11)

It is easy to compute

∇ϕ1(w) =

[
A>(Ax− b)

z − b

]
. (3.12)

This is the same as (3.4), hence, ∇ϕ1(w) is L-Lipschtiz with L = ‖A‖22 ∨ 1.
The proximal-gradient algorithm (PGA) applied to the composite optimization

(3.11) results in the following algorithm:

wk+1 = proxµϕ2
(wk − µ∇ϕ1(wk)), k = 0, 1, · · · , (3.13)

where the initial point w0 = (x0, z0) ∈ Rn+m is chosen arbitrarily, and µ > 0 is a
stepsize to be selected appropriately.

By (3.12) we have

wk − µ∇ϕ1(wk) =

[
xk − µA>(Axk − b)

(1− µ)zk + µb

]
. (3.14)

Regarding the proximal mapping of ϕ2, we have

proxµϕ2
(w) =

[
proxµh1

(x)
proxµh2

(z)

]
(3.15)

where

h1(x) =
λ

p
‖x‖pp, h2(z) =

λ1−q

q
‖A>z‖qq.
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The algorithm (3.13) can be rewritten componentwise as

xk+1 = proxµh1
(xk − µA>(Axk − b))

zk+1 = proxµh2
((1− µ)zk + µb).

(3.16)

The convergence of (3.13) is given below.

Theorem 3.2. Suppose the stepsize µ is chosen so that 0 < µ < 2
‖A‖22∨1

. Then the

sequence (wk) generated by the algorithm (3.13) converges to a solution of (3.11).

The implementation of the algorithm depends on the evaluations of the proximal
mappings proxµh1

and proxµh2
. The special case of p = 2 recovers the primal ridge

regression problem (1.1) and its dual problem (1.2). In this case, we have

h1(x) = λ
1

2
‖x‖22 and h2(z) =

1

2λ
‖A>z‖22.

It then turns out that proxµh1
(x) = 1

1+λµx and proxµh2
(z) = (I + µ

λAA
>)−1z.

Moreover, the algorithm (3.16) is reduced to the algorithm:

xk+1 = 1
1+λµ (xk − µA>(Axk − b))

zk+1 = (I + µ
λAA

>)−1((1− µ)zk + µb).
(3.17)

By Theorem 3.2, we obtain that the sequence {wk} generated by the algorithm (3.17)
converges to a solution of the primal-dual ridge regression problem (1.3) provided the
stepsize µ is chosen so that 0 < µ < 2

‖A‖22∨1
and the regularization parameter λ > 0

is chosen arbitrarily fixed. This convergence result differs from those of [9, 10], due
to our different approach.

For a general p ∈ (1, 2], let us discuss the proximal mapping of the functional
h(x) := µ‖x‖pp on Rn, which is

proxµh(x) = arg min
u∈Rn

(
‖u‖pp +

1

2µ
‖u− x‖22

)
= arg min

u∈Rn

n∑
i=1

(
|ui|p +

1

2µ
(ui − xi)2

)
.

It turns out that the i-th component of proxµh(x) is given by

zi := (proxµh(x))i = arg min
ui∈R

(
|ui|p +

1

2µ
(ui − xi)2

)
.

The unique solution zi to the last equation is determined by the first-order optimality
condition:

µp|zi|p−1sgn(zi) + zi − xi = 0. (3.18)

This equation has no closed solution formula, in general; it does, however, for some
particular values of p [8]. For instance, if p = 2, then zi = (1+2µ)−1xi for each i, and
proxµh(x) = (1 + 2µ)−1x as mentioned previously. If p = 4/3, equation (3.18) turns



670 GUOHUI LIU AND HONG-KUN XU

out to be 4
3µ|zi|

1/3sgn(zi) + zi−xi = 0, which is reduced to the algebraic equation of

order three (via the substitution si := |zi|1/3):

4

3
µsi + s3i − |xi| = 0. (3.19)

The only real solution to the equation (3.19) is given by the following formula:

si =
3

√
|xi|
2

+

√
|xi|2

4
+

64

729
µ3 +

3

√
|xi|
2
−
√
|xi|2

4
+

64

729
µ3.

3.3. Primal-dual Fixed Point Method for Elastic Net. Zou and Hastie [14]
introduced the elastic net (EN) which is the minimization problem

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖22 + λ‖x‖1 + γ

1

2
‖x‖22. (3.20)

Evidently, EN has a unique solution, due to the strict convexity of the 2-norm ‖x‖2.
To find the dual problem of (3.20),we rewrite F as the sum F (x) = f(x) + g(Ax),

where

f(x) = λ‖x‖1 + γ
1

2
‖x‖22, g(Ax) =

1

2
‖Ax− b‖22.

We now compute the conjugate of f . By definition, we have for x ∈ Rn,

f∗(x) = sup
u∈Rn

(〈x, u〉 − f(u))

= sup
u∈Rn

(〈x, u〉 − λ‖u‖1 − γ
1

2
‖u‖22)

= −λ min
u∈Rn

{− 1

λ
〈x, u〉+ ‖u‖1 +

γ

2λ
‖u‖22}

= −λ min
u∈Rn

{‖u‖1 +
1

2(λ/γ)
‖u− 1

γ
x‖22}+

1

2γ
‖x‖22. (3.21)

Recall that the soft-thresholding mapping of the norm ‖ · ‖1 is defined as

Sµ(x) := proxµ‖·‖1(x) = arg min
u∈Rn

(
‖u‖1 +

1

2µ
‖u− x‖22

)
, µ > 0, x ∈ Rn. (3.22)

Recall also that Sµ(x) is given componentwise by

(Sµ(x))j = sgn(xj) max{|xj | − µ, 0}, j = 1, 2, · · · , n.
Moreau’s envelope is the optimal value of the minimization problem in (3.22), that
is,

Mµ(x) := min
u∈Rn

(
‖u‖1 +

1

2µ
‖u− x‖22

)
= ‖Sµ(x)‖1 +

1

2µ
‖Sµ(x)− x‖22. (3.23)

It turns out from (3.21)

f∗(x) = −λMλ/γ(x/γ) +
1

2γ
‖x‖22 (3.24)

= −λ‖Sλ/γ(x/γ)‖1 −
γ

2
‖Sλ/γ(x/γ)− x/γ‖22 +

1

2γ
‖x‖22.
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Further, by Theorem 2.1 and (3.24) we derive that, for z ∈ Rm,

F ∗(z) = −f∗(A>z)− g∗(−z)

= λMλ/γ(A>z/γ)− 1

2γ
‖A>z‖22 + 〈z, b〉 − 1

2
‖z‖22 (3.25)

and

ϕ(w) : = F (x)− F ∗(z)

=
1

2
‖Ax− b‖22 + λ‖x‖1 + γ

1

2
‖x‖22 − λMλ/γ(A>z/γ)

+
1

2γ
‖A>z‖22 − 〈z, b〉+

1

2
‖z‖22

=: h1(w) + h2(w), (3.26)

where

h1(w) =
1

2
‖Ax− b‖22 + γ

1

2
‖x‖22 − λMλ/γ(A>z/γ)

+
1

2γ
‖A>z‖22 − 〈z, b〉+

1

2
‖z‖22 (3.27)

h2(w) = λ‖x‖1. (3.28)

By Proposition 2.3(vi), we have, for z ∈ Rm,

∇Mλ/γ(A>z/γ) =
1

λ
A

(
1

γ
A>z − Sλ/γ(

1

γ
A>z)

)
.

Thus h1 is differentiable and its gradient is given by

∇h1(w) =

[
A>(Ax− b) + γx

z +ASλ/γ

(
1
γA
>z
)
− b

]
. (3.29)

It follows that for w,w′ ∈ Rn+m,

‖∇h1(w)−∇h1(w′)‖22 = ‖(γI +A>A)(x− x′)‖22

+ ‖z − z′ +A[Sλ/γ(
1

γ
A>z)− Sλ/γ(

1

γ
A>z′)]‖22. (3.30)

Since Sλ/γ is nonexpansive, we get

‖Sλ/γ(
1

γ
A>z)− Sλ/γ(

1

γ
A>z′)‖2 ≤

1

γ
‖A>(z − z′)‖2 ≤

1

γ
‖A>‖2‖z − z′‖2.

Moreover, we derive from (3.30) that

‖∇h1(w)−∇h1(w′)‖22 ≤ ‖γI +A>A‖22‖x− x′‖22 + (1 +
1

γ
‖A‖2‖A>‖2)2‖z − z′‖22

≤ (γ + ‖A>A‖2)2‖x− x′‖22 + (1 +
1

γ
‖A‖2‖A>‖2)2‖z − z′‖22
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Consequently, we get

‖∇h1(w)−∇h1(w′)‖2 ≤ max

{
γ + ‖A‖22, 1 +

1

γ
‖A‖22

}
‖w − w′‖2 = L‖w − w′‖2.

(3.31)

Here

L = max

{
γ + ‖A‖22, 1 +

1

γ
‖A‖22

}
. (3.32)

It is not hard to see that if 0 < γ < 1, then L = 1 + 1
γ ‖A‖

2
2, and if γ ≥ 1, then

L = γ + ‖A‖22.
The proximal mapping of h2 is given by the following formula.

proxµh2
(w) =

[
proxµ‖·‖1(x)

z

]
(3.33)

for µ > 0 and w = (x, z) ∈ Rn+m.
From (3.26), the dual minimization problem is established as the minimization

below:
min

w∈Rn+m
ϕ(w) = F (x)− F ∗(z) = h1(w) + h2(w), (3.34)

where h1(w) and h2(w) are defined in (3.27) and (3.28), respectively. The proximal-
gradient method for the composite optimization (2.5) is applicable, and we the fol-
lowing result.

Theorem 3.3. Let {wk} be generated by the proximal gradient method:

wk+1 = proxµh2
(wk − µ∇h1(wk)), k = 0, 1, · · · , (3.35)

where the stepsize 0 < µ < 2
L and L is the Lipschitz constant of ∇h1 as defined in

(3.32). Then (wk) converges to an optimal solution of (3.34).

Notice that the PGA (3.35) can be split into x-iterates and z-iterates as follows:

xk+1 = proxµ‖·‖1 [(1− µγ)xk − µA>Axk + µA>b]

zk+1 = (1− µ)zk − µASλ/γ(A>zk/γ) + µb.
(3.36)

4. Conclusion

In this paper we have worked out certain primal-dual fixed point methods for the
least-squares problem regularized by lp-norms with p ∈ [1, 2]. The case of p = 1
corresponds to the lasso and the case of p = 2 to the ridge regression problem. The
latter case, which has been studied by Ribeiro and Richtarik [9] and Silva, et al
[10], is a quadratic and smooth optimization problem, and thus has linear optimality
conditions. Their fixed point algorithms [9, 10] are governed by a linear operator.
It turns out that the convergence of these algorithms are equivalent to the spectral
radius of that operator being less than one (with respect to an appropriate norm).
The other cases of p ∈ [1, 2) correspond however to nonlinear, nonsmooth optimization
problems, seemingly more complicated. In this case we have converted the coupled
primal-dual problem to a composite minimization problem in the product space of
the prime and dual variables, and then successfully applied the proximal-gradient
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method to solve the problem. We have proved convergence to an optimal solution
of the iterates generated by several primal-dual proximal-gradient algorithms to cope
with different situations arisen from different p’s, including the elastic net [14].

It would be an interesting problem to extend the approaches by Ribeiro and
Richtarik [9], Silva, et al [10], and ours in this article to more general optimization
problems.
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