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Abstract. In this paper, we introduce α-nonexpansive multi-valued mappings in Hilbert spaces,
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1. Introduction

Throughout the paper unless otherwise stated, let H1 and H2 be real Hilbert spaces
with inner product 〈·, ·〉 and norm ‖·‖. Notations ⇀ and→ denote strong convergence
and weak convergence, respectively. Let C and Q be nonempty closed convex subsets
of H1 and H2, respectively. The equilibrium problem (EP) is to find x∗ ∈ C such
that

F (x∗, x) ≥ 0,∀x ∈ C,
where F : C × C → R is a bifunction. The solution set of EP is denoted by EP (F ).
Since its inception by Blum and Oettli [4] in 1994 , the EP has attracted wide attention
due to its applications in a large variety of problems arising in numerous problems in
physics, optimizations, and economics. Some methods have been rapidly established
for solving this problem (see [9, 17]).
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Later, the so-called split equilibrium problem (SEP) was introduced : let F1 :
C ×C → R and F2 : Q×Q→ R be two nonlinear bifunctions and A : H1 → H2 be a
bounded linear operator. The SEP is to find x∗ ∈ C such that

F1(x∗, x) ≥ 0,∀x ∈ C, (1.1)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) ≥ 0,∀y ∈ Q. (1.2)

The solution set of SEP is denoted by SEP (F1, F2).
In 2012, He [12] constructed some iterative algorithms to solve such problem and

obtained some weak and strong convergence theorems. In 2013, Kazmi and Rizvi [14]
introduced an iterative scheme of finding the common approximate solution of a split
equilibrium problem, a variational inequality problem and a fixed point problem for a
nonexpansive mapping under the assumption that the intersection of the solution sets
is nonempty. Later on, many iterative algorithms were considered to find a common
solution of SEP and other nonlinear problems (see [5, 6, 10, 19, 22, 24]).

We denote by CB(C) and K(C) the collection of all nonempty closed bounded
subsets and nonempty compact subsets of C, respectively. The Hausdorff metric H
on CB(C) is defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)},∀A,B ∈ CB(C),

where d(x,A) = inf{d(x, y) : y ∈ A} is the distance from a point x to a subset A.
Let T : C → CB(C) be a multi-valued mapping. An element x ∈ C is called a fixed
point of T if x ∈ Tx. The set of all fixed points of T is denoted by F (T ), that is,
F (T ) = {x ∈ C : x ∈ Tx}.

The study of fixed points for multi-valued mappings using Hausdorff metric was
introduced by Markin [16]. Then many fixed point problems of single value mappings
were extended to multi-valued cases due to the wide applications in control theory,
convex optimization, differential inclusions, game theory and economics. Recently,
the existence of fixed points and the convergence theorems of multi-valued mappings
have been studied by many authors (see [19, 22, 16, 8, 7, 13, 1, 25]).

Recall that a multi-valued mapping T : C → CB(C) is called
(i) nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖,∀x, y ∈ C;

(ii) quasi-nonexpansive if F (T ) 6= ∅ and

H(Tx, Tp) ≤ ‖x− p‖,∀x ∈ C, p ∈ F (T );

(iii) k-nonspreading [22] if there exists k > 0 such that

H(Tx, Ty)2 ≤ kd(x, Ty)2 + kd(Tx, y)2,∀x, y ∈ C;

(iv) hybrid [8] if

3H(Tx, Ty)2 ≤ ‖x− y‖2 + d(x, Ty)2 + d(Tx, y)2,∀x, y ∈ C;

(v) λ-hybrid [23] if

(1 + λ)H(Tx, Ty)2 ≤ (1− λ)‖x− y‖2 + λd(x, Ty)2 + λd(Tx, y)2,∀x, y ∈ C.
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The mapping T : C → CB(C) is said to be
(i) demiclosed at 0 if {xn} ⊂ C such that xn ⇀ x and limn→∞ d(xn, Txn) = 0

imply x ∈ Tx.
(ii) sequentially completely continuous if for every bounded sequence {xn} ⊂ C,

there is a subsequence {xnk
} such that {Txnk

} is convergent;
(iii) hemicompact if for a sequence {xn} in C with limn→∞ d(xn, Txn) = 0, there

exists a subsequence {xnk
} of {xn} such that xnk

→ p ∈ C;
In this paper, we introduce the class of α-nonexpansive multi-valued mappings.

We say that a mapping T : C → CB(C) is an α-nonexpansive multi-valued mapping
if there exists α ∈ R with α < 1 such that

H(Tx, Ty)2 ≤ (1− 2α)‖x− y‖2 + αd(Tx, y)2 + αd(x, Ty)2,∀x, y ∈ C. (1.3)

We note that T is α-nonexpansive in the case of single valued mappings proposed
by Aoyama and Kohsaka [2] in 2011. The notion of α-nonexpansive mapping was
further partially extended to a generalized α-nonexpansive mapping by Pant and
Shukla [20] in 2017. A mapping T : C → C is said to be generalized α-nonexpansive
if there exists an α ∈ [0, 1) such that for each x, y ∈ C,

1

2
‖x− Tx‖ ≤ ‖x− y‖

⇒‖Tx− Ty‖ ≤ (1− 2α)‖x− y‖+ α‖Tx− y‖+ α‖x− Ty‖.

Obviously, unlike our definition, this class of nonlinear mapping does not properly con-
tain α-nonexpansive mappings. Very recently, Iqbal et al. [13] considered the multi-
valued version. T : C → CB(C) is called a multi-valued generalized α-nonexpansive
mapping if there exists an α ∈ [0, 1) such that for each x, y ∈ C,

1

2
d(x, Tx) ≤ ‖x− y‖

⇒H(Tx, Ty) ≤ (1− 2α)‖x− y‖+ αd(Tx, y) + αd(x, Ty).

For more discussion on α-nonexpansive mappings, we refer to [1, 3] and the references
therein.
Remark 1.1. Taking α = 0, 12 and 1

3 , the mapping T is reduced to the so-called non-

expansive multi-valued mapping, 1
2 -nonspreading multi-valued mapping and hybrid

multi-valued mapping, respectively. The class of α-nonexpansive mappings and the
class of λ-hybrid mappings are equivalent in a Hilbert space when λ > −1. Moreover,
if T is α-nonexpansive with α ∈ [0, 1) and F (T ) 6= ∅, then T is quasi-nonexpansive.
Indeed, for all x ∈ C and p ∈ F (T ), we have

H(Tx, Tp)2 ≤ (1− 2α)‖x− p‖2 + αd(Tx, p)2 + αd(x, Tp)2

≤ (1− 2α)‖x− p‖2 + αH(Tx, Tp)2 + α‖x− p‖2.

It follows that

H(Tx, Tp) ≤ ‖x− p‖. (1.4)

We now give an example of an α-nonexpansive multi-valued mapping which is
neither 1

2 -nonspeading nor nonexpansive.
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Example 1.2. Consider C = {0, 9
10 , 1} with the usual norm. Define T : C → CB(C)

by

Tx =


{0}, x = 0

{0, 9
10 , 1}, x = 9

10

{0, 1}, x = 1

Now, we show that T is (− 1
4 )-nonexpansive. In fact, we have the following cases:

Case 1: If x = y = 0, 9
10 , 1, then H(Tx, Ty) = d(x, y) = d(Tx, y) = d(x, Ty) = 0.

Case 2: If x = 0, y = 9
10 , then H(Tx, Ty) = 1, d(x, y) = 9

10 , d(Tx, y) = 9
10 and

d(x, Ty) = 0. This implies that

3

2
× (

9

10
)2 − 1

4
× (

9

10
)2 − 1

4
× 02 =

81

80
> 12.

Case 3: If x = 0, y = 1, then H(Tx, Ty) = 1, d(x, y) = 1, d(Tx, y) = 1 and
d(x, Ty) = 0. This implies that

3

2
× 12 − 1

4
× 12 − 1

4
× 02 =

5

4
> 12.

Case 4: If x = 9
10 , y = 1, then H(Tx, Ty) = 1

10 , d(x, y) = 1
10 , d(Tx, y) = 0 and

d(x, Ty) = 1
10 . This implies that

3

2
× (

1

10
)2 − 1

4
× 02 − 1

4
× (

1

10
)2 =

1

80
> (

1

10
)2.

On the other hand, T is not 1
2 -nonspreading since for x = 0 and y = 1 , we have

Tx = {0} and Ty = {0, 1}. This shows that

2H(Tx, Ty)2 = 2 > 12 + 02 = d(Tx, y)2 + d(x, Ty)2.

Since H(T (0), T ( 9
10 )) = 1 > d(x, y), this also implies that T is not nonexpansive.

In 2016, Suantai et al. [22] proposed the iterative algorithm to solve the problems
for finding a common solution of the split equilibrium problem and the fixed point
problem of an 1

2 -nonspreading multi-valued mapping in Hilbert space, given sequence
{xn} by {

un = TF1
rn (I − γA∗(I − TF2

rn )A)xn,

xn+1 ∈ αnxn + (1− αn)Sun,

where TFi
rn , (i = 1, 2) is resolvent operator. The authors proved that {xn} converges

weakly to an element of F (S)
⋂
SEP (F1, F2) under some conditions.

In 2019, Li [20] introduce the concept of split Nash equilibrium problems and
prove an existence theorem. Motivated and inspired by the above results and related
literature, we further study the existence of solutions to split equilibrium problems
and the existence of fixed points of α-nonexpansive multi-valued mappings. Then we
propose some iterative algorithms for finding a common element of the set of solutions
of split equilibrium problems and the set of common fixed points of a finite family of
α-nonexpansive multi-valued mappings in real Hilbert spaces. Finally we prove some
weak and strong convergence theorems which extend and improve the corresponding
results of Suantai et al. [22] and Cholamjiak et al. [8] and many others.



ON SOLVING SEP AND FPP 645

2. Preliminaries

We now recall some concepts and results which are needed in sequel.

Definition 2.1. Let T : C → H be a nonlinear mapping. Then T is called α-inverse
strongly monotone, if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2,∀x, y ∈ C.

Particularly, T is called firmly nonexpansive when α = 1.
A mapping PC is said to be metric projection of H onto C if for every point x ∈ H,

there exists a unique nearest point in C denoted by PCx such that

‖x− PCx‖ ≤ ‖x− y‖,∀y ∈ C.

It is well known that PC is firmly nonexpansive mapping. Moreover, every nonexpan-
sive mapping T : H → H satisfies the inequality

〈(x− Tx)− (y − Ty), T (y)− T (x)〉 ≤ 1

2
‖(T (x)− x)− (T (y)− y)‖2,∀x, y ∈ H.

Therefore, we get

〈x− Tx, y − T (x)〉 ≤ 1

2
‖T (x)− x‖2,∀x ∈ H, y ∈ F (T ). (2.1)

A multi-valued mapping T : C → CB(C) is said to satisfy the endpoint condition
if Tp = {p} for all p ∈ F (T ). It is well known that the best approximation operator
PT , which is defined by PTx = {y ∈ Tx : ‖y−x‖ = d(x, Tx)}, satisfies F (T ) = F (PT )
and the endpoint condition.

Lemma 2.2. In a real Hilbert space H, the following well known results hold:
(1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉,∀x, y ∈ H;
(2) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,∀t ∈ [0, 1], x, y ∈ H;
(3) If {xn} is a sequence in H which converges weakly to z ∈ H, then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2,∀y ∈ H.

Lemma 2.3. [21] Let H be a Hilbert space and {xn} be a sequence in H. Let
u, v ∈ H be such that lim

n→∞
‖xn−u‖ and lim

n→∞
‖xn− v‖ exist. If {xnk

} and {xmk
} are

subsequences of {xn} which converge weakly to u and v, respectively, then u = v.

For solving equilibrium problems, let us give the following assumptions for the
bifunction F : C × C → R:

(A1) F (x, x) = 0,∀x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0,∀x ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.
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Lemma 2.4. [9] Suppose that the bifunction F : C × C → R satisfies the conditions
(A1)-(A4). For r > 0 and x ∈ H, define a mapping JF

r : H → C as follows:

JF
r x = {z ∈ C : F (z, y) +

1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}.

Then the following conclusions hold:
(i) JF

r is single-valued;
(ii) JF

r is firmly nonexpansive, i.e., for any x, y ∈ H,

‖JF
r x− JF

r y‖2 ≤ 〈x− y, JF
r x− JF

r y〉;

(iii) F (JF
r ) = EP (F );

(iv) EP (F ) is closed and convex.

Lemma 2.5. [8] Let C be a closed and convex subset of a real Hilbert space H and
T : C → CB(C) be a multivalued mapping. Suppose that there exist z0 ∈ C and
zn ∈ Tzn−1 for all n ≥ 1 such that {zn} is bounded and, for all y ∈ C, there exists
a ∈ Ty such that

µn‖zn − a‖2 ≤ µn‖zn − y‖2

for a Banach limit µ. Then T has a fixed point in C.

Lemma 2.6. [7] Let H be a real Hilbert space. Let m ∈ N be fixed and let {xi}mi=1 ⊂

H. For αi ∈ (0, 1), i = 1, 2, · · · ,m, such that
m∑
i=1

αi = 1, the following identity holds:

‖
m∑
i=1

αixi‖2 =

m∑
i=1

αi‖xi‖2 −
∑

1≤i≤j≤m

αiαj‖xi − xj‖2.

Definition 2.7. Let K be a nonempty subset of a linear space B. A set-
valued mapping T : K → 2B\{∅} is said to be a KKM mapping if for any fi-
nite subset{y1, y2, · · · , yn} of K, we have co{y1, y2, · · · , yn} ⊂

⋃
1≤i≤n T (yi), where

co{y1, y2, · · · , yn} denotes the convex hull of {y1, y2, · · · , yn}.

Lemma 2.8. [11] Let K be a nonempty closed convex subset of a Hausdorff topological
vector space B and let T : K → 2B\{∅} be a KKM mapping with closed values. If
there exists a point y0 ∈ K such that T (y0) is a compact subset, then

⋂
y∈K T (y) 6= ∅.

3. Existence results

We need the following concept, convexity direction preserved , for operators from
H1 to H2. It is an important condition for the operator A for the existence of solutions
to SEP. Furthermore, we assume that AC = Q is satisfied below.

Definition 3.1. Let C,Q be nonempty closed convex subsets of Hilbert spaces H1

and H2, respectively. A bounded linear operator A : H1 → H2 is said to be convexity
direction preserved with respect to F1 and F2 on C2 and Q2 if, for any given points
(u,Au), (v,Av) ∈ C×Q and for their arbitrary convex combination w = λu+(1−λ)v,
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where 0 ≤ λ ≤ 1, we have either that F1(w, u) ≥ 0 and F2(Aw,Au) ≥ 0 both hold or
that F1(w, v) ≥ 0 and F2(Aw,Av) ≥ 0 both hold.

Remark 3.2. For any given points u, v ∈ C and their convex combination of

w = λu+ (1− λ)v,

we must have

either F1(w, u) ≥ 0, or F1(w, v) ≥ 0, (3.1)

and

either F2(Aw,Au) ≥ 0, or F2(Aw,Av) ≥ 0. (3.2)

To see (3.1), we assume by contradiction that F1(w, u) < 0 and F1(w, v) < 0 both
hold. Then from A1 and A4, we have

0 = F1(w,w) = F1(w, λu+ (1− λ)v) ≤ λF1(w, u) + (1− λ)F1(w, v) < 0.

This is a contradiction. Hence (3.1) must hold. Since A : H1 → H2 is a bounded
linear operator and AC = Q, it follows that

Aw = λAu+ (1− λ)Av.

Then we can similarly show that (3.2) holds. The convexity direction preserved
property of A insures that one of the two inequalities in (3.1) and the corresponding
inequality in (3.2) must simultaneously hold for the point u or the point v.

Theorem 3.3. Let H1, H2 be two real Hilbert space and C ⊆ H1, Q ⊆ H2 be
nonempty closed convex subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R are bifunctions satisfying (A1)-
(A4), and that A satisfies the following conditions:

(C1) AC = Q;
(C2) A is convexity direction preserved with respect to F1 and F2.
If there is a point (t, At) ∈ C ×Q such that

{(z,Az) ∈ C ×Q : F1(z, t) ≥ 0, F2(Az,At) ≥ 0}

is compact, then SEP (F1, F2) 6= ∅.
Proof. It follows from (C1) that A|C ∈ L(C,Q). we denote G its graph, i.e.,

G = {(x,Ax) : x ∈ C} ⊆ C ×Q.

Since H1 and H2 are Hilbert spaces , by the closed graph theorem in Banach spaces,
the graph of the bounded linear operator A|C from C to Q is a closed subset of C×Q
with respect to the product topology. Then the convexity of C and Q and the linearity
of A imply that G is a nonempty closed and convex subset of C ×Q.

On this underlying space G, we define a mapping T : G→ 2G\{∅} by

T (x,Ax) = {(z,Az) ∈ G : F1(z, x) ≥ 0, F2(Az,Ax) ≥ 0}.

From the continuity of the mappings A and (A3), we have (x,Ax) ∈ T (x,Ax) which
yields that, for every (x,Ax) ∈ G, T (x,Ax) is a nonempty closed subset of G.
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Next we show that T is a KKM mapping. For any points (u,Au), (v,Av) ∈ G, we
arbitrarily take a convex combination of w = λu+ (1− λ)v, where 0 < λ < 1. Since
A ∈ L(H1, H2), it follows that

Aw = λAu+ (1− λ)Av.

Then

(w,Aw) = λ(u,Au) + (1− λ)(v,Av).

From condition (C2), we have either

F1(w, u) ≥ 0 and F2(Aw,Au) ≥ 0,

or

F1(w, v) ≥ 0 and F2(Aw,Av) ≥ 0.

That is, either (w,Aw) ∈ T (u,Au), or (w,Aw) ∈ T (v,Av). It implies that

(w,Aw) ∈ T (u,Au) ∪ T (v,Av).

Similarly, we can extend this to finite convex combinations. Hence, T is a KKM
mapping. For the given point (t, At) ∈ G from the assumptions of this theorem, we
know

{(z,Az) ∈ C ×Q : F (z, t) ≥ 0 and G(Az,At) ≥ 0}
is a nonempty compact subset of G.

By applying the Lemma 2.8, we obtain that
⋂

(x,Ax)∈K T (x,Ax) 6= ∅. Then, by

taking any (x∗, Ax∗) ∈
⋂

(x,Ax)∈K T (x,Ax), we have

F1(x∗, x) ≥ 0,∀x ∈ C, (3.3)

and

F2(Ax∗, Ax) ≥ 0,∀x ∈ C. (3.4)

From (C1) of this theorem, (3.4) is equivalent to

F2(Ax∗, y) ≥ 0,∀y ∈ Q, (3.5)

Combining (3.3), (3.5), we have x∗ ∈ SEP (F1, F2).

Corollary 3.4. Let H1,H2 be two real Hilbert space and C ⊆ H1, Q ⊆ H2 be
nonempty compact convex subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R are bifunctions satisfying (A1)-
(A4), and that A satisfies the following conditions:

(C1) AC = Q;
(C2) A is convexity direction preserved with respect to F1 and F2 .

Then SEP (F1, F2) 6= ∅.

Now, we are prepared to prove the existence theorem of the fixed point of α-
nonexpansive multi-valued mappings. To this end, we first prove some crucial lemmas,
which are also used in the next section.
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Lemma 3.5. Let C be a closed convex subset of a real Hilbert space H and T : C →
K(C) be an α-nonexpansive multivalued mapping such that α ∈ [0, 1). If x, y ∈ C
and a ∈ Tx, then there exists b ∈ Ty such that

‖a− b‖2 ≤ H(Tx, Ty)2 ≤ ‖x− y‖2 +
2α

1− α
〈x− a, y − b〉.

Proof. Let x, y ∈ C and a ∈ Tx. By Nadler’s theorem (see [18]), there exists b ∈ Ty
such that

‖a− b‖2 ≤ H(Tx, Ty)2.

It follows that

H(Tx, Ty)2 ≤ (1− 2α)‖x− y‖2 + αd(Tx, y)2 + αd(x, Ty)2

≤ (1− 2α)‖x− y‖2 + α‖a− y‖2 + α‖x− b‖2

= (1− 2α)‖x− y‖2 + α[‖a− x‖2 + 2〈a− x, x− y〉+ ‖x− y‖2

+ ‖x− a‖2 + 2〈x− a, a− b〉+ ‖a− b‖2]

= (1− α)‖x− y‖2 + α[2‖a− x‖2 + ‖a− b‖2 + 2〈a− x, x− a− (y − b)〉]
= (1− α)‖x− y‖2 + α[‖a− b‖2 + 2〈x− a, y − b〉]
≤ (1− α)‖x− y‖2 + αH(Tx, Ty)2 + 2α〈x− a, y − b〉.

This implies that

H(Tx, Ty)2 ≤ ‖x− y‖2 +
2α

1− α
〈x− a, y − b〉.

This completes the proof.

Lemma 3.6. Let C be a closed convex subset of a real Hilbert space H and T : C →
K(C) be an α-nonexpansive multivalued mapping such that α ∈ [0, 1). Let {xn} be a
sequence in C such that xn ⇀ p and lim

n→∞
‖xn − yn‖ = 0 for some yn ∈ Txn. Then

p ∈ Tp.
Proof. Let {xn} be a sequence in C which converges weakly to p and let yn ∈ Txn
be such that ‖xn − yn‖ → 0 .

Now, we show that p ∈ F (T ). By Lemma 3.5, there exists zn ∈ Tp such that

‖yn − zn‖2 ≤ ‖xn − p‖2 +
2α

1− α
〈xn − yn, p− zn〉.

Since Tp is compact and zn ∈ Tp, there exists {zni} ⊂ {zn} such that zni → z ∈ Tp.
Since {xn} converges weakly, it is bounded. For each x ∈ H, define a function
f : H → [0,∞) by

f(x) := lim sup
i→∞

‖xni
− x‖2.

Then, by Lemma 2.2, we obtain

f(x) = lim sup
i→∞

(‖xni
− p‖2 + ‖p− x‖2)



650 YANG LI, CONGJUN ZHANG AND YUEHU WANG

for all x ∈ H. Thus f(x) = f(p) + ‖p− x‖2 for all x ∈ H. It follows that

f(z) = f(p) + ‖p− z‖2. (3.6)

We observe that

f(z) = lim sup
i→∞

‖xni − z‖2 = lim sup
i→∞

‖xni − yni + yni − z‖2

≤ lim sup
i→∞

‖yni
− z‖2.

This implies that

f(z) ≤ lim sup
i→∞

‖yni
− z‖2.

= lim sup
i→∞

(‖yni
− zni

+ zni
− z‖2).

≤ lim sup
i→∞

(‖xni
− p‖2 +

2α

1− α
〈xni

− yni
, p− zni

〉).

= lim sup
i→∞

‖xni
− p‖2

= f(p). (3.7)

Hence it follows from (3.6) and (3.7) that‖p− z‖ = 0. This completes the proof.

Lemma 3.7. Let C be a closed convex subset of a real Hilbert space H and T : C →
K(C) be an α-nonexpansive multivalued mapping such that α ∈ [0, 1).Then F (T ) is
closed. Moreover, if T satisfies the endpoint condition, then F (T ) is convex.
Proof. If F (T ) = ∅, then it is closed. Assume that F (T ) 6= ∅. Let {xn} be a sequence
in F (T ) such that xn → x as n→∞. Using (1.4), we have

d(x, Tx) ≤ ‖x− xn‖+ d(xn, Tx)

≤ ‖x− xn‖+H(Txn, Tx)

≤ 2‖x− xn‖.

It follows that d(x, Tx) = 0. Hence x ∈ F (T ). We conclude that F (T ) is closed.
To show that F (T ) is convex. Let p = tp1 + (1 − t)p2, where p1, p2 ∈ F (T ) and

t ∈ (0, 1). Let z ∈ Tp. It follows from Lemma 2.2 that

‖z − p‖2 = ‖t(z − p1) + (1− t)(z − p2)‖2

= t‖z − p1‖2 + (1− t)‖z − p2‖2 − t(1− t)‖p1 − p2‖2

= td(z, Tp1)2 + (1− t)d(z, p2)2 − t(1− t)‖p1 − p2‖2

≤ tH(Tp, Tp1)2 + (1− t)H(Tp, Tp2)2 − t(1− t)‖p1 − p2‖2

≤ t‖p− p1‖2 + (1− t)‖p− p2‖2 − t(1− t)‖p1 − p2‖2

= ‖t(p− p1) + (1− t)(p− p2)‖2

= 0.

and hence p = z. Therefore, p ∈ F (T ). This completes the proof.
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Theorem 3.8. Let C be a closed convex subset of a real Hilbert space H and T : C →
K(C) be an α-nonexpansive multivalued mapping with α ∈ [0, 1). Then, F (T ) 6= ∅ if
and only if there exist z0 ∈ C and zn ∈ Tzn−1 for all n ≥ 1 such that {zn} is bounded.
Proof. The proof of necessity is obvious. To prove sufficiency, assume that there exist
z0 ∈ C and zn ∈ Tzn−1 for all n ≥ 1 such that {zn} is bounded. Let y ∈ C. From
Lemma 3.5, there exists b ∈ Ty such that

‖zn+1 − b‖2 ≤ ‖zn − y‖2 +
2α

1− α
〈zn − zn+1, y − b〉

= ‖zn − y‖2 +
α

1− α
(‖zn − b‖2 + ‖zn+1 − y‖2

− ‖zn − y‖2 − ‖zn+1 − b‖2),

therefore(
1 +

α

1− α

)
‖zn+1−b‖2−

α

1− α
‖zn−b‖2 ≤

(
1− α

1− α

)
‖zn−y‖2+

α

1− α
‖zn+1−y‖2.

Let µ be a Banach limit on l∞. For any n ∈ N, we have

1

1− α
µn‖zn+1−b‖2−

α

1− α
µn‖zn−b‖2 ≤

1− 2α

1− α
µn‖zn−y‖2 +

α

1− α
µn‖zn+1−y‖2.

This implies that

µn‖zn − b‖2 ≤ µn‖zn − y‖2.
By Lemma 2.5, T has a fixed point in C. This completes the proof.

4. Convergence results

Theorem 4.1. Let H1, H2 be two real Hilbert space and C ⊆ H1, Q ⊆ H2 be
nonempty closed convex subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R are bifunctions satisfying (A1)-
(A4), and F2 is upper semicontinuous in the first argument. For i = 1, 2, · · · ,m, let
Ti : C → K(C) be a family of α-nonexpansive multi-valued mappings with α ∈ [0, 1)
such that

Θ =

m⋂
i=1

F (Ti)
⋂
SEP (F1, F2) 6= ∅.

Define a sequence {xn} by x1 ∈ C arbitrary and{
un = JF1

rn (I − γA∗(I − JF2
rn )A)xn,

xn+1 ∈ α0,nxn +
∑m

i=1 αi,nTiun,
(4.1)

where αi,n ∈ (0, 1) for all i = 0, 1, 2, · · · ,m,

m∑
i=0

αi,n = 1 for all n ≥ 1, rn > 0

and γ ∈ (0, 1
L ) such that L is the spectral radius of A∗A and A∗ is the adjoint of A.

Assume that the following conditions hold:
(C1) Ti satisfies satisfies the endpoint condition for all i = 1, 2, · · · ,m;
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(C2) lim inf
n→∞

α0,nαi,n > 0 for all i = 1, 2, · · · ,m;

(C3) lim inf
n→∞

rn > 0.

Then
(i) The sequence {xn} generated by (4.1) converges weakly to p ∈ Θ .
(ii) If one of the Ti is sequentially completely continuous, then {xn} converges

strongly to p ∈ Θ.
(iii) If one of the Ti is hemicompact, then {xn} converges strongly to p ∈ Θ .

Proof. Now we prove conclusion (i).
We first show that A∗(I−JF2

rn )A is a 1
L -inverse strongly monotone mapping. Since

JF2
rn is firmly nonexpansive and I − JF2

rn is firmly nonexpansive, we see that

‖A∗(I − JF2
rn )Ax−A∗(I − JF2

rn )Ay‖2

= 〈A∗(I − JF2
rn )(Ax−Ay), A∗(I − JF2

rn )(Ax−Ay)〉
= 〈(I − JF2

rn )(Ax−Ay), AA∗(I − JF2
rn )(Ax−Ay)〉

≤ L〈(I − JF2
rn )(Ax−Ay), (I − JF2

rn )(Ax−Ay)〉
= L‖(I − JF2

rn )(Ax−Ay)‖2

≤ L〈Ax−Ay, (I − JF2
rn )(Ax−Ay)〉

= L〈x− y,A∗(I − JF2
rn )Ax−A∗(I − JF2

rn )Ay)〉

for all x, y ∈ H1. This implies that A∗(I − JF2
rn )A is a 1

L -inverse strongly monotone

mapping. Since γ ∈ (0, 1
L ), it follows that I − γA∗(I − JF2

rn )A is nonexpansive.
Now, we divide the proof into five steps as follows:

Step 1. Show that {xn} is bounded.
Let p ∈ Θ. Then p = JF1

rn p and (I − γA∗(I − JF2
rn )A)p = p. Thus we have

‖un − p‖ = ‖JF1
rn (I − γA∗(I − JF2

rn )A)xn − JF1
rn (I − γA∗(I − JF2

rn )A)p‖
≤ ‖(I − γA∗(I − JF2

rn )A)xn − (I − γA∗(I − JF2
rn )A)p‖

≤ ‖xn − p‖. (4.2)

Let

xn+1 = α0,nxn +

m∑
i=1

αi,ny
i
n, y

i
n ∈ Tiun.

From (C1), we have

‖yin − p‖ = d(yin, Tip) ≤ H(Tiun, Tip) ≤ ‖un − p‖ ≤ ‖xn − p‖. (4.3)

for all i = 1, 2, · · · ,m. It follows that

‖xn+1 − p‖ = ‖α0,n(xn − p) +

m∑
i=1

αi,n(yin − p)‖

≤ α0,n‖xn − p‖+

m∑
i=1

αi,n‖yin − p‖

≤ ‖xn − p‖.
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Hence lim
n→∞

‖xn − p‖ exists. This implies that {xn} is bounded.

Step 2. Show that

lim
n→∞

‖yin − xn‖ = 0

for all i = 1, 2, . . . ,m. From the lemma 2.6 and (4.3), we have

‖xn+1 − p‖2 = ‖α0,n(xn − p) +

n∑
i=1

αi,n(yin − p)‖2

= α0,n‖xn − p‖2 +

n∑
i=1

αi,n‖yin − p‖2 −
n∑

i=1

α0,nαi,n‖xn − yin‖2

≤ ‖xn − p‖2 −
n∑

i=1

α0,nαi,n‖xn − yin‖2.

It follows that

n∑
i=1

α0,nαi,n‖xn − yin‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

From (C2) and the existence of lim
n→∞

‖xn − p‖, we obtain

lim
n→∞

‖xn − yin‖ = 0 (4.4)

for all i = 1, 2, . . . ,m.
Step 3. Show that limn→∞ ‖un − xn‖ = 0 and limn→∞ ‖yin − un‖ = 0 for all
i = 1, 2, . . . ,m.

For p ∈ Θ and by using (2.1), we estimate

‖un − p‖2 = ‖JF1
rn (I − γA∗(I − JF2

rn )A)xn − JF1
rn p‖

2

≤ ‖xn − γA∗(I − JF2
rn )Axn − p‖2

≤ ‖xn − p‖2 + γ2‖A∗(I − JF2
rn )Axn‖2 + 2γ〈p− xn, A∗(I − JF2

rn )Axn〉
= ‖xn − p‖2 + γ2〈Axn − JF2

rn Axn, AA
∗(I − JF2

rn )Axn〉
+ 2γ〈A(p− xn), Axn − JF2

rn Axn〉
≤ ‖xn − p‖2 + Lγ2〈Axn − JF2

rn Axn, (I − J
F2
rn )Axn〉

+ 2γ〈A(p− xn), Axn − JF2
rn Axn〉

≤ ‖xn − p‖2 + Lγ2‖Axn − JF2
rn Axn‖

2

+ 2γ(〈Ap− JF2
rn Axn, Axn − J

F2
rn Axn〉 − ‖Axn − J

F2
rn Axn‖

2)

≤ ‖xn − p‖2 + Lγ2‖Axn − JF2
rn Axn‖

2

+ 2γ(
1

2
‖Axn − JF2

rn Ax
2
‖ − ‖Axn − J

F2
rn Axn‖

2)

= ‖xn − p‖2 + γ(Lγ − 1)‖Axn − JF2
rn Axn‖

2
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It follows from (4.3) that, for all yin ∈ Tiun,

‖xn+1 − p‖2 = ‖α0,n(xn − p) +

m∑
i=1

αi,n(yin − p)‖2

≤ α0,n‖xn − p‖2 +

m∑
i=1

αi,n‖yin − p‖2

≤ α0,n‖xn − p‖2 +

m∑
i=1

αi,n‖un − p‖2

≤ ‖xn − p‖2 +

m∑
i=1

αi,nγ(Lγ − 1)‖Axn − JF2
rn Axn‖

2 (4.5)

Therefore, we have

−
m∑
i=1

αi,nγ(Lγ − 1)‖Axn − JF2
rn Axn‖

2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Since γ(Lγ − 1) < 0, it follows by (C2) and the existence of limn→∞ ‖xn − p‖ that

lim
n→∞

‖Axn − JF2
rn Axn‖ = 0. (4.6)

Since JF1
rn is firmly nonexpansive and I − γA∗(I − JF2

rn )A is nonexpansive, we have

‖un − p‖2 = ‖JF1
rn (I − γA∗(I − JF2

rn )A)xn − JF1
rn p‖

2

≤ 〈JF1
rn (I − γA∗(I − JF2

rn )A)xn − JF1
rn p, (I − γA

∗(I − JF2
rn )A)xn − p〉

= 〈un − p, (I − γA∗(I − JF2
rn )A)xn − p〉

=
1

2
(‖un − p‖2 + ‖(I − γA∗(I − JF2

rn )A)xn − p‖2

− ‖un − xn + γA∗(I − JF2
rn )Axn‖2)

≤ 1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖un − xn + γA∗(I − JF2

rn )Axn‖2)

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 − (‖un − xn‖2 + γ2‖A∗(I − JF2

rn )Axn‖2

+ 2γ〈un − xn, A∗(I − JF2
rn )Axn〉)},

which implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2 − 2γ〈un − xn, A∗(I − JF2
rn )Axn〉

≤ ‖xn − p‖2 − ‖un − xn‖2 − 2γ‖un − xn‖‖A∗(I − JF2
rn )Axn‖. (4.7)

This implies by (4.5) that

‖xn+1 − p‖2 ≤ α0,n‖xn − p‖2 +

m∑
i=1

αi,n‖un − p‖2

≤ ‖xn − p‖2 +

m∑
i=1

αi,n(2γ‖un − xn‖‖A∗(I − JF2
rn )Axn‖ − ‖un − xn‖2).
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Therefore, we have
m∑
i=1

αi,n‖un − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 +

m∑
i=1

αi,n2γM‖A∗(I − JF2
rn )Axn‖,

where M = sup{‖un − xn‖ : n ∈ N}. This implies by (C2),(4.6) and the existence of
limn→∞ ‖xn − p‖ that

lim
n→∞

‖un − xn‖ = 0. (4.8)

From (4.4) and (4.8), we have

‖un − yin‖ ≤ ‖un − xn‖+ ‖xn − yin‖ → 0 (4.9)

for all i = 1, 2, . . . ,m.
Step 4. Show that ωw(xn) ⊆ Θ, where ωw(xn) = {x ∈ H1 : xni ⇀ x, {xni} ⊆ {xn}}.

Since {xn} is bounded and H1 is reflexive, ωw(xn)is nonempty. Let q ∈ ωw(xn)
be an arbitrary element. Then there exists a subsequence {xni

} ⊆ {xn} converging
weakly to q. From (4.8), it implies that uni

⇀ q as i→∞. By (4.9) and Lemma 3.7,
we have q ∈

⋂m
i=1 F (Ti).

Next, we show that q ∈ EP (F1). Since un = JF1
rn (I − γA∗(I − JF2

rn )A)xn, we have

F1(un, y) +
1

rn
〈y − un, un − xn + γA∗(I − JF2

rn )Axn〉 ≥ 0,∀y ∈ C,

which implies that

F1(un, y) +
1

rn
〈y − un, un − xn〉+

1

rn
〈y − un, γA∗(I − JF2

rn )Axn〉 ≥ 0,∀y ∈ C.

From (A2), we have

1

rni

〈y − uni , uni − xni〉+
1

rni

〈y − uni , γA
∗(I − JF2

rni
)Axni〉 ≥ F1(y, uni),∀y ∈ C.

This implies by uni
⇀ q, (C3), (4.6), (4.8) and (A4) that

F1(y, q) ≤ 0,∀y ∈ C.
For t ∈ (0, 1] and y ∈ C, let yt = ty + (1− t)q. Since y ∈ C and q ∈ C, we get yt ∈ C
and hence F1(yt, q) ≤ 0. So, by (A1) and (A4), we have

0 = F1(yt, yt) ≤ tF1(yt, y) + (1− t)F1(yt, q) ≤ tF1(yt, y),∀y ∈ C.
Letting t→ 0, by (A3), we have

F1(q, y) ≥ 0,∀y ∈ C.
This implies that q ∈ EP (F1). Since A is a bounded linear operator, we have Axni

⇀
Aq. Then it follows from (4.6) that

JF2
rni
Axni

⇀ Aq, (4.10)

as i→∞. By the definition of JF2
rni
Axni

, we have

F2(JF2
rni
Axni

, y) +
1

rni

〈y − JF2
rni
Axni

, JF2
rni
Axni

−Axni
〉 ≥ 0,∀y ∈ Q. (4.11)
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Since F2 is upper semicontinuous in the first argument, it implies by (4.11) that

F2(Aq, y) ≥ 0,∀y ∈ Q. (4.12)

This shows that Aq ∈ EP (F2). Therefore, q ∈ SEP (F1, F2) and hence q ∈ Θ.
Step 5. Show that {xn} converges weakly to an element of Θ. It is sufficient to
show that ωw(xn) is a singleton set. Let p, q ∈ ωw(xn) and {xnk

}, {xnm} be two
subsequences of {xn} such that xnk

⇀ p and xnm ⇀ q. From (4.8), we also have
unk

⇀ p and unm
⇀ q. By (4.9) and Lemma 3.7, we see that p, q ∈

⋂m
i−1 F (Ti).

Applying Lemma 2.3, we obtain p = q. The proof of conclusion (i) is completed.
Next we prove conclusion (ii).
From Lemma 3.5, for yin ∈ Tiun, there exists bin ∈ Tixn such that

H(Tiun, Tixn)2 ≤ ‖un − xn‖2 +
2α

1− α
〈un − yin, xn − bin〉

≤ ‖un − xn‖2 +
2α

1− α
‖un − yin‖‖xn − bin‖.

It follows from (4.8) and (4.9) that

lim
n→∞

H(Tiun, Tixn) = 0 (4.13)

for all i ∈ {1, 2, · · · ,m}. This implies that

lim
n→∞

d(xn, Tixn) ≤ lim
n→∞

(d(xn, Tiun) +H(Tiun, Tixn))

≤ lim
n→∞

(‖xn − yin‖+H(Tiun, Tixn)) = 0 (4.14)

for all i ∈ {1, 2, · · · ,m}. Suppose that Ti0 is sequentially completely continuous for
some i0 ∈ {1, 2, · · · ,m}. Since {xn} is bounded, {xn} has a subsequence {xnk

} such
that

lim
k→∞

d(Ti0xnk
, p) = 0,

for some p ∈ C. It follows from (4.14) that

‖xnk
− p‖ ≤ d(xnk

, Ti0xnk
) + d(Ti0xnk

, p)→ 0, (4.15)

as k →∞. From Lemma 3.5, for yink
∈ Tixnk

, there exists cink
∈ Tip such that

H(Tixnk
, Tip)

2 ≤ ‖unk
− p‖2 +

2α

1− α
〈unk

− yink
, p− cink

〉

≤ ‖unk
− p‖2 +

2α

1− α
‖unk

− yink
‖‖p− cink

‖

≤ (‖unk
− xnk

‖+ ‖xnk
− p‖)2 +

2α

1− α
‖unk

− yink
‖‖p− cink

‖.

It follows from (4.8) (4.9) and (4.15) that

lim
k→∞

H(Tiunk
, Tip) = 0 (4.16)

for all i ∈ {1, 2, · · · ,m}. For each i ∈ {1, 2, · · · ,m}, we have

d(p, Tip) ≤ ‖p− xnk
‖+ d(xnk

, Tixnk
) +H(Tixnk

, Tiunk
) +H(Tiunk

, Tip).
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From (4.13), (4.14) and (4.16), we obtain d(p, Tip) = 0 for all i ∈ {1, 2, · · · ,m}. Since
Tip is closed, so p ∈

⋂m
i=1 F (Ti) and hence p ∈ Θ. This implies by the existence of

limn→∞ ‖xn − p‖ that limn→∞ ‖xn − p‖ = 0. This completes the proof of conclusion
(ii).

Finally, we prove conclusion (iii).
Suppose that Ti0 is hemicompact for some i0 ∈ {1, 2, · · · ,m}. From (4.14), we

have limn→∞ d(xn, Ti0xn) = 0. Then, there exists a subsequence {xnk
} of {xn} such

that xnk
→ p ∈ C. From Lemma 3.5, for yink

∈ Tiunk
, there exists cink

∈ Tip such
that

H(Tiunk
, Tip)

2 ≤ ‖unk
− p‖2 +

2α

1− α
〈unk

− yink
, p− cink

〉.

≤ ‖xnk
− p‖2 +

2α

1− α
‖unk

− yink
‖‖p− cink

‖.

It follows from (4.9) that

lim
k→∞

H(Tiunk
, Tip) = 0. (4.17)

for all i ∈ {1, 2, · · · ,m}. For each i ∈ {1, 2, · · · ,m}, we have

d(p, Tip) ≤ ‖p− xnk
‖+ d(xnk

, Tixnk
) +H(Tixnk

, Tiunk
) +H(Tiunk

, Tip).

Since xnk
→ p ∈ C, by (4.14), (4.15) and (4.17), we obtain d(p, Tip) = 0 for all

i ∈ {1, 2, · · · ,m}. Since Tip is closed, so p ∈
⋂m

i=1 F (Ti). This implies by the
existence of limn→∞ ‖xn − p‖ that limn→∞ ‖xn − p‖ = 0. This completes the proof
of conclusion (iii).

Since PTi
satisfies the endpoint condition for all i ∈ {1, 2, · · · ,m}, we then obtain

the following result.

Corollary 4.2. Let H1, H2 be two real Hilbert space and C ⊆ H1, Q ⊆ H2 be
nonempty closed convex subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R are bifunctions satisfying (A1)-
(A4), and F2 is upper semicontinuous in the first argument. For i = 1, 2, · · · ,m, let
Ti : C → K(C) be a family of nonexpansive multi-valued mappings with α ∈ [0, 1)
such that Θ =

⋂m
i=1 F (Ti)

⋂
SEP (F1, F2) 6= ∅. Define a sequence {xn} by x1 ∈ C

arbitrary and {
un = JF1

rn (I − γA∗(I − JF2
rn )A)xn,

xn+1 ∈ α0,nxn +
∑m

i=1 αi,nPTi
un,

(4.18)

where αi,n ∈ (0, 1) for all i = 0, 1, 2, · · · ,m,
∑m

i=0 αi,n = 1 for all n ≥ 1, rn > 0
and γ ∈ (0, 1

L ) such that L is the spectral radius of A∗A and A∗ is the adjoint of A.
Assume that the following conditions hold:

(C1) lim inf
n→∞

α0,nαi,n > 0 for all i = 1, 2, · · · ,m;

(C2) lim inf
n→∞

rn > 0.

Then
(i) The sequence {xn} generated by (4.18) converges weakly to p ∈ Θ .
(ii) If one of the PTi

is sequentially completely continuous, then {xn} converges
strongly to p ∈ Θ.
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(iii) If one of the PTi
is hemicompact, then {xn} converges strongly to p ∈ Θ .

Proof. By the same proof as that of Theorem 4.1, we have un → yin ∈ PTiun. This
implies that

d(un, Tiun) ≤ d(un, PTi
un) ≤ ‖un − yin‖ → 0,

as n → ∞ for all i = 0, 1, 2, . . . ,m. Since I − Ti is demiclosed at 0, we obtain this
results.

Remark 4.3. (i) Theorem 4.1 and Corollary 4.2 extend the corresponding one of
Suantai et al. [17] to α-nonexpansive multi-valued mapping and to a common fixed
point problem of a family of multi-valued mappings. In fact, if α = 1

2 and m = 1,
then we get the Theorems 3.3 and 3.5 in [17]. In addition, we have obtained strong
convergence results.

(ii) It is well known that the class of α-nonexpansive multi-valued mappings con-
tains the classes of nonexpansive multi-valued mappings, nonspreading multi-valued
mappings and hybrid multi-valued mappings. Thus, Theorem 4.1 and Corollary 4.2
can be applied to these classes of mappings.
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