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1. Introduction

For various motivations, differential variational inequalities (DVIs) in Euclidean
spaces and general Banach spaces have been studied extensively recently; e.g. Pang
and Stewart [28, 31], Avgerinos and Papageorgiou [7], Gwinner [15, 16], Liu Zhen-
hai et al [24, 23, 22, 21], Anh [2, 3], Ke et al [5, 6, 20] and references cited therein.
Built on dynamical systems associated with variational inequalities, differential vari-
ational inequalities open up a broad paradigm for the enhanced modeling of complex
real-world engineering systems, such as mechanical impact problems, electrical cir-
cuits with ideal diodes, Coulomb friction problems for contacting bodies, economical
dynamics and hybrid engineering systems with variable structures.

In the literature, it is seen that classical differential variational inequalities which
contain first-order differential systems were systematically studied by Pang and Stew-
art [28]. Thenceforth, DVIs have been studied extensively and motivated further
research on many interesting theoretical problems. Besides, fractional DVIs (DVIs
containing fractional derivatives) also play an important role which give us obser-
vation numerous phenomena, especially in fractional advection dispersion equation,
fluid flow, rheology and the viscoelasticity problem. In [19], authors investigated
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the existence of solutions for a new class of differential variational inequalities in fi-
nite spaces. More recently, in [29], Liu Zhenhai and coauthors studied generalized
differential hemivariational inequalities involving the time fractional order derivative
operator in Banach spaces with application to a frictional quasistatic contact problem
for viscoelastic materials.

Continuing these above works, in this paper, we consider a class of fractional
differential variational inequalities in Banach spaces. Our purpose is to study the
existence of asymptotically periodic solutions. Let (X, ‖ · ‖X) be a Banach space and
(U, ‖ · ‖U ) be a reflexive Banach space with the dual U∗. We are concerned with the
following differential variational inequality

CDα
t x(t)−Ax(t) ∈ F (t, x(t), u(t)), t ∈ J := [0,∞), (1.1)

〈B(x(t), u(t))− g(t, x(t), u(t)), v − u(t)〉+ h(x(t), u(t), v) ≥ 0,∀v ∈ K, (1.2)

x(0) = ξ, (1.3)

where CDα
t denotes the Caputo’s fractional time derivative of order α with the lower

limit zero; (x(·), u(·)) takes values in X×K, with K being a nonempty convex closed
subset of U . The linear part A : D(A) ⊂ X → X is a generator of a C0− semigroup
{S(t)}t ≥ 0 on X; the nonlinear part F : R+ × X × U → P(X) is multivalued.
The given single-valued functions B : X × U → U∗, g : R+ × X × K → U∗ and
h : X ×K ×K → (−∞;∞] are addressed in the next sections.

In order to highlight the generality of (1.1)-(1.3) and the connections to previous
problem classes, we have to mention that in some cases:

(i) In case that (1.1) is classical differential equations/inclusions (involving first-
order derivatives), h(x, u, v) := 〈h̄(x, u), v − u〉 for some function h̄, then
(1.1)-(1.3) becomes the problem studied in [9, 28] with Euclidean phase spaces
and in [6, 2, 15] with Banach phase spaces.
For instance, if X = Rm, U = Rn and h(x, u, v) := 〈h̄(x, u), v − u〉, then
(1.1)-(1.3) becomes the problem studied in [19]. In case α ∈ N∗, (1.1)-(1.3)
return to the DVIs with meaning by Pang and Stewart [28] which have been
subjected to investigation by many authors [5, 9, 24, 31].

(ii) If B(x, u) := B̄(u) for some B̄ and h(x, u, v) := φ(v) − φ(u) where φ : U →
(−∞,∞] is a proper, convex and lower semicontinuous function and α = 1,
then (1.1)-(1.3) becomes the problem investigated in [2, 6].

(iii) In [30], authors investigated a class of differential variational inequalities,
when investigating the variational constraints, the expression of B was given
as (1.2), while the function h was given by a subdifferential of a convex func-
tion and involving the memory term.

The concept of asymptotically periodic solutions is introduced for fractional differ-
ential equations by C. Cuevas et al in [10, 11, 12, 13] when author studied some class
of fractional differential equations and fractional order functional integro-differential
equations. It should be mentioned that, the study of asymptotically periodic solutions
to fractional differential systems have attracted much attention from many authors
(see [32, 14, 19, 26, 27, 25, 34]) due to the fact that the mathematical modeling of a



ASYMPTOTICALLY PERIODIC SOLUTIONS FOR FRACTIONAL DVIS 461

variety of physical processes gives rise to asymptotically periodic solutions. Our moti-
vation for the present work is that, no attempt has been made to establish the results
on asymptotically periodic problems for the general model of fractional differential
variational inequality (1.1)-(1.3). Then, together with generalization the previous
model of fractional DVIs, the main contribution presented in this paper includes that
we establish sufficient conditions ensuring the existence of asymptotically periodic
solutions to fractional DVIs.

The structure of the paper is as follows. In Section 2 we provide the necessary
preliminary facts. Section 3 gives the existence results on a half-line. Section 4
accounts for the treatment of the existence of asymptotically periodic solutions to
considering differential variational inequalities. In the last Section 5, we give two
examples to show the applicability of our theoretical results.

2. Preliminaries

2.1. Measure of noncompactness. Let E be a Banach space. Denote

P(E) = {B ⊂ E : B 6= ∅},
B(E) = {B ∈ P(E) : B is bounded}.

The Hausdorff measure of noncompactness (MNC) χ(·) is defined as follows, for Ω ∈
B(E),

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.
Denote by L1(0, T ;E) the space of functions defined on [0, T ], taking values in E
and being integrable in the sense of Bochner. Let D ⊂ L1(0, T ;E) be such that, for
all f ∈ D, ‖f(t)‖ ≤ ν(t) for a.e. t ∈ [0, T ], where ν ∈ L1(0, T ;R) is a nonnegative
function, then we say that D is integrable bounded. We will frequently appeal to the
following fundamental result, which the proof is similar to [17, Theorem 4.2.1 and
Corollary 4.2.5].

Proposition 2.1. If {wn} ⊂ L1(0, T ;E) is integrable bounded, then we have

χ

({∫ t

0

wn(s)ds

})
≤ 2

∫ t

0

χ({wn(s)})ds,

for t ∈ [0, T ].

The following proposition can be used (see e.g. [6, 19]).

Proposition 2.2. Let D ⊂ L1(0, T ;E) be such that

(1) D is integrable bounded,
(2) χ(D(t)) ≤ q(t) for a.e. t ∈ [0, T ],

where q ∈ L1(0, T ;R). Then

χ

(∫ t

0

D(s)ds

)
≤ 4

∫ t

0

q(s)ds;

here

∫ t

0

D(s)ds =

{∫ t

0

ξ(s)ds : ξ ∈ D
}

.
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In the sequel, the concept of χ-norm of a bounded linear operator T (T ∈ L(E))
will be used:

‖T ‖χ = inf{β > 0 : χ(T (B)) ≤ βχ(B) for all bounded set B ⊂ E}. (2.1)

It is noted that the χ- norm of T can be formulated by

‖T ‖χ = χ(T (B1)),

where B1 is a unit ball in E. It is know that

‖T ‖χ ≤ ‖T ‖L(E),

where the last norm is understood as the operator norm in L(E). Obviously, T is a
compact operator iff ‖T ‖χ = 0.
We also employ a relation between the so-called k-condensing and k-Lipschitz prop-

erties of a nonlinear map. Let Ẽ be another Banach space and χ̃ the Hausdorff

MNC on Ẽ. A mapping Φ : E → Ẽ is said condensing with respect to a constant k
(k-condensing) if

χ̃(Φ(Ω)) ≤ kχ(Ω),∀Ω ∈ P(E).

It is well known in [1] that if Φ is a Lipschitz map with a constant k (k-Lipschitz),
that is,

‖Φ(x)− Φ(x̃)‖Ẽ ≤ k‖x− x̃‖E ,∀x, x̃ ∈ E,
then Φ is k-condensing.
Here is the definition of a condensing multimap with respect to the MNC χ.

Definition 2.1. Let D be a subset in E. An upper continuous multimap F : D →
P (X) is called to be condensing with respect to MNC χ (χ-condensing) iff for any
bounded set Ω ⊂ D, the relation χ(Ω) ≤ χ(F(Ω)) implies that Ω is relatively compact.

Theorem 2.3. [1, Corollary 3.3.1] Let M be a bounded convex closed subset of X
and let F :M→ Kv(M) be a closed and χ-condensing multimap. Then, Fix(F ) :=
{x ∈M : x ∈ F (x)} is nonempty.

Let BC(J ;E) be the space of bounded continuous functions on J taking values in
E. By the idea of this fixed point theorem, we consider the MNC in BC(J ;E) as
follows: Let B be a bounded set in BC(J ;E) and πT : BC(J ;E) → C([0, T ];E) is
the restriction of u ∈ BC(J ;E) to the interval [0, T ], define

d∞(B) = lim
T→∞

sup
u∈B

sup
t≥T
‖u(t)‖,

χ∞(B) = sup
T>0

χT (B),

where χT is Hausdorff MNC in C([0, T ];E). Put

χ∗(B) = d∞(B) + χ∞(B).

It is shown that χ∗ satisfies all properties stated in Definition 2.1. In addition, if
χ∗(B) = 0 then B is relatively compact in BC(J ;E) (see [4, 5]). Specially, if u ∈
C(R+;E) then d∞({u}) = 0 iff u ∈ BC(J ;E).
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2.2. Fractional calculus. Let L1(0, T ;E) be the space of integrable functions on
interval [0, T ], in the Bochner sense.

Definition 2.2. The fractional integral of order α > 0 of a function f ∈ L1(0, T ;E)
is defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Gamma function, provided the integral converges.

Definition 2.3. Let N ≥ 1 be an integer. For a function f ∈ CN ([0, T ];E), the
Caputo fractional derivative of order α ∈ (N − 1, N) is defined by

CDα
0 f(t) =

1

Γ(N − α)

∫ t

0

(t− s)N−α−1f (N)(s)ds.

For u ∈ CN ([0, T ];E), we have the following formulas

CDα
0 I

α
0 u(t) = u(t),

Iα0
CD

α

0u(t) = u(t)−
N−1∑
k=0

uk(0)

k!
tk.

We consider the problem

CD
α

0 y(t) = Ay(t) + f(t), t ∈ J, (2.2)

y(0) = ξ. (2.3)

where A is the generator of a C0-semigroup S(·) such that

‖S(t)‖ ≤M,∀t ≥ 0.

Then, based on [34, Lemma 3.1], we have

y(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, t ≥ 0,

where

Sα(t)x =

∫ ∞
0

φα(θ)S(tαθ)xdθ,

Pα(t)x = α

∫ ∞
0

θφα(θ)S(tαθ)xdθ,∀x ∈ E,

here φα being a probability density function defined on (0,∞) that has the following
expression

φα(θ) =
1

απ

∞∑
n=1

(−1)n−1θn−1 Γ(nα+ 1)

n!
sinnπα, θ ∈ (0,∞).

Due to [4] and [26], we have the below lemma, which reveals several important prop-
erties of {Sα(t), t ≥ 0} and {Pα(t), t ≥ 0}.

Lemma 2.4. The operators Sα(t) and Pα(t) have the following properties:
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(1) If sup
t≥0
‖S(t)‖L(E) ≤ M , then for any fixed t ≥ 0, Sα(t) and Pα(t) are linear

and bounded operators, i.e. for any x ∈ E,

‖Sα(t)x‖ ≤M‖x‖, ‖Pα(t)x‖ ≤ M

Γ(α)
‖x‖.

(2) {Sα(t), t ≥ 0} and {Pα(t), t ≥ 0} are strongly continuous.
(3) {Sα(t), t > 0} and {Pα(t), t > 0} are compact if {S(t), t > 0} is compact.
(4) If S(t) is exponentially stable, i.e. there exists a positive number δ such that

‖S(t)‖L(E) ≤Me−δt,

then

‖Sα(t)‖L(E) ≤
m

(1 + t)α
, ‖Pα(t)‖L(E) ≤

m

(1 + t)2α
, t > 0 (2.4)

for a constant m > 0 given by

m = M max

{
sup
t>0

Eα,1(−atα)(1 + t)α; sup
t>0

Eα,α(−atα)(1 + t)2α

}
, (2.5)

where Eα,β is the Mittag-Leffler function defined by

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
.

Now, let p >
1

α
, we define the Cauchy operator

Wα : Lp(0, T ;E)→ C([0, T ];E),

Wα(f)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds. (2.6)

By [18, Proposition 2.5], we have the estimates and properties imposed on Wα given
below.

Proposition 2.5. Suppose that A generates a norm-continuous C0-semigroup
{S(t)}t≥0 in E, i.e., the map (0,∞) 7→ S(t) ∈ L(E) is continuous. Then

(1) For each bounded set Ω ⊂ Lp(0, T ;E), Wα(Ω) is an equicontinuous set in
C([0, T ];E). Moreover, we have the following estimate

χC(Wα(Ω)) ≤ 4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χχ(Ω(s))ds,

where ‖ · ‖χ is the χ-norm given by (2.1), χT is Hausdorff MNC on
C([0, T ];E).

(2) If {fn} ⊂ Lp(0, T ;E), p > 1, is a semicompact sequence, then Wα(fn) is
relatively compact in C([0, T ];E). Moreover, if fn ⇀ f in Lp(0, T ;E), then
Wα(fn)→Wα(f∗) in C([0, T ];E).
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2.3. General variational inequalities. We consider the general variational in-
equality problem in a reflexive Banach space U with the dual U∗:

Let K be a nonempty convex closed subset of U , h : K × K → [−∞,∞] and
B : U → U∗. Find u ∈ K such that

〈Bu, v − u〉+ h(u, v) ≥ 0,∀v ∈ K. (2.7)

Assume that h and B satisfy the following standing assumptions:

(B) B is strongly monotone, i.e. there exists a constant mB > 0 such that

〈Bu−Bv, u− v〉 ≥ mB‖u− v‖2,
for all u, v ∈ U . Moreover, assume that B satisfies

lim inf
λ→0+

〈B(λu+ (1− λ)v), u− v〉 ≤ 〈B(v), v − u〉, ∀u, v ∈ K.

(H) h satisfies that:
(1) D1(h) = {u ∈ U : h(u, v) 6= −∞,∀v ∈ K} is nonempty.
(2) h(u, u) = 0 for all u ∈ K.
(3) u → h(u, v) is concave and weakly upper semicontinuous for all v ∈ K,

that is,

h(λu1 + (1− λ)u2, v) ≥ λh(u1, v) + (1− λ)h(u2, v),

for all u1, u2, v ∈ K,λ ∈ (0, 1). Moreover, if every u ∈ K and any
{un} ⊂ K such that un ⇀ u in K, we have

lim sup
n→∞

h(un, v) ≤ h(u, v).

(4) v → h(u, v) is convex for all v ∈ K, that is,

h(u, λv1 + (1− λ)v2) ≤ λh(u, v1) + (1− λ)h(u, v2),

for all u, v1, v2 ∈ K and for all λ ∈ (0, 1).
(5) h(u, v) + h(v, u) ≤ κh‖u− v‖2,∀u, v ∈ K.

Remark 2.1. (i) A special case of the condition (B) has been treated in [2, 6].
For instance, in these works, B is a linear continuous operator from U to U∗

defined by
〈u,Bv〉 = b(u, v),∀u, v ∈ U,

where b : U × U → R is a bilinear continuous function on U × U such that

b(u, u) ≥ ηB‖u‖2U ,∀u ∈ U.
(ii) If h(u, v) = φ(v)−φ(u) where φ : U → (−∞,∞] is a proper, convex and lower

semicontinuous function such that K := V ∩domφ 6= ∅, then D1(h) = Kφ and
h satisfies (H). In this case, we obtain an elliptic variational inequalities and
our abstract system (1.1)-(1.3) becomes the differential variational inequalities
of parabolic-elliptic type. Such classes of differential variational inequalities
have been studied in the recent papers [2, 6].

(iii) The condition (H)(1)-(H)(4) were considered in [24] when authors established
the sufficient conditions ensuring the convexity and closedness properties of
the solution set for variational inequality (2.7).
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Lemma 2.6. Let K be a nonempty, convex and closed subset of U . Assume that
(B) and (H) hold. Then the general variational inequality (2.7) has a unique solution
provided that mB > κh and there exist u0 ∈ U and r > 0 such that

〈Bv, v − u0〉 − h(v, u0) > 0 for all v ∈ U with ‖v‖U > r.

Proof. The existence of solutions to (2.7) is proved by a similar process to that in [24,
Lemma 3.2] via KKM principle argument. It remains to prove the uniqueness. Let
u1, u2 be two solutions to (2.7), then

〈Bu1, v − u1〉+ h(u1, v) ≥ 0,∀v ∈ K, (2.8)

〈Bu2, v − u2〉+ h(u2, v) ≥ 0,∀v ∈ K. (2.9)

Inserting v = u2 ∈ K in (2.8) and v = u1 in (2.9), then we sum the resulting
inequalities and combine with hypotheses (B) and (H5) to deduce

−(mB − κh)‖u1 − u2‖2U ≥ 0,

which yields u1 = u2. �

3. Initial value problem on a half-line

In this section, we study the existence of mild solution on R+ to (1.1)-(1.2) with
given initial condition (1.3). We introduce the hypotheses as follows:

(HA) A is a closed linear operator generating a norm-continuous C0-semigroup
{S(t)}t≥0 in X. Moreover, {S(t)}t≥0 is supposed to be exponentially stable,
namely,

‖S(t)‖L(X) ≤Me−δt, ∀t ≥ 0, for some δ > 0.

(HB) B : X × U → U∗ satisfies
(1) x 7→ B(x, u) is Lipschitz continuous for all u ∈ U , i.e.

‖B(x1, u)−B(x2, u)‖U∗ ≤ LB‖x1 − x2‖U ,

for all x1, x2 ∈ X and for all u ∈ U .
(2) u 7→ B(x, u) is strongly monotone for all x ∈ X, i.e. there exists a

constant mB > 0 so that

〈B(x, u1)−B(x, u2), u1 − u2〉 ≥ mB‖u1 − u2‖2U ,

for all x ∈ X and for all u1, u2 ∈ U . In addition, B(x, ·) satisfies

lim inf
λ→0+

〈B(x, λu+ (1− λ)v), u− v〉 ≤ 〈B(x, v), v − u〉, ∀u, v ∈ K.

(HF ) F : R+ ×X × U → P(X) has nonempty, convex, weakly compact and
(1) For each (x, y) ∈ X ×U , F (·, x, u) : R+ → P(X) is strongly measurable.
(2) For each t, F (t, ·, ·) : X × U → P(X) is upper semicontinuous.
(3) If S(t) is noncompact, there exist p(·), q(·) ∈ L1

loc(R+;R+) such that

χF (t, C,D) ≤ p(t)χ(C) + q(t)U(D),

here χ,U stand for the Hausdorff MNC in X and U , respectively.
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(4) There exist a(·), b(·), c(·) ∈ Lploc(R+;R+) such that

‖F (t, x, u)‖ := sup{‖ξ‖X : ξ ∈ F (t, x, u)} ≤ a(t)‖x‖X + b(t)‖u‖U + c(t),

for all t ≥ 0, x ∈ X and u ∈ U .
(Hh) h : X ×K ×K → (−∞,∞] satisfy

(1) For all x1, x2 ∈ X and u, v ∈ K, one has

h(x1, u, v) + h(x2, v, u) ≤ mh‖x1 − x2‖X‖u− v‖U + κh‖u− v‖2U ,

for some mh > 0.
(2) For each x ∈ X, h(x, ·, ·) : K ×K → (−∞,∞] satisties (H)(1)- (H)(4).

(Hg) g : R+ ×X × U → U∗ is Lipschitz continuous, namely,

‖g(t, x, u)− g(t, y, v)‖U∗ ≤ η1g‖x− y‖X + η2g‖u− v‖U ,

for all t ≥ 0, x, y ∈ X and u, v ∈ U .

Remark 3.1. (1) The condition (Hh)(1) ensures that (H)(5) holds.
(2) We can find functions h which satisfies (Hh). For a very simple example,

let X = U = R,K = [1, 2] and define h : X × K × K → (−∞;∞] by
h(x, u, v) := |x|(v − u) + (v2 − uv).

Let p >
1

α
be fixed. For x ∈ BC(J ;X) and u ∈ BC(J ;U), we denote

SelpF (x, u) := {f ∈ Lploc(R
+;X) : f(t) ∈ F (t, x(t), u(t)) for a.e. t > 0}.

Definition 3.1. A pair of continuous functions (x, u) in BC(J ;X)× BC(J ;U) is a
mild solution of (1.1)-(1.3) on J if there exists f ∈ SelpF (x, u) such that

x(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds

〈B(x(t), u(t))− g(t, x(t), u(t), v − u(t)〉+ h(x(t), u(t), v) ≥ 0, ∀v ∈ K,

for any t > 0.

Now, for each (x, z) ∈ X × U∗, consider the original form of (1.2)

〈B(x, u)− z, v − u〉+ h(x, u, v) ≥ 0, ∀v ∈ K. (3.1)

Lemma 3.1. Let (HB) and (Hh) hold. In addition, we suppose mB > κh. Then for
each (x, z) ∈ X × U∗, there exists a unique solution u ∈ K of (3.1). Moreover, the
solution mapping

VI : X × U∗ → K,

(x, z) 7→ u,

is Lipschitzian, more precisely,

‖VI(x1, z1)− VI(x2, z2)‖U ≤
LB +mh

mB − κh
‖x1 − x2‖X +

1

mB − κh
‖z1 − z2‖U∗ , (3.2)

for all x1, x2 ∈ X and z1, z2 ∈ U∗.
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Proof. By Lemma 2.6, for each (x, z) ∈ X ×U∗, there exists a unique solution u ∈ K
of (3.1). Let x1, x2 ∈ X, z1, z2 ∈ U∗ and VI(x1, z1) = u1,VI(x2, z2) = u2, one has

〈B(x1, u1)− z1, v − u1〉+ h(x1, u1, v) ≥ 0,∀v ∈ K, (3.3)

〈B(x2, u2)− z2, v − u2〉+ h(x2, u2, v) ≥ 0,∀v ∈ K, (3.4)

Take v = u2 ∈ K in (3.3) and v = u1 ∈ K in (3.4), then combining them, we have

〈B(x1, u1)−B(x2, u2), u2−u1〉+ 〈z1− z2, u1−u2〉+h(x1, u1, u2) +h(x2, u2, u1) ≥ 0.

Thanks to the condition (HB), the first term of left hand side could be estimated as
follows

〈B(x1, u1)−B(x2, u2), u2 − u1〉 = −〈B(x1, u1)−B(x2, u1), u1 − u2〉
− 〈B(x2, u1)−B(x2, u2), u1 − u2〉
≤ −mB‖u1 − u2‖2U + LB‖x1 − x2‖X‖u1 − u2‖U ,

and for the second term, one has the simple estimation that

〈z1 − z2, u1 − u2〉 ≤ ‖z1 − z2‖U∗‖u1 − u2‖U .

By (Hh), we obtain

h(x1, u1, u2) + h(x2, u2, u1) ≤ mh‖x1 − x2‖X‖u1 − u2‖U + κh‖u1 − u2‖2.

Therefore, we have

‖u1 − u2‖U ≤
LB +mh

mB − κh
‖x1 − x2‖X +

1

mB − κh
‖z1 − z2‖U∗ ,

to deduce the conclusion. �

In the sequel, we consider the following variational inequality

〈B(x, u)− g(τ, x, u), v − u〉+ h(x, u, v) ≥ 0, ∀v ∈ K, (3.5)

for given τ ∈ R+ and x ∈ X. We arrive at the characteristic property of the solution
set to (3.5).

Lemma 3.2. Let (HB), (Hg) and (Hh) hold. In addition, suppose that ηB > κh+η2h.
Then for each (τ, x) ∈ R+ × X, there exists a unique solution u ∈ U of (3.5).
Moreover, the solution mapping

VI : R+ ×X → U,

(τ, x) 7→ u,

is Lipschitzian, more precisely

‖VI(τ, x1)− VI(τ, x2)‖U ≤
LB +mh + η1g

mB − κh − η2g
‖x1 − x2‖X , (3.6)

for all τ ∈ R+ and x1, x2 ∈ X.



ASYMPTOTICALLY PERIODIC SOLUTIONS FOR FRACTIONAL DVIS 469

Proof. For each τ ∈ R+ and x ∈ X, one has

‖VI(x, g(τ, x, u1))− VI(x, g(τ, x, u2))‖U ≤
1

mB − κh
‖g(τ, x, u1)− g(τ, x, u2)‖U∗

≤ η2g

mB − κh
‖u1 − u2‖U ,

thanks to Lemma 3.5 and (Hg). Thus, if η2g < mB , then VI(x, g(τ, x, ·)) is a
contraction mapping. It is deduced that there exists a unique u ∈ U satisfying
VI(x, g(τ, x, u)) = u, which implies u = VI(τ, x).

Now, let u1 = VI(τ, x1) and u2 = VI(τ, x2), here τ ∈ R+, x1, x2 ∈ X are given.
Then by using Lemma 3.5 and (Hg) again, we obtain

‖u1 − u2‖U = ‖VI(x1, g(τ, x1, u1))− VI(x2, g(τ, x2, u2))‖U

≤ LB +mh

mB − κh
‖x1 − x2‖X +

1

mB − κh
‖g(τ, x1, u1)− g(τ, x2, u2)‖U∗

≤ LB +mh + η1g

mB − κh
‖x1 − x2‖X +

η2g

mB − κh
‖u1 − u2‖U

It is equivalent to

‖u1 − u2‖U ≤
LB +mh + η1g

mB − κh − η2g
‖x1 − x2‖X .

We obtain the conclusion of the lemma. �

Due to the above description, we convert (1.1)-(1.3) to the following system

CDα
t x(t)−Ax(t) ∈ F (t, x(t), u(t)), t ∈ J, (3.7)

u(t) = VI(t, x(t)), t ∈ J, (3.8)

x(0) = ξ. (3.9)

Denote

F : R+ ×X → P(X),

F(t, x) = F (t, x,VI(t, x)).

Then, one has the differential inclusion
CDα

t x(t)−Ax(t) ∈ F(t, x(t)), t ∈ J, (3.10)

x(0) = ξ. (3.11)

We define

SelpF : C(J ;X)→ P(Lploc(R
+;X)),

SelpF (x) := {f ∈ Lploc(R
+;X) : f(t) ∈ F(t, x(t)) for a.e. t > 0}.

It is easily seen that a pair (x, u) is a mild solution of (1.1)-(1.3) iff there exists
f ∈ SelpF (x) such that

x(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds

u(t) = VI(t, x(t)),
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for any t > 0.
We have the following estimates of χ(F(t,D)):

χ(F(t,D)) = χ(F (t,D,VI(t,D)))

≤ p(t)χ(D) + q(t)U(VI(t,D))

≤
[
p(t) +

q(t)(LB +mh + η1g)

mB − κh − η2g

]
χ(D) := p̃(t)χ(D). (3.12)

and we have the estimate

‖F(t, x)‖ = ‖F (t, x,VI(t, x))‖
≤ a(t)‖x‖X + b(t)‖VI(t, x)‖U + c(t)

≤ a(t)‖x‖X +
b(t)(LB +mh + η1g)

mB − κh − η2g
‖x‖X + ‖VI(t, 0)‖U + c(t)

≤ ã(t)‖x‖X + b̃(t), (3.13)

here

p̃(t) = p(t) +
q(t)(LB +mh + η1g)

mB − κh − η2g
,

ã(t) = a(t) +
b(t)(LB +mh + η1g)

mB − κh − η2g

and

b̃(t) = ‖VI(t, 0)‖U + c(t).

Then, one has the properties of SelpF due to [2, Lemma 4.1] as follows.

Lemma 3.3. Assume that (HB), (HF ), (Hg) and (Hh) hold. Then, SelpF is well-
defined and weakly u.s.c. with weakly compact and convex values. In particular, SelpF
is a weakly quasicompact multimap.

Denote the solution operator

Q : BC(J ;X)→ P(BC(J ;X)),

Q(x)(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, f ∈ SelpF (x).

The closedness of Q is shown by the following lemma.

Lemma 3.4. Assume that (HA), (HB), (HF ), (Hg) and (Hh) are satisfied. Then,
the solution operator Q is closed.

Proof. Let {yn} ⊂ BC(J ;X) be a sequence converging to y∗ and zn ∈ Q(yn) be such
that zn → z∗. By the definition of Q, one can take fn ∈ SelpF (yn) such that

zn(t) = Sα(t)ξ +Wα(fn)(t), t > 0, (3.14)

where Wα is defined in (2.6). By Lemma 3.3, fn ⇁ f∗ in Lploc(R+;X) with f∗ ∈
SelpF (y∗). We will show that

z∗(t) = Sα(t)ξ +Wα(f∗)(t), t > 0. (3.15)
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Let t > 0, take T > 0 such that t ≥ T and consider the sequence {fn|[0,T ]}. As argued
in the proof of Lemma 3.3, this sequence is semicompact by the growth property of
F . Then by Proposition 2.5, Wα(fn) → Wα(f∗) in C([0, T ];X) and in particular,
Wα(fn)(t) → Wα(f∗)(t) as n → ∞ in X. Then, one can pass to the limit in (3.14)
to get (3.15). The proof is complete. �

Lemma 3.5. Let the hypotheses of Lemma 3.4 hold. If

` := 4m sup
t∈J

∫ t

0

(t− s)α−1

(1 + t− s)2α

[
p(s) +

q(s)(LB +mh + η1g)

mB − κh − η2g

]
ds <∞,

then

χ∞(Q(D)) ≤ ` · χ∞(D),

for all bounded sets D ⊂ BC(J ;X), here m is given by (2.5).

Proof. Let D ⊂ BC(J ;X) be a bounded set. For y ∈ D, one has

Q(y)(t) = Sα(t)ξ +Wα ◦ SelpF (y)(t).

Setting Ω = SelpF (D)|[0,T ]. We observe that Ω is bounded in Lp(0, T ;X), so

πT (Wα ◦ SelpF (D)) =Wα(Ω)

obeys the following estimate

χ(Ω(s)) ≤ 4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χ · χ(Ω(s))ds, (3.16)

due to Proposition 2.5. Now deploying (3.12), one has

χ (Ω(s)) ≤ χ(F(s,D(s)))

≤ p̃(s)χ(πT (D(s)))

≤ p̃(s)χT (πT (D)).

Putting the last estimate in (3.16) and noting that

‖Pα(t− s)‖χ ≤ ‖Pα(t− s)‖L(X)

then using Lemma 2.4(4), we yield

χ∞(Q(D)) ≤ 4m sup
t∈J

∫ t

0

(t− s)α−1

(1 + t− s)2α
p̃(s)dsχ∞(D).

Therefore

χ∞(Q(D)) ≤ 4m sup
t∈J

∫ t

0

(t− s)α−1

(1 + t− s)2α

(
p(s) +

q(s)(LB +mh + η1g)

mB − κh − η2g

)
dsχ∞(D),

or equivalently

χ∞(Q(D)) ≤ `χ∞(D).

The proof is complete. �
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Lemma 3.6. Let the hypotheses of Lemma 3.5 hold. If

ζ1 := lim
t→∞

∫ t

0

(t− s)α−1

(1 + t− s)2α
(‖VI(s, 0)‖U + c(s))ds = 0; (3.17)

ζ2 := sup
t>0

∫ σt

0

1

(1 + t− s)2α

[
a(s) +

b(s)(LB +mh + η1g)

mB − κh − η2g

]
ds <∞; (3.18)

ζ3 := sup
t>0

∫ t

σt

m(t− s)α−1

(1 + t− s)2α

[
a(s) +

b(s)(LB +mh + η1g)

mB − κh − η2g

]
ds <∞. (3.19)

for some σ ∈ (0, 1), then

d∞(Q(D)) ≤ ζ3d∞(D),

for all bounded sets D ⊂ BC(J ;X).

Proof. Let D ⊂ BC(J ;X) be a bounded set. Then for each y ∈ D, there exists
f ∈ SelpF (y) such that

Q(y) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.

Let ε > 0 be any arbitrary small number. By Lemma 2.4, we have

lim
t→∞

‖Sα(t)ξ‖X = 0,

thus,

d∞(Q(D)) = d∞(Wα ◦ SelpF (D)).

Now, we are in a position to evaluate d∞(Wα◦SelpF (D)). Let z ∈ Wα◦SelpF (y), y ∈ D.
Taking f ∈ SelpF (y) such that

z(t) =Wαf(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.

We have

‖z(t)‖X ≤
∫ t

0

m(t− s)α−1

(1 + t− s)2α
‖f(s)‖Xds

≤
∫ t

0

m(t− s)α−1

(1 + t− s)2α
(ã(s)‖y(s)‖X + b̃(s))ds,

≤ m
∫ t

0

(t− s)α−1

(1 + t− s)2α
b̃(s)ds+m

(∫ σt

0

+

∫ t

σt

)
(t− s)α−1

(1 + t− s)2α
ã(s)‖y(s)‖Xds

:= I1(t) + I2(t) + I3(t).

thanks to (3.13). By using hypothesis (3.17), we have

lim
t→∞

I1(t) = 0. (3.20)

For I2(t), using the boundedness of D, take R > 0 such that

sup{‖y‖BC : y ∈ D} ≤ R.
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Then

I2(t) ≤ mR
∫ σt

0

(t− s)α−1

(1 + t− s)2α
ã(s)ds

≤ m R

[(1− σ)t]1−α

∫ σt

0

ã(s)

(1 + t− s)2α
ds

≤ m R

[(1− σ)t]1−α

∫ σt

0

1

(1 + t− s)2α

[
a(s) +

b(s)(LB +mh + η1g

mB − κh − η2g

]
ds

≤ mRζ2
[(1− σ)t]1−α

, (3.21)

here ζ2 is given in (3.18). On the other hand, we have

I3(t) ≤ m
(∫ t

σt

(t− s)α−1

(1 + t− s)2α
ã(s)ds

)
sup
r≥σt
‖y(r)‖X

≤ ζ3 sup
r≥σt
‖y(r)‖X , (3.22)

where ζ3 is given in (3.19). Combining (3.20), (3.21) and (3.22), we obtain

‖z(t)‖X ≤ I1(t) +
mRζ2

[(1− σ)t]1−α
+ ζ3 sup

r≥σt
‖y(r)‖X ,

for all t > 0, y ∈ D, z ∈ WαSel
p
F (y). The last inequality implies

d∞(Q(D)) ≤ ζ3d∞(D).

The proof is complete. �

Theorem 3.7. Let the hypotheses of Lemma 3.6 hold. Assume that

` < 1.

Then, problem (1.1)-(1.3) has at least one mild solution in C(J ;X) provided that

κ := sup
t>0

∫ t

0

m(t− s)α−1

(1 + t− s)2α

[
a(s) +

b(s)(LB +mh + η1g)

mB − κh − η2g

]
ds < 1. (3.23)

Proof. By Lemma 3.4, Q is closed. Moreover, Q is χ∗-condensing due to Lemma 3.5
and 3.6. Indeed, from (3.23) one has ζ3 < κ < 1, so

χ∗(Q(D)) ≤ `χ∞(D) + ζ3d∞(D) ≤ max{`;κ} · χ∗(D).

Therefore, if D is a bounded subset in BC(J ;X) and satisfies χ∗(Q(D)) ≥ χ∗(D),
then χ∗(D) ≤ max{`;κ} · χ∗(D) implies that χ∗(D) = 0. Thus, D is a relatively
compact. We get the χ∗-condensing property of Q as desired.

In addition, Q has compact values. In fact, for y ∈ BC(J ;X), we have

χ∗(Q(y)) ≤ ` · χ∗(y) = 0.

It follows that χ∗(Q(y)) = 0 and then Q(y) is a relatively compact. Thanks to the
closedness of Q, Q(y) is compact.

To apply Theorem 2.3, it suffices to show that there exists R > 0 such that

Q(BR) ⊂ BR,
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where BR is the closed ball in BC(J ;X), centered at origin with radius R.
Suppose that y ∈ BC(J ;X) and z ∈ Q(y). Then there exists f ∈ SelpF (y) such that

z(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.

By using the estimates (2.4) and (3.13), one has

‖z(t)‖X ≤
m‖ξ‖

(1 + t)α
+

∫ t

0

m(t− s)α−1

(1 + t− s)2α

[
a(s) +

b(s)(LB +mh + η1g)

mB − κh − η2g

]
ds‖y‖BC

≤M1 + κ‖y‖BC .

Therefore, if we choose

R >
M1

1− κ
,

then for any y ∈ BR, for any z ∈ Q(y), we have z ∈ BR. It is equivalent to that
Q(BR) ⊂ BR as desired. The proof is complete.

�

Remark 3.2. (1) We can remove the condition ` < 1 if the operator A generates
a compact semigroup S(t), t > 0.

(2) The solution x(·) obtained from Theorem 3.7 is a decay solution of (1.1)-(1.3)
due to d∞(x(·)) = 0. As a special case, this solution is also an asymptotically
periodic solution of problem (1.1)-(1.3), which can be discussed in thereafter.

4. Asymptotically periodic solutions

We begin this section by recalling a definition of asymptotically periodic functions.

Definition 4.1. [14, Definition 3.1] Let X be a Banach space. A function f ∈
BC(J ;X) is called S-asymptotically T -periodic if there exists T > 0 such that

lim
t→∞

(f(t+ T )− f(t)) = 0.

In this case, we say that T is an asymptotic period of f .

Let SAPT (X) represent the space formed by all the X-valued S-asymptotically
T -periodic functions endowed with the uniform convergence norm. Then SAPT (X)
is a Banach space (see [14, Proposition 3.5]).

From now on, we fix T > 0 as an asymptotic period of mild solutions. We suppose
that A, F and g satisfy the following assumptions:

(H∗A) A satisfies (HA) with S(t) is compact for every t > 0.
(H∗F ) F satisfies (HF )(1)-(3). The assumption (HF )(4) is replaced by the stronger

one. That is, ‖F (t, 0, 0)‖ ∈ Lploc(R+;R+) and there is a function ϑ(·) ∈
Lploc(R+;R+) such that for all t ∈ R+, y1, y2 ∈ X and v1, v2 ∈ U , the following
estimate holds

‖ξ1 − ξ2‖X ≤ ϑ(t)(‖y1‖X + ‖y2‖X + ‖v1‖U + ‖v2‖U + 1),

for all ξ1 ∈ F (t+ T, y1, v1) and ξ2 ∈ F (t, y2, v2).
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(H∗g) g satisfies (Hg) and 〈g(t, 0, 0), v〉 ≥ h(0, 0, v), for all v ∈ U and t ≥ 0. In
addition, g satisfies the estimate

‖g(t+ T, x1, u1)− g(t, x2, u2)‖U∗ ≤ κ1g‖x1 − x2‖X + κ2g‖u1 − u2‖U ,

for all t ≥ 0, x1, x2 ∈ X,u1, u2 ∈ U .

Remark 4.1. (1) Under assumption (H∗F), it follows (HF )(4) with

a(t) = b(t) = ϑ(t),

c(t) = ‖F (t+ T, 0, 0)‖+ ϑ(t).

(2) The assumption (H∗g) ensures that VI(t, 0) = 0,∀t ≥ 0.

Furthermore, we have some estimations given by the following lemma.

Lemma 4.1. Suppose that the assumptions (H∗A), (H∗F ), (H∗g), (HB) and (Hh) hold.
If mB − κh > max{η2g;κ2g}, then the following estimates are satisfied

‖VI(t+ T, x1)− VI(t, x2)‖U ≤
LB +mh + κ1g

mB − κh − κ2g
‖x1 − x2‖X , (4.1)

‖F(t+ T, x1)−F(t, x2)‖ ≤ γ(t)(‖x1‖X + ‖x2‖X) + ϑ(t), (4.2)

for all t ≥ 0, x1, x2 ∈ X, where

γ(t) = ϑ(t) +
ϑ(t)(LB +mh + η1g)

mB − κh − κ2g
.

Proof. Let x1, x2 ∈ X and u1 = VI(t + T, x1), u2 = VI(t, x2). Then it is easily seen
that u1 = VI(x1, g(t+ T, x1, u1)) and u2 = VI(x2, g(t, x2, u2)). One has

‖u1 − u2‖U = ‖VI(x1, g(t+ T, x1, u1))− VI(x2, g(t, x2, u2))‖U

≤ LB +mh

mB − κh
‖x1 − x2‖X

+
1

mB − κh
(‖g(t+ T, x1, u1)‖U∗ − g(t, x2, u2)‖U∗)

≤ LB +mh + κ1g

mB − κh
‖x1 − x2‖X +

κ2g

mB − κh
‖u1 − u2‖U ,

We yield

‖VI(t+ T, x1)− VI(t, x2)‖U ≤
LB +mh + κ1g

mB − κh − κ2g
‖x1 − x2‖X .

which leads to (4.1). For the second estimate, we have

‖F(t+ T, x1)−F(t, x2)‖ = ‖F (t+ T, x1,VI(t+ T, x1))− F (t, x2,VI(t, x2))‖
≤ ϑ(t)(‖x1‖X + ‖x2‖X + ‖VI(t+ T, x1)‖U + ‖VI(t, x2)‖U + 1)

≤ ϑ(t)

[
1 +

(LB +mh + η1g)

mB − κh − κ2g

]
(‖x1‖X + ‖x2‖X) + ϑ(t)

≤ γ(t)(‖x1‖X + ‖x2‖X) + ϑ(t),
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where

γ(t) = ϑ(t) +
ϑ(t)(LB +mh + η1g)

mB − κh − κ2g
.

The proof is complete. �

Lemma 4.2. Suppose that the conditions of Lemma 4.1 are satisfied. If (x, u) is a
mild solution to (1.1)-(1.3) and x ∈ SAPT (X), then u ∈ SAPT (U).

Proof. We obtain the assertion of lemma by using (4.1) and some straightforward
computations. �

Theorem 4.3. Assume that all the conditions in Lemma 4.1 are satisfied. Then
(1.1)-(1.3) has at least one S-asymptotically T -periodic solution (x, u) on [0,∞) pro-
vided that

lim
t→∞

∫ t

0

(t− s)α−1

(1 + t− s)2α
ϑ(s)ds = 0, (4.3)

µ := sup
t>0

∫ t

0

(t− s)α−1

(1 + t− s)2α
ϑ(s)ds <

mB − κh − η2g

m(mB + LB +mh + η1g)
. (4.4)

Proof. Let Q : SAPT (X)→ P(BC(J ;X)) be the operator defined by

Q(x)(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, f ∈ SelpF (x).

First, we prove that Q(SAPT (X)) ⊂ SAPT (X).
Indeed, if y ∈ SAPT (X) then for any ε > 0, there exists tε > 0 such that

supt≥tε ‖y(t+ T )− y(t)‖X ≤ ε. Then for t > tε, there is f ∈ SelpF (y) such that

Q(y)(t+ T )−Q(y)(t) = Sα(t+ T )ξ +

∫ t+T

0

(t+ T − s)α−1Pα(t+ T − s)f(s)ds

− Sα(t)ξ −
∫ t

0

(t− s)α−1Pα(t− s)f(s)ds

= Sα(t+ T )ξ − Sα(t)ξ +

∫ t

−T
(t− s)α−1Pα(t− s)f(s+ T )ds

−
∫ t

0

(t− s)α−1Pα(t− s)f(s)ds

≤ Sα(t+ T )ξ − Sα(t)ξ +

∫ 0

−T
(t− s)α−1Pα(t− s)f(s+ T )ds

+

∫ t

0

(t− s)α−1Pα(t− s)[f(s+ T )− f(s)]ds

:= I1(t) + I2(t) + I3(t). (4.5)

For the estimate of I1(t), we have

‖I1(t)‖X ≤ ‖Sα(t+ T )ξ‖X + ‖Sα(t)ξ‖X

≤ 2m‖ξ‖X
(1 + t)α

,
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thanks to (2.4). Then, lim
t→∞

‖I1(t)‖X = 0.

For the second term I2(t), we use the growth property of F . Indeed, one has

‖I2(t)‖X ≤
∫ 0

−T
(t− s)α−1‖Pα(t− s)f(s+ T )‖Xds

≤M
∫ 0

−T
(t− s)α−1 m

(1 + t− s)2α
ds ≤ mM((t+ T )α − tα)

α(1 + t)2α

≤ mMTα

α(1 + t)2α
,

then we yields that I2(t) tends to zero as t→∞, here

M := sup
t∈[0,T ],‖y‖X≤‖x‖BC

‖F(s, y)‖

For the last term of the right hand side of (4.5), we have

‖I3(t)‖X ≤
∫ t

0

(t− s)α−1‖Pα(t− s)‖‖f(s+ T )− f(s)‖Xds

≤
∫ t

0

m(t− s)α−1

(1 + t− s)2α
[γ(s)(‖x(s)‖X + ‖x(s+ T )‖X) + ϑ(s)]ds

≤ 2Mx

∫ t

0

m(t− s)α−1

(1 + t− s)2α
γ(s)ds+

∫ t

0

m(t− s)α−1

(1 + t− s)2α
ϑ(s)ds

≤
(

2Mx +
2Mx(LB +mh + η1g)

mB − κh − η2g
+ 1

)∫ t

0

m(t− s)α−1

(1 + t− s)2α
ϑ(s)ds

where Mx := supt>0 ‖x(t)‖. Then, according to (4.3), one has

lim
t→∞

‖I3(t)‖X = 0.

Now, we consider the solution multivalied map Q : SAPT (X) → P(SAPT (X)).
Using the same argument as in the proof of Theorem 3.7 together with the conditions
` < 1 and (4.4), we obtain that Q has the following properties:

(i) Q : SAPT (X)→ P(SAPT (X)) is closed.
(ii) Q : SAPT (X) → P(SAPT (X)) is compact due to the compactness of

S(t), Sα(t), Pα(t), t > 0.
(iii) There exists R > 0 such that Q(BR) ⊂ BR, where BR is the closed ball in

SAPT (X), centered at origin with radius R due to the estimation (4.4).

Then, by using the fixed point argument given in Theorem 2.3, there exists one S-
asymptotically T -periodic solution of the converting differential inclusion. By Lemma
4.2, there exists one S-asymptotically T -periodic solution of (1.1)-(1.3). The proof is
complete. �

As previous argument (Remark 2.1(2)), the obtained theoretical results are useful
to a class of differential variational inequalities of parabolic-elliptic type. In this case,
we choose h(x, u, v) := φ(v)− φ(u),∀x ∈ X,u, v ∈ U , here φ is a proper, convex and
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lower semicontinuous function. For instance, we take φ = IK , the indicator function
of K with K being a closed convex subset in U , namely,

IK(x) =

{
0 if x ∈ K,
+∞ otherwise,

then, the problem (1.1)-(1.2) reads as follows
CDα

t x(t) = Ax(t) + F (t, x(t), u(t)), t > 0, (4.6)

u(t) ∈ K,∀t ≥ 0, (4.7)

〈B(x(t), u(t)), v − u(t)〉 ≥ 〈g(t, x(t), u(t)), v − u(t)〉,∀v ∈ K, t > 0. (4.8)

Then, κh = mh = 0 and we immediately get the following result.

Corollary 4.4. Assume that the assumptions (H∗A), (H∗F ), (H∗g) and (HB) hold. In
addition, we suppose

mB > max{η2g;κ2g};

lim
t→∞

∫ t

0

(t− s)α−1

(1 + t− s)2α
ϑ(s)ds = 0;

sup
t>0

∫ t

0

(t− s)α−1

(1 + t− s)2α
ϑ(s)ds <

mB − η2g

m(mB + LB + η1g)
.

Then, (4.6)-(4.8) has at least one S-asymptotically T -periodic solution (x, u) on
[0,∞).

We end this section for a single-valued version case of our fractional differential
variational inequalities, namely, we consider (1.1)-(1.3) when F is a single-valued
function. For this situation, we intend to relax the compactness of S(t), t > 0 by
using the argument of Banach contraction mapping principle. We need the following
assumptions:

(F1) there are nonnegative functions ζX , ζU ∈ Lploc(R+;R+) such that

‖F (t, x, u)− F (t, y, v)‖X ≤ ζX(t)‖x− y‖X + ζU (t)‖u− v‖U ;

for all t ≥ 0, x, y ∈ X,u, v ∈ U ;
(F2) there are nonnegative functions θ ∈ Lploc(R+;R+) such that

‖F (t+ T, x, u)− F (t, x, u)‖X ≤ θ(t)(‖x‖X + ‖u‖U + 1);

for all t ≥ 0, x ∈ X,u ∈ U.
Theorem 4.5. Assume that (HA), (F1)-(F2), (H∗g), (HB) and (Hh) hold. If
mB − κh > max{η2g;κ2g} and

sup
t∈J

∫ t

0

(t− s)α−1

(1 + t− s)2α
‖F (s, 0, 0)‖ds < +∞; (4.9)

lim
t→∞

∫ t

0

(t− s)α−1

(1 + t− s)2α
θ(s)ds = 0; (4.10)

µ := m sup
t∈J

∫ t

0

(t− s)α−1

(1 + t− s)2α

[
ζX(s) + ζU (s)

LB +mh + η1g

mB − κh − η2g

]
ds < 1; (4.11)
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then (1.1)-(1.3) has a unique S-asymptotically T -periodic solution (x, u) on J .

Proof. We convert (1.1)-(1.3) to the following system

CDα
t x(t)−Ax(t) = F(t, x(t)), (4.12)

u(t) = VI(t, x(t)), (4.13)

x(0) = ξ, (4.14)

here, F(t, x) := F (t, x,VI(t, x)) satisfies

‖F(t, x)−F(t, y)‖X ≤ ζX(t)‖x− y‖X + ζU (t)‖VI(t, x)− VI(t, y)‖U

≤ ζX(t)‖x− y‖X + ζU (t)
LB +mh + η1g

mB − κh − η2g
‖x− y‖X

≤
[
ζX(t) + ζU (t)

LB +mh + η1g

mB − κh − η2g

]
‖x− y‖X

≤ ζ(t)‖x− y‖X ,

where

ζ(t) = ζX(t) + ζU (t)
LB +mh + η1g

mB − κh − η2g
.

From Lemma 4.1, we have

VI(t+ T, x) = VI(t, x).

Then, combining this with (F2), we obtain

‖F(t+ T, x)−F(t, x)‖X = ‖F (t+ T, x,VI(t+ T, x))− F (t, x,VI(t, x))‖X
≤ θ(t)(‖x‖X + ‖VI(t, x)‖U + 1)

≤ θ(t)
[
‖x‖X +

LB +mh + κ1g

mB − κh − κ2g
‖x‖X + 1

]
.

Now using the same argument used in [25, Theorem 4.1], we easily derive our assertion.
�

5. Application

Example 5.1. In this section, we consider fractional partial differential equations
with obstacle constraints. For a concrete example, let Ω ⊂ Rn be a bounded do-
main with C1-boundary, we consider the fractional partial differential equations with
obstacle constraints

CD
1
2
t Z(t, x)−∆xZ(t, x) = f(t, x, Z(t, x), u(t, x)), (5.1)

−∆xu(t, x) + β(u(t, x)− ψ(x)) 3 g(t, x, Z(t, x), u(t, x)), (5.2)

Z(t, x) = 0,∀x ∈ ∂Ω,∀t ≥ 0, (5.3)

Z(0, x) = Z0(x),∀x ∈ Ω. (5.4)
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where the maps f, h : Ω × R → R are continuous functions, ψ is in H2(Ω) and
β : R→ 2R is a maximal monotone graph

β(r) =


0 if r > 0,

R− if r = 0,

∅ if r < 0.

Note that, the elliptic variational inequality (5.2) reads as follows

−∆xu(t, x) = g(t, x, Z(t, x), u(t, x)) in {(t, x) ∈ Q := (0, T )× Ω : u(t, x) ≥ ψ(x)},
−∆xu(t, x) ≥ g(t, x, Z(t, x), u(t, x)), in Q,

u(t, x) ≥ ψ(x),∀(t, x) ∈ Q,
which represents a rigorous and efficient way to treat diffusion problems with a free
or moving boundary. This model is called the obstacle elliptic problem (see [8]). We
suppose that

(A1) there exist nonnegative functions a(t, ·), b(t, ·) ∈ L∞(Ω) for each t ≥ 0 such
that

|f(t, x, p, q)− f(t, x, p′, q′)| ≤ a(t, x)|p− p′|+ b(t, x)|q − q′|,
and moreover, we suppose f(t, x, p, q) = f(t+ T, x, p, q), for all t ≥ 0, x ∈ Ω,
p, q ∈ R.

(A2) the map g : R+ × Ω × R × R → R satisfies g(t, x, p, q) = g(t + T, x, p, q),
∀x ∈ Ω, t ≥ 0, p, q ∈ R and

|g(t, x, p, q)− g(t̄, x, p′, q′)| ≤ η(t, t̄) + c(x)|p− p′|+ d(x)|q − q′|,
for all x ∈ Ω, p, q ∈ R, where c(·), d(·) are the nonnegative functions in L∞(Ω)
and η(·, ·) : R+ × R+ → R+ is a nonnegative continuous function.

Let X = L2(Ω) and U = H1
0 (Ω). We define the abstract function

F : R+ ×X × U → P(X)

F (t, Z, u) = f(t, x, Z(x), u(x)),

and the operator

A = ∆ : D(A) ⊂ X → X;D(A) = H2(Ω) ∩H1
0 (Ω).

Then (5.1) can be reformulated as

Z ′(t)−AZ(t) = F (t, Z(t), u(t)),

where Z(t) ∈ X,u(t) ∈ Y such that Z(t)(x) = Z(t, x) and u(t)(x) = u(t, x). It is
known that ([33]), the semigroup S(t) generated by A is compact and exponentially
stable, that is,

‖S(t)‖L(X) ≤ e−λ1t,

then the assumption (HA) is satisfied.
By the setting of function F , it is easy to see that F is a continuous periodic

functions of time and

‖F (t, Z, u)− F (t, Z̄, ū)‖ ≤ ‖a(t, ·)‖∞‖Z − Z̄‖X +
‖b(t, ·)‖∞√

λ1

‖u− ū‖U .
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Thus, (F1)-(F2) hold. Furthermore,

θ(t) ≡ 0, ζX(t) = ‖a(t, ·)‖∞

and

ζU (t) =
‖b(t, ·)‖∞√

λ1

.

Consider the elliptic variational inequality (5.2), putting B(z, ·) = −∆,∀z ∈ X where
−∆ stands for the Laplace operator

〈u,−∆v〉 :=

∫
Ω

∇u(x)∇v(x)dx,

then 〈B(z, u), u〉 = ‖u‖2U . So, the assumption (HB) takes place with LB = 1.
As far as the nonlinear function g is concerned, we assume that the map g :

R+×Ω×R×R→ R satisfies g(t, x, p, q) = g(t+T, x, p, q),∀x ∈ Ω, t ≥ 0, p, q ∈ R and

|g(t, x, p, q)− g(t̄, x, p′, q′)| ≤ c(x)|p− p′|+ d(x)|q − q′|,∀x ∈ Ω, p, q ∈ R,

where c(·), d(·) are the nonnegative functions in L∞(Ω).
Let g : R+ ×X × Y → L2(Ω), g(t, Z̄, ū)(x) = g(t, x, Z̄(x), ū(x)), we obtain

|g(t, Z, u)− g(t̄, Z̄, ū)| ≤ ‖c‖∞‖Z − Z̄‖X +
‖d‖∞√
λ1

‖u− ū‖U .

Then the EVI (5.2) reads as

Bu(t) + ∂IK(u(t)) 3 h(t, Z(t), u(t)),

where

K = {u ∈ H1
0 (Ω) : u(y) ≥ ψ(x), for a.e. x ∈ Ω},

∂IK(u) =
{
u ∈ H1

0 (Ω) :

∫
Ω

u(x)(v(x)− z(x))dx ≥ 0,∀z ∈ K
}
,

= {u ∈ H1
0 (Ω) : u(x) ∈ β(v(x)− ψ(x)), for a.e. x ∈ Ω}.

It follows that the conditions of Corollary 4.4 are satisfied. We have the following
result.

Theorem 5.1. If ‖d‖2∞ < λ1 and

sup
t>0

∫ t

0

‖a(s, ·)‖∞ + ‖b(s, ·)‖∞√
t− s(1 + t− s)

ds

is small enough, then the problem (5.1)-(5.2) has a mild S-asymptotically T -periodic
solution (Z,u).

Example 5.2. Let Ω be a bounded domain with C1-boundary in Rn, n ≥ 2 and
let K be a nonempty closed convex subset of H1

0 (Ω). We study a fractional partial
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differential equation mixed a variational inequality:

CD
1
2
t Z(t, x)−∆xZ(t, x) = f(t, x, Z(t, x)) + B(t, u(t, x)), (5.5)∫

Ω

∇u(t, ξ)(∇v(ξ)−∇u(t, ξ))dξ +

∫
Ω

Z(t, ξ)(v(ξ)− u(t, ξ))dξ

+ ν

∫
Ω

(v2(ξ)− u(t, ξ)v(ξ))dξ ≥ 0,∀v ∈ K, (5.6)

Z(t, x) = 0,∀x ∈ ∂Ω,∀t ≥ 0, (5.7)

Z(0, x) = Z0(x). (5.8)

Then, we can transfer (5.5)-(5.8) to our abstract problem by the following setting:

(1) X = L2(Ω), U = H1
0 (Ω);

(2) A = ∆x, F (t, Z, u)(x) = f(t, x, Z(x)) + B(t, u(x));
(3) B(Z, u) = ∆xu;
(4) h(Z, u, v) = ν

∫
Ω

(v2(ξ)− u(ξ)v(ξ))dξ;
(5) g(t, Z, u) = Z.

The assumptions imposed on f,B are given by

(Hf ) there are nonnegative functions ν1f (·) and ν2f (·) satisfying

|f(t, x, p)− f(t, x, q)| ≤ ν1f (t)|p− q|,∀t ≥ 0, x ∈ Ω, p, q ∈ R;

|f(t+ T, x, p)− f(t, x, p)| ≤ ν2f (t)(1 + |p|),∀t ≥ 0, x ∈ Ω, p ∈ R,

(HB) there are nonnegative functions ν1B(·) and ν2B(·) satisfying

|B(t, p)− B(t, q)| ≤ ν1B(t)|p− q|,∀t ≥ 0, p, q ∈ R;

|B(t+ T, p)− B(t, p)| ≤ ν2B(t)(1 + |p|),∀t ≥ 0, p ∈ R,

By some concrete calculations, we obtain the coefficients of abstract given functions
in Theorem 4.5.

(i) ζX(t) = ν1f (t);
ζU (t) = ν1B(t);
θ(t) = max{ν2f (t)|Ω|; ν2B(t)|Ω|; ν2f (t); ν2B(t)};

(ii) mB = 1; LB = 0;
κh = ν; mh = 0;
η1g = 1; η2g = 0; κ1g = κ2g = 0.

Theorem 5.2. Assume that (Hf ) and (HB) are satisfied. Then Problem (5.5)-(5.8)
has a S-asymptotically T -periodic provided that ν < 1 and

lim
t→∞

∫ t

0

ν2f (s) + ν2B(s)√
t− s(1 + t− s)

ds = 0,

m sup
t>0

∫ t

0

1√
t− s(1 + t− s)

[
ν1f (s) +

ν1B(s)

1− ν

]
ds < 1.



ASYMPTOTICALLY PERIODIC SOLUTIONS FOR FRACTIONAL DVIS 483

In case of multivalued version, we replace (5.5) with a partial differential inclusion
as follows

∂Z

∂t
(t, x)−∆xZ(t, x) = f(t, x) + B(t, u(t, x)), (5.9)

f(t, x) = λf1(t, x, Z(t, x)) + (1− λ)f2(t, x, Z(t, x)),

λ ∈ [0, 1], t > 0, x ∈ Ω, (5.10)

where f1, f2 : R+ × Ω × R → R are T -periodic continuous functions with respect to
their first variables. Define the multivalued function:

F : R+ ×X × U → P(X),

F (t, Z̄, ū)(x) = {λf1(t, x, Z̄(x)) + (1− λ)f2(t, x, Z̄(x))}+ B(t, ū(x)).

It is easily seen that F is a multimap with closed convex, compact values. Suppose
that there exist nonnegative T -periodic-in-time functions a1(t, ·), a2(t, ·) ∈ L∞(Ω) for
each t > 0 such that

|f1(t, x, p)| ≤ a1(t, x)|p|+ a1(t, x), ∀t ≥ 0, x ∈ Ω, p, q ∈ R,

|f2(t, x, p)| ≤ a2(t, x)|p|+ a2(t, x) ∀t ≥ 0, x ∈ Ω, p, q ∈ R.

Then for ξ1 ∈ F (t, Z̄1, ū1) and ξ2 ∈ F (t+ T, Z̄2, ū2), one has

‖ξ1 − ξ2‖X ≤ max{‖a1(t, ·)‖∞, ‖a2(t, ·)‖∞}(‖Z̄1‖X + ‖Z̄2‖X)

+ ν2B(t)(2 + ‖ū1‖U + ‖ū2‖U )

+ 2 max{‖a1(t, ·)‖X , ‖a2(t, ·)‖X}.

Because f1 and f2 are continuous, the fact that F has a closed graph can be testified
by a simple argument. Furthermore, if {Z̄n} ⊂ X, {ūn} ⊂ Y are convergent sequences,
then one can find a sequence {fn}, fn ∈ F (·, Z̄n, ūn) that is convergent in X by using
the Lebesgue dominated convergence theorem. So F is quasi-compact. We now recall
the following lemma to assure the u.s.c. property of F .

Lemma 5.3. [17, Theorem 1.1.12] Let G : Y → P(E) a closed quasi-compact mul-
timap with compact values. Then G is u.s.c.

Then by Lemma 5.3, F is a u.s.c. multimap. The condition (H∗F ) is testified.
Applying Theorem 4.3, we arrive at the last result related to the existence of

periodic solutions of (5.9)-(5.10) mixed the variational inequality (5.6).

Theorem 5.4. Assume that (HB) are satisfied. Then Problem (5.6)-(5.9)-(5.10) has
a S-asymptotically T -periodic provided that ν < 1 and

lim
t→∞

∫ t

0

‖a1(s, ·)‖∞ + ‖a2(s, ·)‖∞ + ν2B(s)√
t− s(1 + t− s)

ds = 0,

m sup
t>0

∫ t

0

1√
t− s(1 + t− s)

[
max{‖a1(s, ·)‖∞ + ‖a2(s, ·)‖∞}+

ν1B(s)

1− ν

]
ds < 1.
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