SOLUTION TO SECOND ORDER DIFFERENTIAL EQUATIONS VIA F_w-CONTRACTIONS

SURAJIT KARMAKAR*, HIRANMOY GARAI**, LAKSHMI KANTA DEY*** AND ANKUSH CHANDA****

*Department of Mathematics, National Institute of Technology Durgapur, India
E-mail: surajit866@gmail.com

**Department of Mathematics, National Institute of Technology Durgapur, India
E-mail: hiran.garai24@gmail.com

***Department of Mathematics, National Institute of Technology Durgapur, India
E-mail: lakshmikdey@yahoo.co.in

****Department of Mathematics, National Institute of Technology Durgapur, India
E-mail: ankushchanda8@gmail.com

Abstract. In this article, we introduce the notions of F-contractions and Hardy-Rogers type F-contractions via w-distances in the backdrop of an orthogonal metric space. After this, we prove some fixed point results concerning the said kind of contractions by taking a weaker version of completeness of the underlying space instead of completeness. Further, we employ the results to obtain some existence and uniqueness criteria of the solution(s) to a certain type of second order initial value and boundary value problems. Along with these, we illustrate some numerical examples to interpret our achieved fixed point results.

Key Words and Phrases: F-contractions, w-distances, orthogonal metric spaces, second order differential equations.

2020 Mathematics Subject Classification: 47H10, 54H25, 34A12, 34B15.

Acknowledgement. The authors would like to thank the anonymous referees for their careful reading of the manuscript and many useful comments which have undoubtedly improved the previous versions of the article. The second named author would like to express his hearty gratitude to CSIR, New Delhi, India for the financial assistance under CSIR-SRF fellowship scheme (Award no. 09/973(0018)/2017-EMR-I).

References

Received: April 18, 2019; Accepted: May 16, 2020.