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1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let Ck,
k = 1, 2, . . . , N be nonempty, closed and convex subset of H such that ∩Nk=1Ck 6= ∅.
Let fk : Ck → H be a continuous mapping on Ck. Let us consider the following
common solutions to variational inequality problems (CSVIP) introduced in [11]: Find
x∗ ∈ ∩Nk=1Ck such that

〈fk(x∗), x− x∗〉 ≥ 0, ∀x ∈ Ck. (1.1)

If N = 1 then CSVIP (1.1) reduces to the classical variational inequality problem (for
short, VI(f, C)): find x ∈ C such that

〈f(x), y − x〉 ≥ 0, ∀y ∈ C. (1.2)

Denote by SOL(fk, Ck) the solution set of the Variational Inequality Problem
VI(fk, Ck) corresponding to the mapping fk and the set Ck and

SOL = ∩Nk=1SOL(fk, Ck),

the common solution set.
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Variational inequality theory is an important tool in studying a wide class of obstacle,
unilateral, and equilibrium problems arising in several branches of pure and applied
sciences in a unified and general framework (see, for example, [3, 4, 15, 21, 22]). This
dynamic field is experiencing an explosive growth in both theory and applications.
Several numerical methods have been developed for solving variational inequalities
and related optimization problems, see the monographs [14, 22] and references therein.
The extragradient method, introduced in 1976 by Korpelevich [23], which is given by


x1 ∈ C,
yn = PC(xn − γf(xn))

xn+1 = PC(xn − γf(yn)), n ≥ 1,

(1.3)

where γ ∈ (0, 1
L ) for a finite-dimensional space, provides an iterative process converg-

ing to a solution of VI(f, C) by only assuming that C ⊆ Rn is nonempty, closed, and
convex, and f : C → Rn is monotone and L-Lipschitz continuous. The extragradient
method was further extended to infinite-dimensional spaces by many authors; see, for
instance, [2, 7, 9, 16, 19, 20, 24, 25, 26, 27, 28]. In the setting of Hilbert spaces, this
method is only known to be weakly convergent. Note that the extragradient method
needs two projections onto the set C and two evaluations of f per iteration.
A crucial feature regarding the design of numerical methods related to the extragra-
dient method is to minimize the number of evaluations of PC per iteration. So the
extragradient method needs to be improved in situations, where a projection onto C is
hard to evaluate and therefore computationally expensive. An attempt in this direc-
tion was initiated by Censor et al. [10], who modified Korpelevich’s method (1.3) by
replacing the second projection onto the closed and convex subset C with the one onto
a subgradient half-space. Their method, which therefore uses only one projection onto
C, is called the subgradient extragradient method. This subgradient extragradient
method is shown to be weakly convergent to a solution of the variational inequality
VI(f, C).
Recently, Dong et al. [12] introduced an algorithm for solving variational inequality
problem VI(f, C) (1.2) by incorporating inertial terms in the extragradient algorithm.
They established a weak convergence result using their proposed algorithm and gave
some numerical advantage of their method. Quite recently, Dong et al. [13] introduced
a modified inertial Mann algorithm by combining the accelerated Mann algorithm
with the inertial extrapolation and obtained weak convergence result. They presented
some numerical experiments to show that the modified inertial Mann algorithm has
some numerical advantages by speeding up the convergence of the given algorithms.
Motivated by the works of Dong et al. [12], Dong et al. [13], Censor et al.[10] and
Censor et al. [11], we propose a modified inertial subgradient extragradient algorithm
and modified inertial extragradient algorithm for solving CSVIP (1.1) and give weak
convergence results of the sequence of iterates generated by our methods. Further-
more, we give several numerical examples to illustrate our methods and compare our
proposed methods with the already obtained methods for solving variational inequal-
ity problem in the literature.
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2. Preliminaries

This section contains some definitions and basic results that will be used in our
subsequent analysis. The letter H always denotes a real Hilbert space.
We first state the formal definition of some classes of functions that play an essential
role in our analysis.
Definition 2.1. Let X ⊆ H be a nonempty subset. Then a mapping A : X → H is
called

(a) monotone on X if 〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ X;
(b) Lipschitz continuous on X if there exists a constant L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖ for all x, y ∈ X.
We next recall some properties of the projection, cf. [5] for more details. To this end,
let C ⊆ H be a nonempty, closed, and convex subset of H. For any point u ∈ H,
there exists a unique point PCu ∈ C such that

‖u− PCu‖ ≤ ‖u− y‖∀y ∈ C.
PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2∀x, y ∈ H. (2.1)

Furthermore, PCx is characterized by the properties

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0∀y ∈ C. (2.2)

This characterization implies that

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2∀x ∈ H,∀y ∈ C. (2.3)

The following elementary lemma will be used in our convergence analysis.
Lemma 2.2. In H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,∀x, y ∈ H.
Lemma 2.3. The following identities hold in H:

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2,∀x, y ∈ H;
(ii) ‖λx+(1−λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2 ∀x, y ∈ H, λ ∈ R.

Lemma 2.4. (see [1, Lem. 3]) Let {ψn}, {δn} and {αn} be sequences in [0,+∞) such

that ψn+1 ≤ ψn + αn(ψn − ψn−1) + δn for all n ≥ 1,

∞∑
n=1

δ < +∞ and there exists a

real number α with 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the following hold:

(i)
∑
n≥1

[ψn − ψn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ψ∗ ∈ [0,+∞) such that lim
n→+∞

ψn = ψ∗.

Lemma 2.5. (see [5, Lem. 2.39]) Let C be a nonempty set ofH and {xn} be a
sequence in H such that the following two conditions hold:

(i) for any x ∈ C, lim
n→∞

‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.
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We finally restate a result which essentially states the equivalence between a primal
and a dual variational inequality for continuous, monotone operators.
Lemma 2.6. ([6, Lem. 7.1.7]) Let C be a nonempty, closed, and convex subset of H.
Let f : C → H be a continuous, monotone mapping and z ∈ C. Then

z ∈ SOL(f, C)⇐⇒ 〈f(x), x− z〉 ≥ 0 ∀x ∈ C.

3. Modified inertial subgradient extragradient method

In this section, we give a precise statement of our modified inertial subgradient
extragradient method and discuss some of its elementary properties. Its convergence
analysis is postponed to the next section. We first state the assumptions that we will
assume to hold through the rest of this paper.
Assumptions 3.1.

(a) The set Ck, k = 1, 2, . . . , N is a nonempty, closed, and convex subset of the
real Hilbert space H and the set ∩Nk=1Ck is assumed to be a nonempty subset
of H.

(b) The operator fk : Ck → H, k = 1, 2, . . . , N is monotone and Lk-Lipschitz
continuous on H.

(c) The common solutions set SOL of CSVIP (1.1) is nonempty.

Assumption (a) implies that projections onto Ck are well-defined. Condition (b) is
slightly stronger than continuity of fk; the same (or very similar) condition is also
used, e.g., in [9, 11, 17, 18]. Note that this assumption can be weakened to continuous
operators in finite-dimensional Hilbert spaces H = Rn. This Condition (b) also holds
for the large class of bounded linear operators A on a general Hilbert space H.
Since our method depends on the choice of some sequences of parameters, we next
summarize the conditions regarding these sequences in the assumption below.
Assumptions 3.2. Suppose the real sequences {αn}, {βn} and {γn} satisfy the
following conditions:

(a) {αn} ⊂ [0, α] is nondecreasing with α1 = 0 and 0 ≤ α < 1.

(b)

∞∑
n=1

βn <∞.

(c) δ >
α2(1 + α) + ασ

1− α2
and 0 < 1 − µγ ≤ 1 − µγn ≤

δ − α[α(1 + α) + αδ + σ]

δ[1 + α(1 + α) + αδ + σ]
,

where γ, σ, δ, µ > 0.

These conditions are satisfied, e.g., for αn = α
n

n+ 1
, 0 ≤ α < 1, βn =

1

(n+ 1)2
, and

γn = γ − 1

µ

[n(θ − (1− µγ))

n+ 1

]
, for all n ∈ N where θ :=

δ − α[α(1 + α) + αδ + σ]

δ[1 + α(1 + α) + αδ + σ]
.

Throughout this paper, {δkn}∞n=0 is a sequence in (0,1] such that δkn ≥ ε > 0 and
N∑
k=1

δkn = 1,∀n ∈ N. Take, for example, δkn :=
1

N
for all k.

We next give a precise statement of our first modified inertial subgradient extragra-
dient method for solving CSVIP (1.1).
Algorithm 3.3.
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• Initialization. Define L := max
1≤k≤N

Lk and choose {τn} ⊂ [c, d] for some

c, d ∈ (0, 1
L ). Choose µ ∈ (0, 1], λ > 0 and x0, x1 ∈ H arbitrarily. For each

k = 1, 2, . . . , N , define uk0 := PCk
(x0 − τ0fk(x0)) and set

T k0 := {w ∈ H : 〈x0 − τ0fk(x0)− uk0 , w − uk0〉 ≤ 0}.

Compute zk0 := PTk
0

(x0 − τ0fk(uk0)) and z0 =

N∑
k=1

δk0z
k
0 . Compute

d1 =
(z0 − x0)

λ
.

Choose sequences {αn}, {βn} and {γn} such that the conditions from Assump-
tion 3.2 hold. Set n := 1
• Step 1. Compute:

wn : = xn + αn(xn − xn−1),

ukn : = PCk
(wn − τnfk(wn)),∀k = 1, 2, . . . , N.

• Step 2. Compute

zkn : = PTk
n

(wn − τnfk(ukn)),∀k = 1, 2, . . . , N,

zn : =

N∑
k=1

δknz
k
n,

where T kn = {w ∈ H : 〈wn − τnfk(wn)− ukn, w − ukn〉 ≤ 0}.
• Step 3. Compute

dn+1 : =
1

λ
(zn − wn) + βndn,

yn : = wn + λdn+1,

xn+1 : = µγnwn + (1− µγn)yn. (3.1)

• Step 4. Set n← n+ 1 and goto Step 1.

We further make the following assumptions on the the sequences {wn} and {zn}
generated in Algorithm 3.3.
Assumptions 3.4. Suppose the sequences {wn} and {zn} satisfy the following con-
ditions:

(d) {zn − wn} is bounded.
(e) {zn − y} is bounded for any y ∈ SOL.

4. Convergence analysis

Here we show that Algorithm 3.3 generates a sequence {xn} which converges weakly
to a solution of the underlying common solution to variational inequality under As-
sumption 3.1, 3.2 and 3.4.
Theorem 4.1. Suppose that Assumption 3.1, 3.2 and 3.4 hold in H and y ∈ SOL.
Let {xn} be generated by Algorithm 3.3. Then the following results hold:

(i) {dn} is bounded;
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(ii)
∑
‖xn+1 − xn‖2 <∞ and

(iii) the sequence {xn} converges weakly to a point y ∈ SOL.

Proof. Let x∗ ∈ SOL. It follows from Assumption 3.2 (b) that βn → 0, n → ∞ and
so there exists n0 ∈ N such that βn ≤ 1

2 ,∀n ≥ n0. Let

M1 := max
{

max
1≤k≤n0

‖dk‖,
λ

2
sup
n∈N
‖zn − wn‖

}
.

Then Assumption 3.4 (d) implies that M1 < ∞. Suppose that ‖dn‖ ≤ M1 for some
n ≥ n0. Then by triangle inequality, we get

‖dn+1‖ = ‖ 1

λ
(zn − wn) + βndn‖ ≤

1

λ
‖zn − wn‖+ βn‖dn‖ ≤M1. (4.1)

This implies that ‖dn+1‖ ≤M1. Therefore, {dn} is bounded and (i) is obtained.
From (3.1), we have

xn+1 = µγnwn + (1− µγn)yn

= µγnwn + (1− µγn)(wn + λdn+1)

= µγnwn + (1− µγn)(wn + zn − wn + λβndn)

= µγnwn + (1− µγn)(zn + λβndn)

= wn + (1− µγn)(zn − wn + λβndn). (4.2)

Let vkn = wn − τnfk(ukn). Then zkn = PTk
n

(vkn) and by Lemma 2.3 (i), we get

‖zkn − x∗‖2 = ‖PTk
n

(vkn)− x∗‖2

= 〈PTk
n

(vkn)− vkn + vkn − x∗, PTk
n

(vkn)− vkn + vkn − x∗〉
= ‖vkn − x∗‖2 + ‖vkn − PTk

n
(vn)‖2 + 2〈PTk

n
(vkn)− vkn, vkn − x∗〉.(4.3)

Since x∗ ∈ SOL ⊆ Ck ⊆ T kn , and by the characterization of the metric projection
(2.2), we derive

2‖vkn − PTk
n

(vkn)‖2 + 2〈PTk
n

(vkn)− vkn, vkn − x∗〉
= 2〈vkn − PTk

n
(vkn), x∗ − PTk

n
(vkn)〉 ≤ 0. (4.4)

Thus,

‖vkn − PTk
n

(vkn)‖2 + 2〈PTk
n

(vkn)− vkn, vkn − x∗〉 ≤ −‖vkn − PTk
n

(vkn)‖2. (4.5)

Using (2.3) in Algorithm 3.3 and by Lemma 2.3 (i), we obtain

‖zkn − x∗‖2 ≤ ‖vkn − x∗‖2 − ‖vkn − PTk
n

(vkn)‖2

= ‖wn − τnfk(ukn)− x∗‖2 − ‖wn − τnfk(ukn)− zkn‖2

= ‖wn − x∗‖2 − ‖wn − zkn‖2 + 2τn〈x∗ − zkn, fk(ukn)〉. (4.6)
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The monotonicity of fk and the fact that x∗ ∈ SOL imply that

0 ≤ 〈fk(ukn)− fk(x∗), ukn − x∗〉 = 〈fk(ukn), ukn − x∗〉
−〈fk(x∗), ukn − x∗〉

≤ 〈fk(ukn), ukn − x∗〉 = 〈fk(ukn), ukn − zkn〉
+〈fk(ukn), zkn − x∗〉

thus,

〈x∗ − zkn, fk(ukn)〉 ≤ 〈fk(ukn), ukn − zkn〉. (4.7)

Using (4.7) in (4.6), we get

‖zkn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − zkn‖2 + 2τn〈ukn − zkn, fk(ukn)〉
= ‖wn − x∗‖2 + 2τn〈ukn − zkn, fk(ukn)〉
−2〈wn − ukn, ukn − zkn〉 − ‖wn − ukn‖2 − ‖ukn − zkn‖2

= ‖wn − x∗‖2 − ‖wn − ukn‖2 − ‖ukn − zkn‖2

+2〈zkn − ukn, wn − τnfk(ukn)− ukn〉. (4.8)

Observe that from the definition of T kn , we have

〈wn − τnfk(ukn)− ukn, zkn − ukn〉 = 〈wn − τnfk(wn)− ukn, zkn − ukn〉
+τn〈fk(wn)− fk(ukn), zkn − ukn〉

≤ τn〈fk(wn)− fk(ukn), zkn − ukn〉.

Using the last inequality in (4.8), we get

‖zkn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − ukn‖2 − ‖ukn − zkn‖2

+ 2τn〈zkn − ukn, fk(wn)− fk(ukn)〉

≤ ‖wn − x∗‖2 + 2τn‖fk(wn)− fk(ukn)‖‖zkn − ukn‖

− ‖wn − ukn‖2 − ‖ukn − zkn‖2

≤ ‖wn − x∗‖2 + 2τnL‖wn − ukn‖‖zkn − ukn‖

− ‖wn − ukn‖2 − ‖ukn − zkn‖2

≤ ‖wn − x∗‖2 + τnL(‖wn − ukn‖2 + ‖zkn − ukn‖2)

− ‖wn − ukn‖2 − ‖ukn − zkn‖2

≤ ‖wn − x∗‖2 − (1− τnL)‖wn − ukn‖2 − (1− τnL)‖zkn − ukn‖2. (4.9)
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By (4.9) we get

‖zn − x∗‖2 =
∥∥∥ N∑
k=1

δknz
k
n − x∗

∥∥∥2 =
∥∥∥ N∑
k=1

δkn(zkn − x∗)
∥∥∥2

≤
N∑
k=1

δkn‖zkn − x∗‖2

≤
N∑
k=1

δkn

[
‖wn − x∗‖2 − (1− τnL)‖wn − ukn‖2

−(1− τnL)‖ukn − zkn‖2
]

= ‖wn − x∗‖2 − (1− τnL)

N∑
k=1

δkn‖wn − ukn‖2

−(1− τnL)

N∑
k=1

δkn‖ukn − zkn‖2. (4.10)

Now, we have from (3.1), Lemma 2.3 and (4.10) that

‖xn+1 − x∗‖2 = µγn‖wn − x∗‖2 + (1− µγn)‖zn − x∗ + λβndn‖2

− µγn(1− µγn)‖zn − wn + λβndn‖2

= µγn‖wn − x∗‖2 + (1− µγn)(‖zn − x∗‖2 + 2λβn〈zn − x∗, dn〉
+ λ2β2

n‖dn‖2)− µγn(1− µγn)‖zn − wn + λβndn‖2

≤ ‖wn − x∗‖2 + (1− µγn)
{

2λβn〈zn − x∗, dn〉+ λ2β2
n‖dn‖2

}
− µγn(1− µγn)‖zn − wn + λβndn‖2

= ‖wn − x∗‖2 − µγn(1− µγn)‖zn − wn + λβndn‖2 + βnϕn, (4.11)

where

ϕn = (1− µγn)(2λβn〈zn − x∗, dn〉+ λ2βn‖dn‖2). (4.12)

Using Assumption 3.4, it follows that {ϕn} is bounded. Thus, there exists M2 > 0
such that ϕn ≤M2 for all n ≥ 1. By Lemma 2.3 (ii), we get

‖wn − x∗‖2 = ‖(1 + αn)(xn − x∗)− αn(xn−1 − x∗)‖2

= ‖(1 + αn)(xn − x∗)− αn‖(xn−1 − x∗)‖2

= (1 + αn)‖xn − x∗‖2 − αn‖xn−1 − x∗‖2

+αn(1 + αn)‖xn − xn−1‖2, (4.13)

which by (4.11) implies that

‖xn+1 − x∗‖2 − (1 + αn)‖xn − x∗‖2 + αn‖xn−1 − x∗‖2

≤ −µγn(1− µγn)‖zn − wn + λβndn‖2

+αn(1 + αn)‖xn − xn−1‖2 + βnϕn. (4.14)
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From (3.1) and (4.2), we get

‖zn − wn + λβndn‖2 =
∥∥∥xn+1 − wn

1− µγn

∥∥∥2
=
∥∥∥xn+1 − xn − αn(xn − xn−1)

1− µγn

∥∥∥2
=
‖xn+1 − xn‖2 + α2

n‖xn − xn−1‖2 − 2αn〈xn+1 − xn, xn − xn−1〉
(1− µγn)2

≥ 1

(1− µγn)2

{
‖xn+1 − xn‖2 + α2

n‖xn − xn−1‖2

+αn(−ρn‖xn+1 − xn‖2 −
1

ρn
‖xn − xn−1‖2)

}
, (4.15)

where ρn =
1

(αn + δ(1− µγn))
. It follows from (4.14) and (4.15) that

‖xn+1 − x∗‖2 − (1 + αn)‖xn − x∗‖2 + αn‖xn−1 − x∗‖2

≤ µγn(αnρn − 1)

1− µγn
‖xn+1 − xn‖2 + θn‖xn − xn−1‖2 + βnϕn, (4.16)

where

θn = αn(1 + αn) + αnµγn
1− ρnαn
ρn(1− µγn)

> 0, forn > 1. (4.17)

Since ρnαn < 1 and (1−µγn) ∈ (0, 1). Now, taking into account the choice of ρn, we
obtain δ = (1− ρnαn)/ρn(1− µγn) and, from (4.17), it follows

θn = αn(1 + αn) + αnµγnδ ≤ α(1 + α) + αδ (4.18)

Define the sequences {φn} and {ψn} by

φn := ‖xn − x∗‖2, ψn := φn − αnφn−1 + θn‖xn − xn−1‖2

for all n ≥ 1. Using the monotonicity of {αn} and the fact that φn ≥ 0 for all n ∈ N,
we have

ψn+1 − ψn ≤ φn+1 − (1 + αn)φn + αnφn−1 + θn+1‖xn+1 − xn‖2

−θn‖xn − xn−1‖2. (4.19)

By (4.16), we know

ψn+1 − ψn ≤ µγn(αnρn − 1)

1− µγn
‖xn+1 − xn‖2 + θn+1‖xn+1 − xn‖2

=

(
µγn(αnρn − 1)

1− µγn
+ θn+1

)
‖xn+1 − xn‖2. (4.20)

Now, we claim that

µγn(αnρn − 1)

1− µγn
+ θn+1 ≤ −σ (4.21)
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Indeed, by the choice of ρn, we have

µγn(αnρn − 1)

1− µγn
+ θn+1 ≤ −σ ⇐⇒ (1− µγn)(θn+1 + σ) + µγn(αnρn − 1) ≤ 0

⇐⇒ (1− µγn)(θn+1 + σ)− δ(1− µγn)µγn
αn + δ(1− µγn)

≤ 0

⇐⇒ (αn + δ(1− µγn))(θn+1 + σ) + δ(1− µγn) ≤ δ

Using (4.18), we have

(αn + δ(1− µγn))(θn+1 + δ) + δ(1− µγn) ≤ (α+ δ(1− µγn))(α(1 + α)

+αδ + σ) + δ(1− µγn)

≤ δ (4.22)

where the last inequality follows by using the upper bound for {1−µγn} in Assumption
3.2 (c). Hence the claim in (4.21) is true. Thus it follows from (4.20) and (4.21) that

ψn+1 − ψn ≤ −σ‖xn+1 − xn‖2, (4.23)

which implies that

ψn+1 ≤ ψn.

The boundedness of {αn} delivers

−αφn−1 ≤ φn − αφn−1 ≤ ψn ≤ ψ1.

We then obtain

φn ≤ αnφ0 + ψ1

k−1∑
n=0

αn

≤ αnφ0 +
1

1− α
ψ1.

Using (4.23) and the boundedness of {ψn}, we have

σ

n∑
k=1

‖xk+1 − xk‖2 ≤ ψ1 − ψn+1

≤ ψ1 + αφn

≤ ψ1 + αnφ0 +
1

1− α
ψ1,

which implies that

∞∑
n=1

‖xn+1 − xn‖2 <∞. This establishes (ii).

Using (4.16), (4.18) and Lemma 2.4, we have that lim
n→∞

‖xn−x∗‖ exists (since αnρn<1

in (4.16)).
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From (4.2), we have

‖zn − wn‖ =
∥∥∥xn+1 − wn

1− µγn
− λβndn

∥∥∥
=

∥∥∥xn+1 − xn − αn(xn − xn−1)

1− µγn
− λβndn

∥∥∥
≤ ‖xn+1 − xn‖+ αn‖xn − xn−1‖

1− µγn
+ λβn‖dn‖.

By Assumption 3.2 (b) and the fact that {dn} is bounded and

∞∑
n=1

‖xn+1−xn‖2 <∞,

‖zn − wn‖ → 0, n→∞. (4.24)

Observe that for some M4 > 0,∣∣∣‖wn − x∗‖2 − ‖zn − x∗‖2∣∣∣ =
∣∣∣(‖wn − x∗‖ − ‖zn − x∗‖)(‖wn − x∗‖+ ‖zn − x∗‖

)∣∣∣
≤ ‖wn − zn‖

(
‖wn − x∗‖+ ‖zn − x∗‖

)
≤ ‖wn − zn‖M4 → 0, n→∞.

Then, from (4.10), we get

(1− τnL)

N∑
k=1

δkn‖wn − ukn‖2 → 0, n→∞.

Since τn <
1
L and δkn ≥ ε > 0,∀k, we get

lim
n→∞

‖wn − ukn‖ = 0,∀k.

Similarly from (4.10) again, we have

lim
n→∞

‖ukn − zkn‖ = 0,∀k.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ z ∈
H. We show that z ∈ SOL. From that lim ‖xn+1 − xn‖ = 0 and

wn = xn + αn(xn − xn−1),

we get wn − xn → 0, n→∞. Since xnj
⇀ z, we obtain wnj

⇀ z. Now, wn − ukn → 0

implies uknj
⇀ z and since ukn ∈ Ck, we have that z ∈ Ck. For all x ∈ Ck and using

(2.2), we have (since fk is monotone)

0 ≤ 〈uknj
− wnj

+ τnj
fk(wnj

), x− uknj
〉

= 〈uknj
− wnj

, x− uknj
〉+ τnj

〈fk(wnj
), wnj

− uknj
〉

+τnj
〈fk(wnj

), x− wnj
〉

≤ 〈uknj
− wnj

, x− wnj
〉+ τnj

〈fk(wnj
), wnj

− uknj
〉

+τnj 〈fk(x), x− wnj 〉.
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Passing to the limit, we get (recall that 0 < c ≤ τnj
≤ d < 1

L )

〈fk(x), x− z〉 ≥ 0,∀x ∈ Ck.
By Lemma 2.6, we have that z ∈ SOL(fk, Ck), k = 1, 2, . . . , N . Hence, z ∈ SOL.
Now, using Lemma 2.5, it follows that {xn} converges weakly to z ∈ SOL. This
completes the proof. �

Remark 4.2. If the set Ck, k = 1, 2, . . . , N are simple enough, so that projections
onto Ck are easily executed, then this Modified Inertial Extragradient Method below
is particularly useful.
Algorithm 4.3.

• Initialization. Define L := max
1≤k≤N

Lk and and choose {τn} ⊂ [c, d] for some

c, d ∈ (0, 1
L ). Choose µ ∈ (0, 1], λ > 0 and x0, x1 ∈ H arbitrarily. Define

uk0 := PCk
(x0 − τ0fk(x0)). Let zk0 := PCk

(x0 − τ0fk(uk0)) and z0 =

N∑
k=1

δk0z
k
0 .

Compute d1 = (z0−x0)
λ . Choose sequences {αn}, {βn} and {γn} such that the

conditions from Assumption 3.2 hold. Set n := 1
• Step 1. Compute

wn : = xn + αn(xn − xn−1),

ukn : = PCk
(wn − τnfk(wn)),∀k = 1, 2, . . . , N.

• Step 2. Compute

zkn : = PCk
(wn − τnfk(ukn)),∀k = 1, 2, . . . , N,

zn : =

N∑
k=1

δknz
k
n.

• Step 3. Compute

dn+1 : =
1

λ
(zn − wn) + βndn,

yn : = wn + λdn+1,

xn+1 := µγnwn + (1− µγn)yn. (4.25)

• Step 4. Set n← n+ 1 and goto Step 1.

Following the same method of proof in Theorem 4.1, we can prove the following result
using our Modified Inertial Extragradient Algorithm 4.3.
Theorem 4.4. Suppose that Assumptions 3.1 3.2 and 3.4 hold in H and y ∈ SOL.
Let {xn} be generated by Algorithm 4.3. Then the following results hold:

(i) {dn} is bounded;

(ii)
∑
‖xn+1 − xn‖2 <∞ and

(iii) the sequence {xn} converges weakly to a point y ∈ SOL.
Next, we give another Modified Inertial Subgradient Extragradient Method for solving
CSVIP (1.1). Here, the Step 3 in Algorithm 3.3 is modified and replaced. This
algorithm very useful especially when N is large in Algorithm 3.3.
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Algorithm 4.5.

• Initialization. Define L := max
1≤k≤N

Lk and choose {τn} ⊂ [c, d] for some

c, d ∈ (0, 1
L ). Choose µ ∈ (0, 1], λ > 0 and x0, x1 ∈ H arbitrarily. For each

k = 1, 2, . . . , N , define uk0 := PCk
(x0 − τ0fk(x0)) and set

T k0 := {w ∈ H : 〈x0 − τ0fk(x0)− u0, w − u0〉 ≤ 0}.

Compute zk0 := PT0
(x0 − τ0fk(uk0)) and

kn := argmax{‖zk0 − w0‖ : k = 1, 2, . . . , N}, z0 := zkn0 .

Compute d1 = (z0−x0)
λ . Choose sequences {αn}, {βn} and {γn} such that the

conditions from Assumption 3.2 hold. Set n := 1
• Step 1. Compute

wn : = xn + αn(xn − xn−1),

ukn : = PCk
(wn − τnfk(wn)),∀k = 1, 2, . . . , N.

• Step 2. Compute

zkn : = PTk
n

(wn − τnfk(ukn)),∀k = 1, 2, . . . , N,

kn : = argmax{‖zkn − wn‖ : k = 1, 2, . . . , N}, zn := zknn ,

where T kn = {w ∈ H : 〈wn − τnfk(wn)− ukn, w − ukn〉 ≤ 0}.
• Step 3. Compute

dn+1 : =
1

λ
(zn − wn) + βndn,

yn : = wn + λdn+1,

xn+1 : = µγnwn + (1− µγn)yn. (4.26)

• Step 4. Set n← n+ 1 and goto Step 1.

Following the same method of proof in Theorem 4.1, we can prove the following result
using our Algorithm 4.5.
Theorem 4.6. Suppose that Assumptions 3.1 3.2 and 3.4 hold in H and y ∈ SOL.
Let {xn} be generated by Algorithm 4.5. Then the following results hold:

(i) {dn} is bounded;

(ii)
∑
‖xn+1 − xn‖2 <∞ and

(iii) the sequence {xn} converges weakly to a point y ∈ SOL.

Proof. From (4.24) and the definition of zn, we have

‖zkn − wn‖ → 0, n→∞, k = 1, 2 . . . , N.

From (4.9), we have

(1− τnL)‖wn − ukn‖2 ≤ ‖wn − x∗‖2 − ‖zkn − x∗‖2

≤ ‖wn − zkn‖
(
‖wn − x∗‖+ ‖zkn − x∗‖

)
→ 0,

n→∞, k = 1, 2, . . . , N.
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Hence
lim
n→∞

‖wn − ukn‖ = 0,∀k.

Similarly, we can get from (4.9) that

lim
n→∞

‖ukn − zkn‖ = 0,∀k.

The rest of the proof follows as in the proof of Theorem 4.1. �

Remark 4.7. Suppose that common solutions set SOL of CSVIP (1.1) is bounded.
Then it is possible to get a bounded, closed convex set C (e.g., C is a closed ball with
a large enough radius) that contains SOL such that PC can be easily computed. In
this case, we can replace xn+1 in (3.1) with

xn+1 = PC(µγnwn + (1− µγn)yn).

Therefore, boundedness of C implies that {xn} is bounded and furthermore implies
that {wn} and {zn} are all bounded. Hence, Assumption 3.4 is satisfied. Suppose
common solutions set SOL of CSVIP (1.1) is not bounded, then we need to verify
Assumption 3.4 is satisfied before applying our algorithm. Alternatively, we can set
βn = 0,∀n ≥ 1 in our Algorithm 3.3 and apply the scheme.

5. Numerical examples

In this section, we provide some concrete example including numerical results of
the problem considered in Section 3 of this paper. All codes were written in Matlab
2012b and run on Hp i− 5 Dual-Core 8.00 GB (7.78 GB usable) RAM laptop.
In all these examples, we choose λ = 1, βn = 1

n2 and γn = 0.8.
Example 5.1. We first compare our Algorithm 3.3 for N = 1 with the subgradient
extragradient algorithm of Censor et al. [10] using the following numerical example.
Let f : R2 → R2 be defined by

f(x, y) := (x+ y + sin(x),−x+ y + sin(y)), x, y ∈ R2.

It was proved in Dong et al. [12] that f is monotone (in fact, strongly monotone) and

Lipschitz with L =
√

10. Let C := {(x1, x2) ∈ R2 : −10 ≤ x1 ≤ 100, 10 ≤ x2 ≤ 100}.
Take τn = τ = 1

2L . Here, C is a box constraint which is obviously closed and convex
since it is the Cartesian product of closed intervals, i.e.,

C = [α1, β1]× [α2, β2] = [−10, 100]× [10, 100].

Using Lemma 1.2.8 of [8], we have

PC(x) = P[α1,β1]×[α2,β2](x1, x2) =
(
P[α1,β1]x1, P[α2,β2]x2

)
=

(
max{min{x1, β1}, α1},max{min{x2, β2}, α2}

)
Using randomly generated initial points x0, x1 ∈ R2 in MATLAB, µ = 0.01 and using

termination criterion ‖xn+1−xn‖
‖x2−x1‖ < 10−4, we compare the proposed Algorithm in 3.3

with that of Censor et al. [10]. The results are reported in Table (1) and Figure (1).
Example 5.2. Furthermore, we also compare our Algorithm 4.3 for N = 1 with
the Algorithm (7) of Dong et al. [12] using Example 4.2 of Dong et al. [12]. This
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Table 1. Comparison between Algorithm 3.3 and Censor et al. [10] Algorithm

No. of Iterations CPU (Time)
Proposed Algorithm 3.3 18 1.5828× 10−3

Censor et al. [10] Algorithm 44 2.2433× 10−3

Number of iterations
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Alg. 3.1

Censor et al Alg.

Figure 1. Comparison between Algorithm 3.3 and Censor et al. [10] Algorithm

numerical comparison makes sense since C is simple and PC can be easily computed.
Now, let f : Rn → Rn defined by f(x) = Ax+ b, where A = ZTZ,Z = (zij)n×n and
b = (bi) ∈ Rn, where zij ∈ [1, 100] and bi ∈ [−100, 0] are generated randomly. It is
known from [29] that f is monotone and Lipschitz continuous with L = max(eig(A)).
Take C := {x ∈ Rn : ‖x − d‖ ≤ 2} with d = (1,−1). Suppose the initial point
x0 = (ci) ∈ Rn, where ci ∈ [1, 100] is generated randomly and n = 100 and τn = τ =

1
(1.05L) .

Using randomly generated initial points x0 = (ci) ∈ R100, x1 = (ui) ∈ R100 in
MATLAB where ci ∈ [1, 100] and ui ∈ [1, 5], µ = 0.01, λn = 0.8 and using termination
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criterion ‖xn+1−xn‖
‖x2−x1‖ < 10−4, we compare the proposed Algorithm 4.3 with that of

Dong et al. [12] Algorithm. The results are reported in Table (2) and Figure (2).

Table 2. Comparison between Algorithm 4.3 and Dong et al. [12] Algorithm

No. of Iterations CPU (Time)
Proposed Algorithm 4.3 11 0.057167

Dong et al. [12] Algorithm 97 0.52698
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Figure 2. Comparison between Algorithm 4.3 and Dong et al. [12] Algorithm

Example 5.3. Using the same example in Censor et al. [11], we consider a two-disc
convex feasibility problem in R2 and provide an explicit formulation of our Algorithm
3.3 for N = 2, as well as some numerical results. More explicitly, let Ck := {(x, y) ∈
R2 : (x− ak)2 + (y− bk)2 ≤ r2k} with C1 ∩C2 6= ∅. Consider the problem of finding a
point (x∗, y∗) ∈ R2 such that (x∗, y∗) ∈ C1∩C2. In this case f1 = f2 = 0. Let τn = 1

2 .
Now, let

C1 := {(x, y) ∈ R2 : x2 + y2 ≤ 1} and C2 := {(x, y) ∈ R2 : (x− 1)2 + y2 ≤ 1}.

Using randomly generated initial points x0, x1 ∈ R2 in MATLAB, λn = 0.8, δkn = 0.5

for all n and k = 1, 2, and using termination criterion ‖xn+1−xn‖
‖x2−x1‖ < 10−4, we examine

our proposed Algorithm 3.3 with different values of µ: µ = 0.01, µ = 0.5 and µ = 0.9.
The results are reported in Table 3 and Figures 3-6.
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Table 3. Algorithm 3.3 with different values of µ

No. of Iterations CPU (Time)
µ = 0.01 13 1.1353× 10−3

µ = 0.1 13 9.2373× 10−4

µ = 0.5 11 9.5006× 10−4

µ = 0.9 28 2.9693× 10−3
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Figure 3. Algorithm 3.3
with µ = 0.01
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Figure 4. Algorithm 3.3
with µ = 0.1
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Remark 5.4.

(1) Over all, from all the three Examples, we could observe that our Algorithms
are robust and easy to implement.

(2) From Example 5.1, our Algorithm 3.3 approaches the termination criterion
faster than Censor et al. [10] Algorithm with less number of iterations.

(3) From Example 5.2, our Algorithm 4.3 approaches the termination criterion
much faster with very small number of iterations when compared with Dong
et al. [12] Algorithm.

(4) Furthermore in Example 5.3, we observe that, on average, for most of the
choices of µ, number of iterations and CPU time taken to reach the termi-
nation criterion are the same. However, when approaching µ = 1, there is a
slight increase in the number of iterations and CPU time taken to reach the
termination criterion.

6. Conclusion

In this paper, we establish weak convergence results of modified inertial versions
of the subgradient extragradient method of Censor et al. [10] and the extragradi-
ent method of Korpelevich for solving Common Solutions to Variational Inequalities
Problem (CSVIP) in real Hilbert spaces. We give numerical illustrations of our results
and show the numerical improvements over existing results in the literature. In our
next project, we will establish convergence rate of the iterative sequences generated
by the modified inertial subgradient extragradient method. Also, extensions of the
results in this paper will be considered in uniformly convex Banach spaces in the
future.
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