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Abstract. Khamsi and Kirk [11] gave the definition of multi-valued uniformly Lipschitzian map-
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1. Introduction

Let C be a nonempty subset of a metric space (E, d). A mapping T : C → C is
called uniformly k−Lipschitzian if there exists a constant k > 0 such that

d(Tnx, Tny) 6 k · d(x, y)

for all points x, y ∈ C and any positive integer n > 1. It is clear that nonexpansive
mappings are uniformly 1−Lipschitzian mappings. Again, when E has some ”nice”
geometric properties and k > 1 is not too large, we can assure that T has a fixed
point (see [1]).

The first fixed point theorem for uniformly Lipschitzian mappings in uniformly
convex Banach spaces was initiated by Goebel and Kirk [9]. A different and more
general approach is proposed by Lifshitz [12] in metric spaces. The next fixed point
theorem for uniformly Lipschitzian mappings in Banach spaces with uniform normal
structure is due to Casini and Maluta [5]. Finally the work by Lim and Xu [13] links
the existence of fixed points of such mappings to uniform normal structure property
using the ideas developed by Baillon [3].

In [11] Khamsi and Kirk introduced the definition of multi-valued uniformly Lip-
schitzian mappings in metric spaces and extended the famous Lifshitz’s fixed point
theorem to multi-valued mappings.
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In this note we will prove a fixed point theorem for multi-valued uniformly Lips-
chitzian mappings in metric spaces with uniform normal stucture which extend Lim
and Xu’s theorem [13].

2. Preliminaries

We start by giving the definition of multi-valued uniformly Lipschitzian mappings
via the generalized orbits [11].

Definition 2.1. Let (E, d) be a metric space and T : E → N (E), where N (E)
denotes the collection of all nonempty subset of E, be a multi-valued map. For any
x ∈ E, the sequence {xn} is called a generalized orbit of x if x0 = x and xn+1 ∈ T (xn)
for any n > 0. We will use the notion OT (x) to denote such a sequence.

It is clear that for a given x ∈ E, the map T may have many different orbits
generated by x. Therefore the notation OT (x) should be used carefully.

Definition 2.2. Let (E, d) be a metric space. A multi-valued mapping T : E → N (E)
is called a uniformly k−Lipschitzian mapping (with k > 0) if and only if for any
x, y ∈ E, and any generalized orbit {xn} ∈ OT (x), there exists a generalized orbit
{yn} ∈ OT (y) such that

d(xn+h, yn) 6 k · d(xh, y),

for any n > 1, h > 0, where x0 = x.

Note that when T is single-valued, then the above definition coincides with the
traditional definition since any x will have only one orbit generated by iterating T .

Now we recall some convexity structure on metric spaces.

Let F(E) denote a nonempty family of subsets of a metric space (E, d). We say
that F(E) defines convexity stucture on E if F(E) is satble by intersection and that
F(E) has property (R) if any decreasing sequence {Cn} of nonempty closed bounded
subset of E with Cn ∈ F(E) has nonvoid intersection.

A subset of E is said to be admissible if it is an intersection of closed balls [7]. We
denote by A(E) the family of all admissible subsets of E. It is obvious that A(E)
defines a convexity structure on E. In this paper any other convexity structure F(E)
is always assumed to contain A(E).

For C ⊂ E, we denote the following:

rx(C) = sup{d(x, y) : y ∈ C}, x ∈ C,

R(C) = inf{rx(C) : x ∈ C}.
For a bounded subset C of E, we define the admissible hull of C, denoted ad(C), as
the intersection of all those admissible subsets of E that contains C, i.e.

ad(C) =
⋂
{B ⊂ E : C ⊂ B with B admissible}.
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We know [1]: Let C be a bounded subset of a metric space E and x ∈ E. Then
rx(ad(C)) = rx(C).

We introduce uniformly normal structure with respect to convexity structure F(E)
in metric space E.

Definition 2.3. A metric space (E, d) is said to have uniformly normal structure if
there exists a convexity structure F(E) such that

R(C) 6 α · diam(C)

for some constant α ∈ (0, 1) and for all C ∈ F(E) that is bounded and consist of
more than one point. We also say that F(E) is uniformly normal.

The number N(E) is said to be the normal structure coefficient [4] if

N(E) = inf
{diam(C)

R(C)
: C ∈ F(E) bounded with diam(C) > 0

}
.

It is easy to see that E has uniformly normal structure if and only if N(E) > 1.

It is known that every convexity structure with uniformly normal structure has
property (R), [1].

In [13], Lim and Xu introduced so-called property (P ) for metric space.

Definition 2.4. A metric space (E, d) is said to have property (P ) if given two

bounded sequences {xn} and {zn} in E, one can find some z ∈
⋂
n>1

ad({zj : j > n})

such that
lim sup
n→+∞

d(z, xn) 6 lim sup
j→+∞

lim sup
n→+∞

d(zj , xn).

If E has property (R), then
⋂
n>1

ad({zj : j > n}) 6= ∅. Also, if E is a weakly compact

convex subset of a normed linear space then admissible hulls are closed convex and⋂
n>1

ad({zj : j > n}) 6= ∅ by weak compactness of E, and that E possesses property

(P ) follows directly from the weak lower semicontinuity of the function

lim sup
n→+∞

‖xn − x‖.

3. Main result

Lim and Xu [13] established the following key lemma.

Lemma 3.1. Let (E, d) be a complete bounded metric space with both property (P )
and uniformly normal structure. Let N(E) be the normal structure coefficient with
respect to the given convexity structure F(E). Then for any sequence {xn} in E and

any constant α > Ñ(E) = 1
N(E) , there exists a point z ∈ E satisfying the properties:

(a) d(z, y) 6 lim sup
n→+∞

d(xn, y) for all y ∈ E,
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(b) lim sup
n→+∞

d(z, xn) 6 α · diam({xn}).

We now present the existence theorem for multi-valued uniformly Lipschitzian
mappings in a metric space.

Theorem 3.2. Let (E, d) be a complete bounded metric space with both property (P )
and uniformly normal structure and T : E → C(E), i.e. T (x) is a nonempty closed
convex subset of E, for any x ∈ E. If T is uniformly k−Lipschitzian with

k < [Ñ(E)]−
1
2 =

√
N(E),

then T has a fixed point, i.e. there exists x ∈ E such that x ∈ T (x).

Proof. We may assume k > 1 since then k < 1, i.e. T is a set-valued contraction in
the usual sense and hence has a fixed point in a complete space E, [14].

Choose constant α ∈ (Ñ(E), 1) such that k < 1√
α

.

Let x ∈ E and {xn} ∈ OT (x) be a generalized orbit of x. Using Lemma 3.1, one
can construct a point z found in Lemma 3.1 associated with the sequence {xn}. Set
σ1(x) = z. This is the notation used in [3]. Note that σ2(x) is a point found in
Lemma 3.1 associated with the sequence {σ1(x)n} which is the generalized orbit of
σ1(x).

Fix x ∈ E and {xn} be a generalized orbit of x. By induction, one will construct a
sequence {σm(x)} and generalized orbit {σm(x)n}n>1 of σm(x) for any m > 1, such
that σm+1(x) satisfy (as a point z) the conditions from Lemma 3.1:

(a) d(σm+1(x), y) 6 lim sup
i→+∞

d(σm(x)i, y) for all y ∈ E,

(b) lim sup
i→+∞

d(σm+1(x), σm(x)i) 6 α · diam({σm(x)i}).

Set
rm = lim sup

i→+∞
d(σm+1(x), σm(x)i).

Note for each i > j > 0,

d(σm(x)i, σ
m(x)j) 6 k · d(σm(x)i−j , σ

m(x)) 6 (by (a))

6 k · lim sup
n→+∞

d(σm−1(x)n, σ
m(x)i−j) (3.1)

6 k2 · lim sup
n→+∞

d(σm−1(x)n, σ
m(x)) = k2 · rm−1.

Observe that
rm = lim sup

i→+∞
d(σm+1(x), σm(x)i) 6 (by (b))

6 α · diam({σm(x)i}) 6 (by (3.1))

6 α · k2 · rm−1 = h · rm−1

and
rm 6 h · rm−1 6 . . . 6 h

m−1 · r1.

Our assumption on k leads to h = α · k2 < 1.
Hence for each i > 1,

d(σm+1(x), σm(x)) 6 d(σm+1(x), σm(x)i) + d(σm(x)i, σ
m(x)) 6 (by (a))
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d(σm+1(x), σm(x)i) + lim sup
j→+∞

d(σm−1(x)j , σ
m(x)i) ≤

≤ d(σm+1(x), σm(x)i) + k · lim sup
j→+∞

d(σm−1(x)j , σ
m(x)) =

= d(σm+1(x), σm(x)i) + k · rm−1.

Taking the limit superior as i→ +∞, we get

d(σm+1(x), σm(x)) 6 lim sup
i→+∞

d(σm+1(x), σm(x)i) + k · rm−1 ≤

6 rm + k · rm−1 6 (hm−1 + k · hm−2) · r1.

This implies that {σm(x)}m>1 is Cauchy and σm(x)→ z ∈ C as m→ +∞.
Next we prove that z is a fixed point of T , i.e. z ∈ T (z). Indeed, we have (by (a))

d(σm(x), σm(x)1) 6 lim sup
n→+∞

d(σm−1(x)n, σ
m(x)1) 6

6 k · lim sup
n→+∞

d(σm−1(x)n, σ
m(x)) = k · rm−1,

which implies

d(σm(x), σm(x)1) 6 k · hm−2 · r1

for any m > 3. Hence {σm(x)1} also converges to z:

d(z, σm(x)1) 6 d(z, σm(x)) + d(σm(x), σm(x)1)→ 0,

as m→ +∞. Using the uniform Lipschitz behavior of T , for any m > 1, there exists
a generalized orbit {zmn } of z such that

d(σm(x)n, z
m
n ) 6 k · d(σm(x), z)

for any n > 1. In particular, we have

d(σm(x)1, z
m
1 ) 6 k · d(σm(x), z) ≤

6 k ·
[
d(σm(x), σm(x)1) + d(σm(x)1, z)

]
→ 0

as m→ +∞. Hence {zm1 } also converges to z:

d(z, zm1 ) 6 d(z, σm(x)) + d(σm(x), σm(x)1) + d(σm(x)1, z
m
1 )→ 0

as m → +∞. But zm1 ∈ T (z) for any m > 1 and T (z) is closed. This will force
z ∈ T (z) as claimed. �

In Banach spaces we have the following multi-valued version of classical Casini and
Maluta’s theorem [5].

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a Banach
space with uniform normal structure and T : C → C(C), i.e. T (x) is a nonempty
closed convex subset of C, for any x ∈ C. If T is uniformly k−Lipschitzian with
k <

√
N(E), then T has a fixed point, i.e. there exists x ∈ C such that x ∈ T (x).
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4. Remarks

A. Let (M,d) be a metric space. We recall that the Lifshitz charcteristic κ(M)
is the supremum of all positive real numbers b such that there exists a > 1 such
that for every x, y ∈ M and r > 0 with d(x, y) > r there exists z ∈ M satisfying
B(x, br)∩B(y, ar) ⊂ B(z, r). It is clear that κ(M) > 1. In Banach space E we denote
by κ0(E) the infimum of the numbers κ(C) where C is a closed convex bounded subset
of E. It is known [5] that

κ0(E) 6 N(E).

Let Eβ , 1 6 β 6 2, be the space l2 renormed by

‖x‖ = max{‖x‖2, β · ‖x‖∞},
where ‖ · ‖2 is the Euclidean norm and ‖ · ‖∞ the supremum norm. If 1 6 β 6 1

2

√
5,

then [6], [2],

κ0(Eβ) =

√
1 +

1

β2
− 2

β2

√
β2 − 1.

If β > 1
2

√
5 it is known [2] that κ0(Eβ) = 1.

Since [5] N(Eβ) = 1
β

√
2, so

√
N(Eβ) converges to 1

5
4
√

1000 ≈ 1.1246 and

1

2

(
1 +

√
1 + 4 ·N(Eβ) · (κ0(Eβ)− 1)

)
converges to 1 as β ↗ 1

2

√
5 ≈ 1.118. Therefore, for β close to 1

2

√
5, more precisely

β > 1.0556, the constant which appears in Corollary 3.3 is strictly bigger than the
constant

1

2

(
1 +

√
1 + 4 ·N(Eβ) · (κ0(Eβ)− 1)

)
,

which appears in the fixed point theorem for uniformly Lipschitzian mappings due to
Domı́nguez Benavides [6] and its multi-valued version [10].

B. Metric hyperconvexity was introduced in 1956. A metric space (E, d) is called
hyperconvex if ⋂

α∈Γ

B(xα, rα) 6= ∅

for any collection of closed balls {B(xα, rα)}α∈Γ such that

d(xα, xβ) 6 rα + rβ , α, β ∈ Γ.

The space C(S) of continuous real function on a Stonian space with ”supremum”
norm, the classical spaces l∞, L∞ are examples of hyperconvex spaces. Two facts are
pertinent to what follows: any hyperconvex metric space is complete and N(E) = 2
if E is hyperconvex, [8].

Thus, Theorem 3.2 implies the following corollary for hyperconvex spaces.

Corollary 4.1. Let (E, d) be a bounded hyperconvex metric space with property (P )
and T : E → C(E), i.e. T (x) is a nonempty closed convex subset of E, for any x ∈ E.

If T is uniformly k−Lipschitzian with k <
√

2, then T has a fixed point, i.e. there
exists x ∈ E such that x ∈ T (x).
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Remark 4.2. In the classical Kirk’s fixed point theorem, having a bounded orbit
implies the existence of a fixed point. The following example of Prus [8] shows that
boundedness of orbits does not imply the existence of a fixed point even for non-
expansive mappings. Indeed, consider the classical Banach space l∞ and the map
T : l∞ → l∞ defined by

T ((xn)) = (1 + LIMxn, x1, x2, . . .),

where LIM denotes a Banach limit. Then ‖Tnx‖ 6 1 + ‖x‖ and

‖Tnx− Tny‖ = ‖x− y‖
for every x, y ∈ l∞. If z = (z1, z2, . . .) ∈ l∞ satisfies Tz = z, then

z1 = 1 + LIMzn, z2 = z1, z3 = z2, . . . ,

and hence LIMzn = 1 +LIMzn, a contradiction, which shows that Fix(T ) = ∅. On
the other hand, we have Tn(0) = (1, 1, . . . , 1, 0, 0, . . .) where the first block of length
n has all entries equal 1 and then 0 after that. So T has bounded orbits.

Question 4.3. Does every hyperconvex space have the property (P )?
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