Fized Point Theory, 20(2019), No. 1, 195-202
DOI: 10.24193/fpt-r0.2019.1.12
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINTS, MULTI-VALUED UNIFORMLY
LIPSCHITZIAN MAPPINGS AND UNIFORM NORMAL
STRUCTURE

JAROSLAW GORNICKI

Department of Mathematics and Applied Physics
Rzeszéw University of Technology
PO Box 85, 35-959 Rzeszéw, Poland
E-mail: gornicki@prz.edu.pl

Abstract. Khamsi and Kirk [11] gave the definition of multi-valued uniformly Lipschitzian map-
pings via generalized orbits. We will prove a fixed point theorem in metric spaces with uniform
normal structure which extends Lim and Xu’s theorems [13] to multi-valued uniformly Lipschitzian
mappings. We also give a fixed point result for multi-valued uniformly Lipschitzian mappings in
hyperconvex spaces.
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1. INTRODUCTION

Let C' be a nonempty subset of a metric space (E,d). A mapping 7' : C — C'is
called uniformly k— Lipschitzian if there exists a constant k& > 0 such that

d(T"z, T"y) < k- d(z,y)

for all points z,y € C' and any positive integer n > 1. It is clear that nonexpansive
mappings are uniformly 1—Lipschitzian mappings. Again, when F has some "nice”
geometric properties and k > 1 is not too large, we can assure that T has a fixed
point (see [1]).

The first fixed point theorem for uniformly Lipschitzian mappings in uniformly
convex Banach spaces was initiated by Goebel and Kirk [9]. A different and more
general approach is proposed by Lifshitz [12] in metric spaces. The next fixed point
theorem for uniformly Lipschitzian mappings in Banach spaces with uniform normal
structure is due to Casini and Maluta [5]. Finally the work by Lim and Xu [13] links
the existence of fixed points of such mappings to uniform normal structure property
using the ideas developed by Baillon [3].

In [11] Khamsi and Kirk introduced the definition of multi-valued uniformly Lip-
schitzian mappings in metric spaces and extended the famous Lifshitz’s fixed point
theorem to multi-valued mappings.
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In this note we will prove a fixed point theorem for multi-valued uniformly Lips-
chitzian mappings in metric spaces with uniform normal stucture which extend Lim
and Xu’s theorem [13].

2. PRELIMINARIES

We start by giving the definition of multi-valued uniformly Lipschitzian mappings
via the generalized orbits [11].

Definition 2.1. Let (E,d) be a metric space and T' : E — N(E), where N (F)
denotes the collection of all nonempty subset of F, be a multi-valued map. For any
x € E, the sequence {x,} is called a generalized orbit of x if o = x and x,, 11 € T'(z,)
for any n > 0. We will use the notion Or(z) to denote such a sequence.

It is clear that for a given z € FE, the map T may have many different orbits
generated by x. Therefore the notation Or(x) should be used carefully.

Definition 2.2. Let (F, d) be a metric space. A multi-valued mapping T : E — N (F)
is called a uniformly k— Lipschitzian mapping (with & > 0) if and only if for any
z,y € E, and any generalized orbit {z,} € Or(z), there exists a generalized orbit
{yn} € Or(y) such that

d(xn-‘rha yn) <k- d(‘rha y)a

for any n > 1, h > 0, where zy = x.

Note that when T is single-valued, then the above definition coincides with the
traditional definition since any x will have only one orbit generated by iterating 7'

Now we recall some convexity structure on metric spaces.

Let F(E) denote a nonempty family of subsets of a metric space (E,d). We say
that F(F) defines convezity stucture on E if F(FE) is satble by intersection and that
F(FE) has property (R) if any decreasing sequence {C,,} of nonempty closed bounded
subset of E with C), € F(FE) has nonvoid intersection.

A subset of E is said to be admissible if it is an intersection of closed balls [7]. We
denote by A(FE) the family of all admissible subsets of E. It is obvious that A(F)
defines a convexity structure on E. In this paper any other convexity structure F(E)
is always assumed to contain A(E).

For C' C E, we denote the following:
r.(C) = sup{d(z,y) :y € C}, z € C,
R(C) = inf{r,(C) : z € C}.

For a bounded subset C of E, we define the admissible hull of C, denoted ad(C), as
the intersection of all those admissible subsets of E that contains C, i.e.

ad(C) = ({B C E: C C B with B admissible}.



FIXED POINTS, MULTI-VALUED UNIFORMLY LIPSCHITZIAN MAPPINGS 197

We know [1]: Let C be a bounded subset of a metric space E and x € E. Then
rx(ad(C)) = r,(C).

We introduce uniformly normal structure with respect to convexity structure F(F)
in metric space FE.

Definition 2.3. A metric space (E,d) is said to have uniformly normal structure if
there exists a convexity structure F(E) such that
R(C) < a - diam(C)

for some constant « € (0,1) and for all C € F(F) that is bounded and consist of
more than one point. We also say that F(F) is uniformly normal.

The number N(E) is said to be the normal structure coefficient [4] if
diam(C)

R(C)
It is easy to see that F has uniformly normal structure if and only if N(E) > 1.

N(E) = mf{ . C € F(E) bounded with diam(C) > o}.

It is known that every converity structure with uniformly normal structure has
property (R), [1].

In [13], Lim and Xu introduced so-called property (P) for metric space.

Definition 2.4. A metric space (F,d) is said to have property (P) if given two
bounded sequences {z,} and {z,} in E, one can find some z € m ad({z; : j > n})

n>1
such that
limsup d(z, z,,) < limsup limsup d(z;, z,,).
n—-+4oo j—4o00 n——+oo
If E has property (R), then ﬂ ad({z; : j = n}) # 0. Also, if E is a weakly compact
n>1

convex subset of a normed linear space then admissible hulls are closed convex and
ﬂ ad({zj : j = n}) # 0 by weak compactness of E, and that E possesses property
n>1

(P) follows directly from the weak lower semicontinuity of the function

lim sup ||z, — z||.
n—-+oo

3. MAIN RESULT
Lim and Xu [13] established the following key lemma.
Lemma 3.1. Let (E,d) be a complete bounded metric space with both property (P)
and uniformly normal structure. Let N(E) be the normal structure coefficient with

respect to the given convezity structure F(E). Then for any sequence {x,} in E and
any constant « > N(E) = ﬁ, there exists a point z € E satisfying the properties:

(a) d(z,y) < limsupd(x,,y) for aly € E,
n—-+oo
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(b) limsupd(z,z,) < - diam({z,}).

n—-+oo
We now present the existence theorem for multi-valued uniformly Lipschitzian
mappings in a metric space.

Theorem 3.2. Let (E,d) be a complete bounded metric space with both property (P)
and uniformly normal structure and T : E — C(E), i.e. T(x) is a nonempty closed
convex subset of E, for any x € E. If T is uniformly k— Lipschitzian with

1

k< [N(E)"2 = /N(E),
then T has a fized point, i.e. there exists x € E such that x € T(x).

Proof. We may assume k > 1 since then k < 1, i.e. T is a set-valued contraction in
the usual sense and hence has a fixed point in a complete space F, [14].

Choose constant a € (N (E), 1) such that k < %

Let x € E and {z,} € Or(z) be a generalized orbit of z. Using Lemma 3.1, one
can construct a point z found in Lemma 3.1 associated with the sequence {x,}. Set
ol(x) = z. This is the notation used in [3]. Note that o*(z) is a point found in
Lemma 3.1 associated with the sequence {o'(z),} which is the generalized orbit of
ol(x).

Fix x € E and {x,} be a generalized orbit of z. By induction, one will construct a
sequence {c™(z)} and generalized orbit {¢"(x),}n>1 of 6™ (z) for any m > 1, such
that o™ %1 (z) satisfy (as a point z) the conditions from Lemma 3.1:

(a) d(o™(z),y) < limsupd(c™(z)i,y) for all y € E,
1—+o00

(b) limsupd(c™*(x),0™(x);) < a - diam({c™(z);}).

1——+00

Set

T = limsup d(e™ " (z), 0™ (x);).

i—>+00
Note for each i > j > 0,
d(o™(z)i, 0™ (x);) < k- d(0™(2)i—j,0™ (x)) < (by (a))
< k-limsupd(c™  (2)n, 0™ (2)i—;) (3.1)
n—-4o0o
<k -limsupd(o™ Y (x),, 0™ () = k- 1.
n—-+oo

Observe that

T = 113130? d(e™*(z), 0™ (z);) < (by (b))
< a-diam({c™(z )z ) < (by (3.1))
< - ]{/’2 . _1=h- "m—1

and

Pon <hormo1 <... <h™Lopg.
Our assumption on k leads to h = a - k? < 1.
Hence for each ¢ > 1,

d(e™ (@), 0™ () < d(o™H (2), 0™ (2):) + d(0™ (2);, 0™ (2)) < (by (a))
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d(e™ T (x), 0™ (2);) + limsup d(c™ (2)j,0™(z);) <
Jj—4o0

< dlo"™ (2),0™ (@)) + - lmsup d(o™ " ()0 (2) =

=d(o™ " (2), 0™ (2)i) + k- Tin—1.
Taking the limit superior as ¢ — +00, we get

Ao (x), 0™ (x)) < limsup (o™ (2), 0™ (@);) + k- Ty <

i—+00

<rpm+korp <™ kR

This implies that {c™(z)}n>1 is Cauchy and 0™ (z) — z € C as m — +o0.
Next we prove that z is a fixed point of T, i.e. z € T(z). Indeed, we have (by (a))

(o™ (x),0™(z)1) < lim sup (0™} ()n, 0™ (2)1) <

< k-limsupd(o™ (@), 0™(x)) = k- T,
n—-+oo

which implies
d(o™(x),0™(z)1) <k-hm"2 .1y
for any m > 3. Hence {0 (z),} also converges to z:

d(z,0™(x)1) < d(z,0™(2)) +d(c™(x),0™(x)1) — 0,

as m — +o00. Using the uniform Lipschitz behavior of T, for any m > 1, there exists
a generalized orbit {27} of z such that

d(e™(2)pn,2") < k- d(c™(x),2)
for any n > 1. In particular, we have

d(oc™(x)1,27") < k-d(o™(z),2) <

<k- [d(am(x), o™ (2)1) + d(o™ (2)1, z)} =0
as m — 4oo. Hence {2]"} also converges to z:
d(z,21") < d(z,0™(x)) + d(c™(x),0™(x)1) + d(c™(x)1,27") = 0

as m — +oo. But 2" € T(z) for any m > 1 and T(z) is closed. This will force
z € T(z) as claimed. O

In Banach spaces we have the following multi-valued version of classical Casini and
Maluta’s theorem [5].

Corollary 3.3. Let C be a nonempty bounded closed conver subset of a Banach
space with uniform normal structure and T : C — C(C), i.e. T(x) is a nonempty
closed convex subset of C, for any x € C. If T is uniformly k— Lipschitzian with
k< +\/N(E), then T has a fixed point, i.e. there exists x € C' such that x € T(x).



200 JAROSLAW GORNICKI

4. REMARKS

A. Let (M,d) be a metric space. We recall that the Lifshitz charcteristic x(M)
is the supremum of all positive real numbers b such that there exists a > 1 such
that for every z,y € M and r > 0 with d(z,y) > r there exists z € M satisfying
B(z,br)NB(y,ar) C B(z,r). It is clear that k(M) > 1. In Banach space E we denote
by ko (FE) the infimum of the numbers x(C) where C is a closed convex bounded subset
of E. It is known [5] that
#o(E) < N(E).
Let Eg, 1 < 3 < 2, be the space [ renormed by

]l = max{[lz]l2, 8 - |z[lo},

where || - || is the Euclidean norm and || - || the supremum norm. If 1 < 8 < 3v/5
then [6], [2],

7

T 2
ro(Ep) = \/14‘52—52\/52—1-
If 3> 1V/5 it is known [2] that ko(Eg) = 1.
Since [5] N(Eg) = 52, so \/N(Ejs) converges to ¢ /1000 ~ 1.1246 and

% (1 +y/1+4- N(Es) - (so(Ep) — 1))

converges to 1 as %\/5 ~ 1.118. Therefore, for g close to %\/5, more precisely
B > 1.0556, the constant which appears in Corollary 3.3 is strictly bigger than the
constant

;<1+\/1+4'N(EB)'(’€0(EB)_1)>’

which appears in the fixed point theorem for uniformly Lipschitzian mappings due to
Dominguez Benavides [6] and its multi-valued version [10].

B. Metric hyperconvexity was introduced in 1956. A metric space (F,d) is called
hyperconvex if

ﬂ B(za,ra) #£0

acll
for any collection of closed balls {B(Z4, ") }aer such that

d(za,28) <To +78, a,fET.

The space C(S) of continuous real function on a Stonian space with ”supremum”
norm, the classical spaces [, Lo, are examples of hyperconvex spaces. Two facts are
pertinent to what follows: any hyperconvex metric space is complete and N(F) = 2
if E is hyperconvex, [§].

Thus, Theorem 3.2 implies the following corollary for hyperconvex spaces.

Corollary 4.1. Let (F,d) be a bounded hyperconver metric space with property (P)
andT : E — C(E), i.e. T(x) is a nonempty closed convex subset of E, for any x € E.
If T is uniformly k— Lipschitzian with k < /2, then T has a fized point, i.e. there
exists © € E such that x € T(x).
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Remark 4.2. In the classical Kirk’s fixed point theorem, having a bounded orbit
implies the existence of a fixed point. The following example of Prus [8] shows that
boundedness of orbits does not imply the existence of a fixed point even for non-
expansive mappings. Indeed, consider the classical Banach space [, and the map
T :ls — loo defined by

T((xy)) = (14 LIMx,, 21, 22,...),
where LIM denotes a Banach limit. Then [|[T"z| < 1+ ||z| and
1T — Ty = 1z —
for every z,y € loo. If 2= (21, 22,...) € l satisfies Tz = z, then
21=14+LIMz,, 20 = 21,23 = 29,...,

and hence LIMz, = 1+ LIM z,, a contradiction, which shows that Fiz(T) = 0. On
the other hand, we have T"(0) = (1,1,...,1,0,0,...) where the first block of length
n has all entries equal 1 and then 0 after that. So T has bounded orbits.

Question 4.3. Does every hyperconvex space have the property (P)?
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