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Abstract. In this paper, we discuss the existence of fixed points of mappings defined on uniform
spaces generated by a family of b-pseudometrics. We also give some sufficient conditions under which

the fixed point is unique.
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1. Introduction

A b-pseudometric d on a nonempty set X is a function d : X ×X → [0,∞) which
satisfies the following conditions for all x, y, z ∈ X:

(1) d(x, x) = 0
(2) d(x, y) = d(y, x)
(3) d(x, y) ≤ s[d(x, z) + d(z, y)] (b-triangular inequality),

where s ∈ [1,∞). Then, the pair (X, d) is called a b-pseudometric space with param-
eter s. If, in addition, d(x, y) = 0 implies that x = y, for all x, y ∈ X, then (X, d) is
called b-metric space.

Bakhtin [3] and Czerwik [4, 5] introduced the notion of a b-metric space and gave
some fixed point theorems for single-valued and multi-valued mappings in b-metric
spaces. The notion of a b-metric space was reintroduced by Khamsi and Hussain
[8] using the name metric type space. For more information on b-metric spaces the
reader is referred to [9] and the related references therein. For some recent progress
in b-metric spaces we also refer the reader to [10], [11] and [12].

Uniform spaces play a role between metric and topological spaces. Usually they are
used to obtain generalizations of some facts in metric spaces. The reader is referred
to the books by Angelov [2] and Heinonen [6] and to the references therein where
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one can obtain more information on fixed point theory in uniform spaces and analysis
on metric spaces. For example in [2] the author considered fixed point theory for Φ-
contractions, nonexpansive and expansive maps, Φ-densifying maps, and coincidence
theory in uniform spaces.

In [1], Acharya considered the existence and uniqueness of fixed points for mappings
defined on uniform spaces satisfying a contractive condition. In this paper, we give
a generalization of Theorem 3.1 in [1] using uniform spaces generated by a family of
b-pseudometrics.

We start with some notions of uniform spaces (see [13]). A nonempty family U of
subsets of X ×X is called a uniformity on X if the following conditions hold:

U1: U ∈ U implies {(x, x) ∈ X ×X : x ∈ X} ⊂ U ;
U2: U1, U2 ∈ U implies U1 ∩ U2 ∈ U ;
U3: U ∈ U implies that V ◦ V ⊂ U for some V ∈ U ;
U4: U ∈ U implies that V −1 = {(x, y) ∈ X×X : (y, x) ∈ V } ⊂ U , for some V ∈ U ;
U5: If U ∈ U and U ⊆ V imply V ∈ U .

Then, the pair (X,U) is called a uniform space. Members of U are called entourages.
If ∩U = {(x, x) : x ∈ X}, then X is called a separated (Hausdorff) uniform space. Let
{xn} be a sequence in a uniform space X. Then {xn} in X is convergent to a point
x ∈ X, if for each U ∈ U , there exists a natural number N such that (xn, x) ∈ U , for
all n ≥ N . Also {xn} is Cauchy if for each U ∈ U , there is some N > 0 such that
m,n ≥ N implies (xm, xn) ∈ U . The uniform space X is called sequentially complete
if each Cauchy sequencein X is convergent to some point of X.

Let F be a nonempty family of b-pseudometrics with the same parameter s ≥ 1 on
X generating the uniformity U (See Proposition 8.1.14 in [7]). For p ∈ F and r > 0,
define

V(p,r) = {(x, y) ∈ X : p(x, y) < r}.
Suppose that V is the family of all sets of the form

k⋂
i=1

V(pi,ri),

where k is a positive integer, pi ∈ F and ri > 0 for i = 1, . . . , k. It is easy to see that

V is a base for the uniformity U . If V =
⋂k
i=1 V(pi,ri) ∈ V and α > 0, we have

αV =

k⋂
i=1

V(pi,αri) ∈ V.

We need the following lemma.

Lemma 1.1. [1] Let X be a uniform space. Then
(i) If V ∈ V and α, β are positive numbers, then α(βV ) = (αβ)V .
(ii) If V ∈ V and 0 < α ≤ β, then αV ⊆ βV .
(iii) If p is a b-pseudometric on X with parameter s ≥ 1 and α, β are any two

positive numbers such that

(x, y) ∈ αV(p,r1) ◦ βV(p,r2),
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then

p(x, y) < s(αr1 + βr2).

(iv) If V ∈ V and α, β are positive, then

αV ◦ βV ⊂ s(α+ β)V.

(v) If x, y ∈ X and V ∈ V, then there is a positive number λ such that (x, y) ∈ λV .
(vi) If V ∈ V, then there is a b-pseudometric p on X such that

V = V(p,1).

Proof. We just prove (iii) and (iv). To prove (iii), let

(x, y) ∈ αV(p,r1) ◦ βV(p,r2) = V(p,αr1) ◦ V(p,βr2).
There exists z ∈ X such that (x, z) ∈ V(p,βr2) and (z, y) ∈ V(p,αr1). Then we have

p(x, z) < βr2 , p(z, y) < αr1.

Using the b-triangular inequality, we obtain

p(x, y) ≤ s
(
p(x, z) + p(y, z)

)
< s(αr1 + βr2).

For (iv), let V =

k⋂
i=1

V(pi,ri) and (x, y) ∈ αV ◦ βV and there exists z ∈ X such that

(x, z) ∈ βV =

k⋂
i=1

V(pi,βri) and (z, y) ∈ αV =

k⋂
i=1

V(pi,αri). For i = 1, ..., k, we have

pi(x, y) ≤ s
(
pi(x, z) + pi(z, y)

)
< s
(
βri + αri

)
.

Therefore for i = 1, ..., k, we have

(x, y) ∈ V(pi,s(α+β)ri),
Hence

(x, y) ∈ s(α+ β)

(
k⋂
i=1

V(pi,ri)

)
= s(α+ β)V. �

2. Acharya Type Theorem

Throughout this section we assume that (X,U) is a uniform space whose uniformity
U is generated by the family F of b-pseudometrics with the same parameter s ≥ 1 on
X. Furthermore V is the collection of all sets of the form

k⋂
i=1

{
(x, y) ∈ X ×X : pi(x, y) < ri

}
,

where k is a positive integer, pi ∈ F and ri > 0 for i = 1, . . . , k.
Acharya Type Theorem. Let (X,U) be a sequentially complete Hausdorff uniform
space and T : X → X satisfy

(Tx, Ty) ∈ αV if (x, y) ∈ V, (2.1)

for all V ∈ V and x, y ∈ X, where 0 < α < 1. Then T has a unique fixed point.
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Proof. Choose n ∈ N such that

αn <
1

4s2
. (2.2)

Put g = Tn and for each m ∈ N set xm = gm(x0), where x0 is not a fixed point of T .

Suppose that V =

k⋂
i=1

V(pi,εi) ∈ V, where pi ∈ F . By Lemma 1.1 there is a positive

number λ > 0 such that

(Tnx0, x0) ∈ λV = W.

Using Condition (2.1), we obtain

(Tmn(Tnx0), Tmnx0) ∈ αmnW = αmnλV.

Choose m so large that αmnλ < 1
4s2 . Then we have

(xm+1, xm) = (Tmn(Tnx0), Tmnx0) ∈ 1

4s2
V =

1

4s2

k⋂
i=1

V(pi,εi) =
1

2s

k⋂
i=1

V(pi, εi2s ).

(2.3)

Since (xm, xm) ∈
k⋂
i=1

V(pi, εi2s ), by Condition (2.1) for n ∈ N, we have

(Tnxm, T
nxm) ∈ αn

k⋂
i=1

V(pi, εi2s ).

Using (2.2), we obtain

(gxm, xm+1) ∈ 1

4s2

k⋂
i=1

V(pi, εi2s ). (2.4)

From (2.3) and (2.4), we have

(gxm, xm) ∈ s
(

1

2s
+

1

4s2

) k⋂
i=1

V(pi, εi2s ) ⊂
k⋂
i=1

V(pi, εi2s ),

Using Condition (2.1) and (2.2) we get

(Tngxm, T
nxm) ∈ αn

k⋂
i=1

V(pi, εi2s ) ⊆
1

4s2

k⋂
i=1

V(pi, εi2s ). (2.5)

From (2.3) and (2.5), we have

(g2xm, xm) ∈ s( 1

2s
+

1

4s2
)

k⋂
i=1

V(pi, εi2s ) ⊂
k⋂
i=1

V(pi, εi2s ).

Similarly, for each k ∈ N, we have

(gkxm, xm) ∈ s
(

1

2s
+

1

4s2

) k⋂
i=1

V(pi, εi2s ) ⊂
k⋂
i=1

V(pi, εi2s ). (2.6)
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Now, suppose that j, t ≥ m. Let t = m+ k1 and j = m+ k2, for some k1, k2. Using
(2.6), we obtain

(xm, g
k1xm) ∈

k⋂
i=1

V(pi, εi2s ),

and then

(xm, xt) ∈
k⋂
i=1

V(pi, εi2s ). (2.7)

Similarly, for j ≥ m, we can show that

(xm, xj) ∈
k⋂
i=1

V(pi, εi2s ). (2.8)

Then by (2.7) and (2.8) for t, j ≥ m, we have

(xj , xt) ∈ 2s
k⋂
i=1

V(pi, εi2s ) =
k⋂
i=1

V(pi,εi) = V. (2.9)

This shows that {xn} is a Cauchy sequence. Therefore, there exists x∗ in X such that

lim
n→∞

xn = x∗. (2.10)

The continuity of T implies the continuity of g and so

x∗ = lim
m→∞

xm = lim
m→∞

xm+1 = lim
n→∞

g(xm) = g(x∗). (2.11)

That is, x∗ is fixed point of g. Now, let x ∈ X, V ∈ V and choose λ > 0 such that

(x∗, x) ∈ λV.
Using Condition (2.1), we get

(gmx∗, gmx) ∈ αmnλV.
Choose m so large such that αmnλ < 1. Then, we have

(gmx∗, gmx) ∈ V.
Since x∗ is fixed point g, we have

(x∗, gmx) ∈ V. (2.12)

Since V ∈ V and x ∈ X were arbitrary, by (2.12) for all x ∈ X we obtain

gmx→ x∗. (2.13)

However, by the continuity of T and using (2.10) and (2.13) we have

T (x∗) = lim
m→∞

T (xm) = lim
m→∞

T (gm(x0)) = lim
m→∞

gm(T (x0)) = x∗. (2.14)

Therefore x∗ is the fixed point of T . We claim that x∗ is the unique fixed point of T .
Let Ty∗ = y∗. Take any V ∈ V and choose λ > 0 such that

(x∗, y∗) ∈ λV.
Then

(x∗, y∗) = (Tx∗, T y∗) ∈ αλV.
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Therefore after n steps, we get

(x∗, y∗) = (Tnx∗, Tny∗) ∈ αnλV.

Choose n so large that αnλ < 1. Then

(x∗, y∗) ∈ V.

Since V was arbitrary, it follows that x∗ = y∗. �

Corollary 2.1. Let (X,U) be a sequentially complete Hausdorff uniform space and
T : X → X satisfy

(Tnx, Tny) ∈ αnV if (x, y) ∈ V (2.15)

for all V ∈ V, n ≥ 1 and x, y ∈ X, where αn → 0. Then T has a unique fixed point.

Proof. Let 0 < α <
1

s
. Since αn → 0, choose n ∈ N so that αn < α. If V ∈ V and

(x, y) ∈ V , we have (Tnx, Tny) ∈ αnV and thus (Tnx, Tny) ∈ αV . Therefore by
our Acharya Type Theorem Tn has a unique fixed point z. That is Tn(z) = z and
Tn(T (z)) = T (z). This implies that T (z) = z. �

In the following corollary by F (T ) we mean the set of all fixed points of T .

Corollary 2.2. Let (X,U) be a sequentially complete Hausdorff uniform space and
T : X → X satisfy (2.1). Then, F (T ) = F (Tn) for each n ∈ N .

Proof. By our Acharya Type Theorem, F (Tn) is nonempty. Assume that z ∈ F (Tn)
for some n > 1. Suppose that z 6= Tz and V ∈ V be arbitrary. By Lemma 1.1, there
exists a positive number λ > 0 such that (z, Tz) ∈ λV = W . Using Condition (2.1),
we have (Tnz, Tn+1z) ∈ αnW . Since z ∈ F (Tn), we have

(z, Tz) ∈ αnW = αnλV.

Therefore after m steps, we get

(z, Tz) ∈ αmnλV.

Choose m so large that αmnλ < 1. Then (z, Tz) ∈ V. Since V was arbitrary, it follows
that z = Tz which is a contraction. Therefore z ∈ F (T ). �
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