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1. Introduction

Investigation of the existence of fixed points for single-valued mappings in partially
ordered metric spaces was initially considered by Ran and Reurings in [14] who proved
the following result:

Theorem 1.1. [14] Let (X,�) be a partially ordered set such that every pair x, y ∈ X
has an upper and lower bound. Let d be a metric on X such that (X, d) is a complete
metric space. Let f : X → X be a continuous monotone (either order preserving or
order reversing) mapping. Suppose that the following conditions hold:

(1) There exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ k d(x, y), for all x, y ∈ X such that x � y.

(2) There exists an x0 ∈ X with x0 � f(x0) or f(x0) � x0.

Then f is a Picard Operator (PO), that is f has a unique fixed point x∗ ∈ X and for
each x ∈ X, lim

n→∞
fn(x) = x∗.

After this, different authors considered the problem of existence of a fixed point for
contraction mappings in partially ordered metric spaces; see [2, 4, 7, 11] and references
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cited therein. Nieto, Pouso and Rodriguez-Lopez in [11] extended the ideas of [14] to
prove the existence of solutions to some differential equations.

Generalizing the Banach contraction principle for multivalued mappings, Nadler [10]
obtained the following result:

Theorem 1.2. Let (X, d) be a complete metric space. Denote by CB(X) the set of
all nonempty closed bounded subsets of X. Let F : X → CB(X) be a multivalued
mapping. If there exists k ∈ [0, 1) such that

H(F (x), F (y)) ≤ k d(x, y)

for all x, y ∈ X, where H is the Pompeiu-Hausdorff metric on CB(X), then F has a
fixed point in X, i.e., there exists x ∈ X such that x ∈ F (x).

Recently, two results have appeared, giving sufficient conditions for f to be a PO,
if (X, d) is endowed with a graph. The first result in this direction was given by
Jachymski and Lukawska [8, 9] which generalized the results of [4, 11, 12, 13] to
single-valued mapping in metric spaces with a graph instead of partial ordering. The
extension of Jachymaski’s result to multivalued mappings is done in [1].

It is well known that mixed monotone operators were initially considered by Guo
and Lakshmikantham [6]. Thereafter, different authors considered the problem of
existence of a fixed point for such mappings in Banach spaces and then in partially
ordered metric spaces, see for instance [5, 15]. The mixed monotone operator equation
is important for applications due to the existence of particular classes of integro-
differential equations and boundary value problems that are solved by such equations
[7].

The aim of this paper is two folds: first define the mixed G-monotone for both single
and multivalued mappings, second extend the conclusion of Theorem 1.1 to both cases
in metric spaces endowed with a graph.

2. Preliminaries

Let G be a directed graph (digraph) with set of vertices V (G) and set of edges E(G)
contains all the loops, i.e. (x, x) ∈ E(G) for any x ∈ V (G). Such digraphs are called
reflexive. We also assume that G has no parallel edges (arcs) and so we can identify
G with the pair (V (G), E(G)). By G−1 we denote the conversion of a graph G, i.e.,

the graph obtained from G by reversing the direction of edges. The letter G̃ denotes
the undirected graph obtained from G by ignoring the direction of edges. Actually,

it will be more convenient for us to treat G̃ as a directed graph for which the set of
its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

If x and y are vertices in a graph G, then a (directed) path in G from x to y of
length N is a sequence (xi)

i=N
i=0 of N + 1 vertices such that x0 = x, xN = y and

(xn−1, xn) ∈ E(G) for i = 1, ..., N . A graph G is connected if there is a directed path

between any two vertices. G is weakly connected if G̃ is connected.
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In the sequel, we assume that (X, d) is a metric space, and G is a reflexive digraph
(digraph) with set of vertices V (G) = X and set of edges E(G).

Definition 2.1. Let (X, d,G) be as described above.

(i) We say that a mapping F : X ×X → X has the mixed G-monotone property
if

(x1, x2) ∈ E(G) =⇒ (F (x1, y), F (x2, y)) ∈ E(G),

for all x1, x2, y ∈ X, and

(y1, y2) ∈ E(G) =⇒ (F (x, y2), F (x, y1)) ∈ E(G),

for all x, y1, y2 ∈ X.
(ii) The pair (x, y) ∈ X ×X is called a coupled fixed point of F : X ×X → X if

F (x, y) = x, and F (y, x) = y.

3. Main results

We begin with the extension of the main results of [3] to the case of metric spaces
endowed with a graph. Note that if G is a directed graph defined on X as described
before, one can construct another graph on X ×X, still denoted by G, by(

(x, y), (u, v)
)
∈ E(G)⇐⇒ (x, u) ∈ E(G) and (v, y) ∈ E(G),

for any (x, y), (u, v) ∈ X ×X.

Theorem 3.1. Let (X, d,G) be as above. Assume that (X, d) is a complete metric
space. Let F : X ×X → X be a continuous mapping having the mixed G-monotone
property on X. Assume there exists k < 1 such that

(BL) d(F (x, y), F (u, v)) ≤ k

2

[
d(x, u) + d(y, v)

]
,

for any (x, y), (u, v) ∈ X × X such that
(

(x, y), (u, v)
)
∈ E(G). If there exist

x0, y0 ∈ X such that
(

(x0, y0), (F (x0, y0), F (y0, x0))
)
∈ E(G), then there exists (x, y)

a coupled fixed point of F , i.e. F (x, y) = x and F (y, x) = y.

Proof. By assumption, there exist x0, y0 ∈ X such that

(x0, F (x0, y0)) ∈ E(G) and (F (y0, x0), y0) ∈ E(G).

Set x1 = F (x0, y0) and y1 = F (y0, x0). Then (x0, x1) ∈ E(G) and (y1, y0) ∈ E(G),
which implies

d
(
F (x0, y0), F (x1, y1)

)
≤ k

2

[
d(x0, x1) + d(y0, y1)

]
,

and

d
(
F (y1, x1), F (y0, x0)

)
≤ k

2

[
d(x0, x1) + d(y0, y1)

]
.

By induction, we construct two sequences {xn} and {yn} in X such that

(i) xn+1 = F (xn, yn), and yn+1 = F (yn, xn);
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(ii) d(xn, xn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
,

(iii) d(yn, yn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
,

for any n ≥ 1. From (ii) and (iii), we get

d(xn, xn+1) + d(yn, yn+1) ≤ k
[
d(xn−1, xn) + d(yn−1, yn)

]
,

for any n ≥ 1. Therefore, we must have

d(xn, xn+1) + d(yn, yn+1) ≤ kn
[
d(x0, x1) + d(y0, y1)

]
,

for any n ≥ 0. Hence from (ii), we get

d(xn, xn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
≤ k

2
kn−1

[
d(x0, x1) + d(y0, y1)

]
,

i.e., d(xn, xn+1) ≤ kn

2

[
d(x0, x1) + d(y0, y1)

]
, for any n ≥ 0. Similarly, we will get

d(yn, yn+1) ≤ kn

2

[
d(x0, x1) + d(y0, y1)

]
,

for any n ≥ 0. Since k < 1, we conclude that
∑

d(xn, xn+1) and
∑

d(yn, yn+1) are
convergent which imply that {xn} and {yn} are Cauchy sequences. Since (X, d) is
complete, there exist x, y ∈ X such that

lim
n→+∞

xn = x and lim
n→+∞

yn = y.

Since F is continuous, we get from (i) above

x = lim
n→+∞

xn+1 = lim
n→+∞

F (xn, yn) = F ( lim
n→+∞

xn, lim
n→+∞

yn) = F (x, y)

and similarly y = F (y, x), i.e., (x, y) is a coupled fixed point of F . �

Example 3.1. Let X = R, d(x, y) = |x− y| and F : X ×X → X be defined by

F (x, y) =
x + y

5
, (x, y) ∈ X ×X.

Let G be the reflexive digraph defined on X with ((x, y), (u, v)) ∈ E(G) if and only if
x ≤ u and v ≤ y. Then F is mixed G-monotone and satisfies condition (BL). Indeed,
let k = 2

3 then

d(F (x, y), F (u, v)) =

∣∣∣∣ (x + y)

5
− (u + v)

5

∣∣∣∣ =

∣∣∣∣ (x− u)

5
+

(y − v)

5

∣∣∣∣
≤ 1

5
(|x− u|+ |y − v|) ≤ 1

3
(|x− u|+ |y − v|)

=
2/3

2

[
d(x, u) + d(y, v)

]
,

for any (x, y), (u, v) ∈ X ×X such that
(

(x, y), (u, v)
)
∈ E(G).

Notice that ((0, 0), (0, 0)) ∈ E(G). So by Theorem 3.1 we have that F has a coupled



COUPLED FIXED POINTS OF MONOTONE MAPPINGS 37

fixed point (0, 0). To illustrate the proof of Theorem 3.1, let us consider

(x0, y0) = (0, 1), F (0, 1) = F (1, 0) =
1

5

(notice that ((0, 1), ( 1
5 ,

1
5 )) ∈ E(G)). Then xn = yn = 1

5 ( 2
5 )n−1 → 0 as n→∞. Thus

by Theorem 3.1 (0, 0) is a couple fixed point of F .

The continuity assumption of F may be relaxed as it was done by Nieto et al [11].
Indeed, we will say that (X, d,G) has property (*) if the following hold:

(i) for any {xn} in X such that (xn, xn+1) ∈ E(G) and lim
n→+∞

xn = x, then

(xn, x) ∈ E(G), and
(ii) for any {xn} in X such that (xn+1, xn) ∈ E(G) and lim

n→+∞
xn = x, then

(x, xn) ∈ E(G).

We have the following result.

Theorem 3.2. Let (X, d,G) be as above. Assume that (X, d) is a complete metric
space and (X, d,G) has property (*). Let F : X ×X → X be a mapping having the
mixed G-monotone property on X. Assume there exists k < 1 such that

(BL) d(F (x, y), F (u, v)) ≤ k

2

[
d(x, u) + d(y, v)

]
,

for any (x, y), (u, v) ∈ X ×X such that
(

(x, y), (u, v)
)
∈ E(G). If there exist x0, y0 ∈

X such that
(

(x0, y0), (F (x0, y0), F (y0, x0))
)
∈ E(G), then there exist (x, y) a coupled

fixed point of F .

Proof. As we did in the proof of Theorem 3.1, we construct {xn} and {yn} in X such
that

(i) xn+1 = F (xn, yn), and yn+1 = F (yn, xn);
(ii) (xn, xn+1) ∈ E(G) and (yn+1, yn) ∈ E(G);

(iii) d(xn, xn+1) ≤ k

2

[
d(xn, xn+1) + d(yn, yn+1)

]
,

(iv) d(yn, yn+1) ≤ k

2

[
d(xn, xn+1) + d(yn, yn+1)

]
,

for any n ≥ 0. Similar to the proof of Theorem 3.1, we conclude that {xn} and {yn}
are Cauchy. Since (X, d) is complete, then there exist x, y ∈ X such that

lim
n→+∞

xn = x and lim
n→+∞

yn = y.

The property (*) implies

(xn, x) ∈ E(G) and (y, yn) ∈ E(G),

for any n ≥ 0. Since F has the mixed G-monotone property on X, we get

d
(
F (xn, yn), F (x, y)

)
≤ k

2

[
d(xn, x) + d(yn, y)

]
,

and

d
(
F (yn, xn), F (y, x)

)
≤ k

2

[
d(xn, x) + d(yn, y)

]
,
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for any n ≥ 0. Hence

d
(
xn+1, F (x, y)

)
≤ k

2

[
d(xn, x) + d(yn, y)

]
,

and

d
(
yn+1, F (y, x)

)
≤ k

2

[
d(xn, x) + d(yn, y)

]
,

for any n ≥ 0. This imply

lim
n→+∞

xn = F (x, y) and lim
n→+∞

yn = F (y, x),

i.e., F (x, y) = x and F (y, x) = y. �

Under the assumptions of both Theorems 3.1 and 3.2, if assume that (x0, y0) ∈ E(G),
then we have x = y. Indeed, it is easy to see that for any u, v ∈ X such that
(u, v) ∈ E(G), then the condition (BL) implies

d(F (u, v), F (v, u)) ≤ k d(u, v).

This will imply that d(xn+1, yn+1) ≤ k d(xn, yn), for any n ≥ 0. In particular, we
have d(xn, yn) ≤ kn d(x0, y0), for ay n ≥ 0. Since k < 1, we conclude that

d(x, y) = lim
n→+∞

d(xn, yn) = 0, i.e., x = y.

Remark 3.1. In this remark, we discuss the uniqueness of the coupled fixed point.
Under the assumptions of both Theorems 3.1 and 3.2, let (x, y) and (u, v) be two

coupled fixed points of F . Assume that
(

(x, y), (u, v)
)
∈ E(G). Since F has the

mixed G-monotone property on X, we get

d(F (x, y), F (u, v)) ≤ k

2

[
d(x, u) + d(y, v)

]
,

and

d(F (v, u), F (y, x)) ≤ k

2

[
d(x, u) + d(y, v)

]
,

with k < 1. Since (x, y) and (u, v) are coupled fixed points of F , we get

d(x, u) ≤ k

2

[
d(x, u) + d(y, v)

]
, and d(y, v) ≤ k

2

[
d(x, u) + d(y, v)

]
,

which implies

d(x, u) + d(y, v) ≤ k
(
d(x, u) + d(y, v)

)
.

Hence d(x, u) + d(y, v) = 0, which yields (x, y) = (u, v). Moreover assume that there

exist x0, y0 ∈ X such that
(

(x0, y0), (F (x0, y0), F (y0, x0))
)
∈ E(G). Let (u, v) be a

coupled fixed point of F such that
(

(x0, y0), (u, v)
)
∈ E(G), then

d(F (x0, y0), F (u, v)) = d(F (x0, y0), u) ≤ k

2

[
d(x0, u) + d(y0, v)

]
,

and

d(F (v, u), F (y0, x0)) = d(v, F (y0, x0)) ≤ k

2

[
d(x0, u) + d(y0, v)

]
,
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since F has the mixed G-monotone property. If {xn} and {yn} are the two sequences
generated by x0, y0, F in the proof of both Theorems 3.1 and 3.2, then we have

d(xn+1, u) ≤ k

2

[
d(xn, u) + d(yn, v)

]
≤ kn

2

[
d(x0, u) + d(y0, v)

]
,

and

d(v, yn+1) ≤ k

2

[
d(xn, u) + d(yn, v)

]
≤ kn

2

[
d(x0, u) + d(y0, v)

]
,

for any n ≥ 1. Since k < 1, we get

lim
n→+∞

xn = u and lim
n→+∞

yn = v.

Therefore given x0, y0 ∈ X such that
(

(x0, y0), (F (x0, y0), F (y0, x0))
)
∈ E(G), there

exists a unique coupled fixed point (x, y) of F such that
(

(x0, y0), (x, y)
)
∈ E(G).

In the next section we discuss the multivalued version of the main results of this
section.

4. Coupled fixed points of multivalued monotone mappings

Let (X, d) be a metric space. We denote by CB(X) the collection of all nonempty
closed and bounded subsets of X. The Pompeiu-Hausdorff distance on CB(X) is
defined by

H(A,B) := max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)},

for A,B ∈ CB(X), where d(a,B) := inf
b∈B

d(a, b). Let F : X × X → CB(X) be a

multivalued mapping. We will say that F is continuous if for any sequences {xn} and
{yn} which converge respectively to x and y, we have

lim
n→∞

H(F (xn, yn), F (x, y)) = 0.

The following technical result is useful to explain our definition later on.

Lemma 4.1. Let (X, d) be a metric space. For any A,B ∈ CB(X) and ε > 0, we
have:

(i) for a ∈ A, there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε;

(ii) for b ∈ B, there exists a ∈ A such that

d(a, b) ≤ H(A,B) + ε.

Note that from Lemma 4.1, whenever one uses multivalued mappings which involves
the Pompeiu-Hausdorff distance, then one must assume that the multivalued map-
pings have bounded values. Otherwise, one has only to assume that the multivalued
mappings have nonempty closed values.

Let (X, d,G) be as before. We denote by C(X) the collection of all nonempty closed
subsets of X. Let F : X ×X → C(X) be a multivalued mapping. We will say that F
has the mixed G-monotone property on X if:
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(i) for any x1, x2, y ∈ X such that (x1, x2) ∈ E(G), for any u ∈ F (x1, y), there
exists v ∈ F (x2, y) such that (u, v) ∈ E(G);

(ii) for any x, y1, y2 ∈ X such that (y1, y2) ∈ E(G), for any u ∈ F (x, y2), there
exists v ∈ F (x, y1) such that (u, v) ∈ E(G);

The pair (x, y) ∈ X ×X is called a coupled fixed point of F : X ×X → C(X) if

x ∈ F (x, y), and y ∈ F (y, x).

The multivalued version of the condition (BL) may be stated as

Definition 4.1. The multivalued mapping F : X ×X → C(X) is said to satisfy the
condition (MBL) if there exists k < 1 such that for any (x, y), (u, v) ∈ X × X with(

(x, y), (u, v)
)
∈ E(G), and for any a ∈ F (x, y) there exists b ∈ F (u, v) such that

(MBL) d(a, b) ≤ k

2

[
d(x, u) + d(y, v)

]
.

Next we give an analogue result of Theorem 3.1 to the case of mixed G-monotone
multivalued mappings in metric spaces.

Theorem 4.1. Let (X, d,G) be as above. Assume that (X, d) is a complete metric
space. Let F : X×X → CB(X) be a continuous multivalued mapping having the mixed
G-monotone property on X and satisfying (MBL) condition. If there exist x0, y0 ∈ X

and x1 ∈ F (x0, y0), y1 ∈ F (y0, x0) such that
(

(x0, y0), (x1, y1)
)
∈ E(G), then there

exists (x, y) a coupled fixed point of F .

Proof. By assumption, there exist x0, y0 ∈ X and x1 ∈ F (x0, y0), y1 ∈ F (y0, x0) such

that
(

(x0, y0), (x1, y1)
)
∈ E(G). Then (x0, x1) ∈ E(G) and (y1, y0) ∈ E(G). Since

F satisfies the (MBL) condition, then there exists x2 ∈ F (x1, y1) and y2 ∈ F (y1, x1)
with

d
(
x1, x2

)
≤ k

2

[
d(x0, x1) + d(y0, y1)

]
,

and

d
(
y1, y2

)
≤ k

2

[
d(x0, x1) + d(y0, y1)

]
.

By induction, we construct two sequences {xn} and {yn} in X such that

(i) xn+1 ∈ F (xn, yn), and yn+1 ∈ F (yn, xn);

(ii) d(xn, xn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
,

(iii) d(yn, yn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
,

for any n ≥ 1. As we did in the proof of Theorem 3.1, we have

d(xn, xn+1) ≤ kn

2

[
d(x0, x1) + d(y0, y1)

]
,

and

d(yn, yn+1) ≤ kn

2

[
d(x0, x1) + d(y0, y1)

]
,
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for any n ≥ 1. Since k < 1 we conclude that
∑

d(xn, xn+1) and
∑

d(yn, yn+1) are
convergent which imply that {xn} and {yn} are Cauchy sequences. Since (X, d) is
complete, then there exist x, y ∈ X such that

lim
n→+∞

xn = x and lim
n→+∞

yn = y.

Since F is continuous, we get

lim
n→∞

H(F (xn, yn), F (x, y)) = 0.

Since xn+1 ∈ F (xn, yn), Lemma 4.1 implies the existence of bn ∈ F (x, y) such that

d(xn+1, bn) ≤ H(F (xn, yn), F (x, y)) +
1

n
,

for any n ≥ 1. Clearly, we have lim
n→∞

bn = x. Since F (x, y) is closed, we conclude that

x ∈ F (x, y). Similarly, we will show that y ∈ F (y, x), i.e., (x, y) is a coupled fixed
point of F . �

Example 4.1. Let X = R, d(x, y) = |x− y| and F : X ×X → CB(X) be defined by

F (x, y) =

{
−x + y

5
,
x + y

5

}
, (x, y) ∈ X ×X.

Let G be the reflexive digraph defined on X with ((x, y), (u, v)) ∈ E(G) if and only
if x ≤ u and v ≤ y. Then F is mixed G-monotone and satisfies condition (MBL).
Indeed, let k = 2

3 and for any u ∈ F (x.y) take v = u ∈ F (y, x), then

0 = d(u, v) ≤ 1

5
(|u− x|+ |v − y|) ≤ 1

3
(|u− x|+ |v − y|) =

2/3

2

[
d(u, x) + d(v, y)

]
,

for any (x, y), (u, v) ∈ X×X with
(

(x, y), (u, v)
)
∈ E(G). Notice that ((0, 0), (0, 0)) ∈

E(G). So by Theorem 4.1 we have that F has a coupled fixed point (0, 0). To illustrate
the proof of Theorem 4.1, let us consider (x0, y0) = (0, 1), if u = −1

5 ∈ F (0, 1) take

v = −1
5 (notice that ((0, 1), (−15 , −15 )) ∈ E(G)). Then xn = yn = −1

5 ( 2
5 )n−1 → 0 as

n→∞. Thus by Theorem 4.1 (0, 0) is a couple fixed point of F .

As we did in the single valued case, the continuity assumption of F can be relaxed
using property (*). We have the following result.

Theorem 4.2. Let (X, d,G) be as above. Assume that (X, d) is a complete metric
space and (X, d,G) has property (*). Let F : X×X → C(X) be a multivalued mapping
having the mixed G-monotone property on X and satisfying (MBL) condition. If there

exist x0, y0 ∈ X and x1 ∈ F (x0, y0), y1 ∈ F (y0, x0) such that
(

(x0, y0), (x1, y1)
)
∈

E(G), then there exist (x, y) a coupled fixed point of F .

Proof. As we did in the proof of Theorem 3.1, we construct {xn} and {yn} in X such
that

(i) xn+1 ∈ F (xn, yn), and yn+1 ∈ F (yn, xn);
(ii) (xn, xn+1) ∈ E(G) and (yn+1, yn) ∈ E(G);

(iii) d(xn, xn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
,
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(iv) d(yn, yn+1) ≤ k

2

[
d(xn−1, xn) + d(yn−1, yn)

]
,

for any n ≥ 1. Clearly both sequences {xn} and {yn} are Cauchy. Since (X, d) is
complete, then there exist x, y ∈ X such that

lim
n→+∞

xn = x and lim
n→+∞

yn = y.

The property (*) implies

(xn, x) ∈ E(G) and (y, yn) ∈ E(G),

for any n ≥ 1. Since F has the mixed G-monotone property on X, there exist
x∗n ∈ F (x, y) and y∗n ∈ F (y, x) with

d(xn+1, x
∗
n) ≤ k

2

[
d(xn, x) + d(yn, y)

]
,

and

d(yn+1, y
∗
n) ≤ k

2

[
d(xn, x) + d(yn, y)

]
,

for any n ≥ 1. This will imply

lim
n→+∞

d(xn+1, x
∗
n) = 0 and lim

n→+∞
d(yn+1, y

∗
n) = 0.

Therefore, we have
lim

n→+∞
x∗n = x and lim

n→+∞
y∗n = y.

Since F (x, y) and F (y, x) are closed, we conclude that x ∈ F (x, y) and y ∈ F (y, x),
i.e., (x, y) is a coupled fixed point of F . �
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