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Abstract. Let A be a unital algebra, let X be a unital .A-module for which X, is a p-complete
modular space and let f : A — X, be a mapping. We present some observations concerning
hyperstability of the following functional equations

nf (52) s (F52) = ). ot f(an) = 2ma £(0) + 20y @)

forall z,y € Aand all p € Ty, = {e*?; 0 < 0 < 2n/ng}, where m,n > 0 with m 4+ n # 0 are fixed
integers.
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1. INTRODUCTION AND PRELIMINARIES

Let A be an algebra over the real or complex field F, let X be a left A-module
and let m,n > 0 with m + n # 0 be some fixed integers. Then an additive mapping
d: A— X is called a module left (m,n)-derivation if

(m + n)d(xy) = 2mz - d(y) + 2ny - d(zx)

for all z,y € A. Clearly, module left (m,n)-derivations are one of the natural gener-
alizations of module left derivations (the case m = n). In the last few decades a lot of
work has been done in the field of left derivations (see, for example [33, 34] and the
references therein). Recently also (m,n)-derivations were defined and investigated
[1, 7, 8, 35, 36].

That notion of stability, for functional equations, has arisen in connection with
a problem of Ulam [32] and a solution to it published by Hyers [10]. This work
started an avalanche in the theory of stability theory of functional equations, and
since then many results have been obtained in this field, studying the Ulam-Hyers
stability of differential and integral equations, etc. We should mention also the work
of Rassias, who generalized this notion of stability in [28], proving the Ulam-Hyers-
Rassias stability of the Cauchy additive functional equation. A very good and deep
insight to this theory can be found in [5, 11, 12]. Let us mention that a functional
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equation is called hyperstable if every approximately solution is an exact solution of it.
It seems that the first well known hyperstability result appeared in [3] and concerned
some ring homomorphisms.

The stability result concerning derivations between operator algebras was first ob-
tained by Semrl [31]. Badora [2] and Miura et al. [21] considered the Bourgin-
type hyperstability of ring derivations on Banach algebras. Also, Park et al.
[6, 9, 15, 18, 23, 26, 27] studied the stability and hyperstability of linear deriva-
tions and Lie derivations. In [13] Jung examined the stability and hyperstability of
module left derivations. Recently, Fosner studied the stability of a functional inequal-
ity associated with module left (m,n)-derivations [7]. Also, Sadeghi et al. [4, 29, 30]
studied the stability of some functional equations in modular spaces.

In this paper, we study the stability and hyperstability of linear module (m,n)-
derivations from a unital algebra to a unital module by using the Khamsi fixed point
theorem in modular spaces [14].

The notion of modular spaces, as a generalization of that of metric spaces, was
introduced by Nakano in 1950 [24] and was intensively developed by Luxemburg [19],
Koshi and Shimogaki [16] and Yamamuro [37] and their collaborators. Moreover, the
theory of modulars and modular spaces is extensively applied, in particular, in the
study of various Orlicz spaces [25] and interpolation theory [17, 20], which in their
turn have broad applications [22].

Definition 1.1. Let X be a real (or complex) vector space. A functional p : X —
[0, 0] is called a modular if for every z,y € X, the following hold:

(i) p(x) =0 if and only if z =0,

(ii) p(ax) = p(x) for every scaler a with |a| =1,

(iil) p(ax + By) < p(z) + p(y) provided that « + =1 and o, 5 > 0.

If we replace (iii) by

(iii) p(az + By) < ap(x) + Bp(y) if a+ B =1 and o, B > 0,
then the modular p is called a convex modular.

Remark 1.2. If ¢ and b are positive real numbers with a < b, then property (iii)
shows that

plaz) = p (Fbx) = p (Fbw + (1= 3)0) < p(ba) + p(0) = p(ba)

for all x € X. If ay, ..., a, are nonnegative numbers with

n

then for all z1,...,xz, € X,

The vector space X, given by X, = {xr € X': p(Az) -0 as A — 0} is called a
modular space. Generally, the modular p is not subadditive and therefore does not
behave as a norm or a distance. However, the modular space &, can be equipped
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with an F-norm defined by

||9L‘Hp:inf{)\>0: p(%) S)\}.

If p is convex modular, then

|||, = inf{)\ >0: (;) < 1}

defines a norm on the modular space X, and is called the Luxemburg norm.
Definition 1.3. A function modular is said to satisfy the As—condition if there exists
M > 0 such that p(2z) < Mp(z) for all z € X,.

If p is a convex modular on X and |a| < 1, then p(az) < ap(z) and also

plr) < 5p(20) < o)

if p satisfy the As—condition for all z € X.
Definition 1.4. Let X, be a modular space.
(i) A sequence {z,} in X, is said to be
(1) pconvergent to x € X, if p(x, —x) — 0 as n — oo (denoted by p—nli_>n;o Tp =1

or Tn, SN z, the xz, is p—convergent to ),
(2) p—Cauchy if p(z, — z;m) — 0 as n,m — 0.
(ii) &, is p-complete if any p-Cauchy sequence is p-convergent.
(i) Say that p has the Fatou property if p(z) < liminf,,_, p(z, ) whenever z,, - x.
Example 1.5. Let A, be a modular space, then the function d, defined on &, x X,
by
0 T =y,

Aoly) { o) +oy) x4y,
is a generalized metric and (X, d,) is a generalized metric space.
Example 1.6. Let ¢ be a convex, nondecreasing and continuous function defined
on the interval such that ¢(0) = 0, ¢(a) > 0 for a > 0, p(a) — o0 as a — oo.
The function ¢ is called an Orlicz function. The Orlicz function ¢ satisfies the Ag—
condition if there exists M > 0 such that ¢(2a) < Mp(«) for all o > 0. Let (2, %, u)
be a measure space. Suppose L°(u) is the space of all measurable real-valued (or
complex-valued) functions on €. Define for every f € L°(u) the Orlicz modular

pcp(f) as
polf) = /Q ().

The associated modular function space with respect to this modular is called an Orlicz
space, and will be denoted by L?(2, u) or briefly L#. In other words,

L ={feL’n: p,(\f)—0as\— 0}

It is known that the Orlicz space L¥ is p,—complete. Moreover, (L¥,||.||,,) is a
Banach space, where the Luxemburg norm |||, is defined as follows

£, =inf{A>0: /so('ﬁ') i < 1}.
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The following fixed point theorem will play an important role in proving our main
theorems.
Theorem 1.7. ([14]) Let C be a p—complete nonempty subset of X, and let T : C — C
be a quasi-contraction, that is, there exists K < 1 such that

p(T'(z) —T(y)) < Kmax{p(z —y), p(x —T(z)), p(y —T(y)), p(x = T(y)), ply — T(x))}.
Let x € C such that

dp(x) = sup{p(T"(z) —T™(x)) : m,n € N} < cc.

Then {T™(x)} p—converges to a point w € C. Moreover, if p(w — T'(w)) < oo and
plx — T(w)) < oo, then the p-limit of T™(x) is a fized point of T. Furthermore, if

*

w* is any fized point of T in C such that p(w — w*) < oo, then one has w = w*.

2. APPROXIMATELY LINEAR MODULE LEFT (m, TL)—DERIVATIONS

In the rest of this paper, unless otherwise explicitly stated, we will assume that
A is an algebra, X' is a A-module for which &, is a p-complete modular space, m
and n are nonnegative integers with m + n # 0 and ng € N is a positive integer and
suppose that Ty, = {e?; 0 < 0 < 27m/ng} and the convex modular p has the Fatou
property such that it satisfies the As—condition with 0 < M < 2. For convenience,
we use the following abbreviations for a given mapping f: A — X,

Auf (w,y) == pf (m;—y) +uf (m _y) — f(uz),

2

for all z,y € A and all p € Ty y,,.
Theorem 2.1. Let f : A — X, be a mapping for which there are functions ¢ :
Ax A—1[0,00) and ¢ : Ax A— [0,00) such that

p(Auf(2,y) < d(z,y), (2.1)
P (Am,nf (x, y)) < ¢(I7 y), (2'2)
Jim 2%¢(2ka:,2ky) =0,  lim 4%¢(2kx,2ky) =0 (2.3)

for all x,y € A and all pp € Ty . If there exists 0 < L < 1 such that
¢(2x,0) < 2L¢(z,0)

for all x € A, then there exists a unique linear module left (m,n)-derivation D : A —
X, such that

p(f ()~ D) < 1 0(,0) (24)
for allx € A.
Proof. Consider the set 20 := {g : A — &,} and introduce the mapping p on 2 as
follows,

Alg) = inffe > 0 plg(x)) < cd(z,0)}.

By the same method as in the proof of Theorem 2.1 in [29], we conclude that p
is convex modular and satisfies the As—condition with 0 < M < 2. Also, 205 is
p—complete.
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Now, we define the mapping A : 205 — 205 as follows
(Ag)(z) :==29(%), forall g € W5 and = € A.

Let g,h € 205 and let ¢ € [0,00] be an arbitrary constant with p(g — h) < c. We
obtain

plg(x) = h(z)) < cd(x,0)
for all x € A. By the assumption and the last inequality, we get

p(222) b

: : ) < 2 o(g20) — h(20)) < fc¢(2x 0) < Leg(z, 0)

-2

for all z € A. Hence, p(Ag — Ah) < Lp(g — h) for all g,h € 25, so A is a p-strict
contraction.
Substituting y = 0 and p =1 in (2.1), we obtain

p(2f(5) — F@) < 6(x,0) (2.5)
for all z € A. Letting x = 2z in (2.5), we get
p(2f (x) — f(22)) < ¢(22,0)

for all z € A. Since p is convex modular, we obtain

p (1@ - 82) < Lot2r @) - f20) < jot200) < Lotw0)  (20)

for all x € A. Let = 2x in (2.6) and then divide both sides by 2 to yield

0 (f -1 (;x)> < $L6(21,0) < I*6(r,0) (27)

[\

for all z € A. Tt follows from (2.6) and (2.7) that

o (f @) -1 @) < $p(2f (2) — F(21)) + 5p (f<2x> i (2%))

22

< Lo(x,0) + L*¢(x,0)

for all x € A. By induction we obtain

p (f(:v) ) ZW (,0) < —qs(x 0) (2.8)

for all z € A. Now we assert that

55(f) =sup {p (A" f — A’f);k, L €N)} < cc.
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Since p is convex modular and satisfies the Ay—condition, it follows from (2.8) that

p (122 - 18D < L (210 - 2L52) + o (210 - 1520)

Yo - 150) - 152)

2L
< =
< 2.0
for all x € A and k,¢ € N, which implies that ﬁ(Akf — Aef) < % for all k£,¢ € N.
Thus, d5(f) < oo and {A*f} is p-converges to D € Wj. Since p has the Fatou
property, (2.8) gives p(AD — f) < co.
Let x = 22 in (2.6) and then divide both sides by 2* to yield

k{E k—i—lx
p(f(; ) e )) <l <f ) - L (Qkﬂx))

< S0(28,0) < S QL) o(x,0) < L p(,0)
< 9(,0)

for all z € A. So, p(AD—D) < oco. It follows from Theorem 1.7 that p-limit of {A* f}
is fixed point of map A.
It follows from (2.1) that

1 1 1
p (2,6Auf (2%,2%)) < i (Buf (22,2%)) < o1

for all z,y € A and all u € Ty,,,. Using (2.3) we see that the limit of the right hand
side of the above inequality is zero when k — oco. So, A,D (z,y) =0 for all z,y € A
and all u € Ty/,,. Putting p=1in A,D (z,y) = 0, we have

D(x;y>+p<z2y> = D(x),

for all z,y € A. Setting © = z+y and y = = — y in the last equality gives D(z +y) =
D(z)+ D(y) for all z,y € A, that is, D is additive. So by A,D (z,y) = 0, we can get

p(2Fz,2%y)

D(ux) = %,u'D (x+y)+ %MD (z—y)

for all z,y € A and all u € Ty . Putting y = 0 in the last equality gives
D(px) = pD (z)

for all z € A and all p € Ty/,,. Now, let u = e € T, (ie, ng = 1). We set
v=e¢?m thusv e T1/n, and

D(pz) = D(w™x) =v™D(z) = uD(x)

forall z € Aand all p € Ty. If p € jTy := {jA : A € Ty}, then by additivity of D,
D(pz) = pD(z) for all x € A and all p € jT;. If o € (0,00), then by archimedean
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property there exists a natural number j such that the point («, 0) lies in the interior
of circle with center at origin and radius j. Let

B=a++\j2—a?1i
y=a—+/j2—a?i.

Then 3,7 € jT; and o = 237, Thus

and

ﬁ;rvx) _ 5;72)@

for all z € A and all o € (0,00). Now, if y € C, then p = |u|e’’ and so
D) = D(|le”s) = |ule®D(x) = jD(x)

D(ax) =D( = aD(x)

for all z € A and all u € C. So, the mapping D is C-linear.
It follows from (2.2) that

1 1 1
P (22]€Am,nf (2k$72ky)) S QTkp (Amﬂlf (Qkx, Qky)) S 2Tk (Qkx,Qky)

for all z,y € A. Using (2.3) we see that the limit of the right hand side of the above
inequality is zero when k — co. So, A, D (z,y) = 0, that is, D is a linear module
left (m, n)-derivation.

It follows from (2.8) that p(f — D) < t£+. i.e., the inequality (2.4) holds true for
all v € A.

Also, if G is another fixed point of A, then

F(D — ) < Sp(2AD —27) + L7(2AG — 27)
M M _
S;P(AD_JC)“‘?P(AQ—JC)
<£<oo
~—1-L ’

Since A is p-strict contraction, we get
p(D —G) =p(AD — AG) < Lp(D — G),

which implies that p(D — G) = 0 or D = G since p(D — G) < oo, which proves the
uniqueness of D. This completes the proof.

Corollary 2.2. Let A be a normed algebra, let B be a Banach algebra and let 0 <
r < 1 and & be nonnegative real numbers. If f : A — B is a mapping such that

1Auf (@ w) | < e(llz]" + [lyl"), [Amnf (@ y) | <elz]” - yl”

for all x,y € A and all p € Ty,p,, then there exists a unique linear module left
(m, n)-derivation D : A — B such that

|f@) = D@ < g llzlI

forallx € A.
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Proof. Tt is known that every normed space is modular space with the modular
p(z) = ||z|| and M = 2. Now, the proof follows from Theorem 2.1 by taking

oz, y) = e(llz]" + llyll")
and
Y(z,y) =ellz|" - lylI"
for all z,y € A and putting L = 2"~ 1.
Now, we formulate and prove a theorem in hyperstability of linear module left
(m, n)-derivations.
Theorem 2.3. Let A be a unital algebra and let X be a unital A-module for which

X, is a p—complete modular space. Suppose f: A — X, is a mapping for which there
is a function ¢ : A x A — [0,00) satisfying (2.1) and

p(Amnf (r,y)) < d(z,y), (2.9)
Jim. 2%¢(2km,2ky) =0 (2.10)

for all x,y € A and all p € Tyyp,. If there exists 0 < L < 1 such that ¢(2x,0) <
2Lp(x,0) for all z € A, then f is a linear module left (m,n)-derivation.

Proof. Notice that m and n are nonnegative integers with m + n # 0, without loss of
generality, let us assume m # 0. Based on the proof of Theorem 2.1, we can find the
linear module left (m, n)-derivation D given by

1
= — 1i k = — i _ k
D(z) =p— lim A"f(z) =p— lim o7 f(2"2)
for all x € A. Tt follows from (2.9) and (2.10) that

k
=i (P k) - ) - G f24)) =0

k—o0 2k
for all z,y € A. Since D is a linear module left (m, n)-derivation, we have
2mz - D(y) + 2ny - D(z) = (m + n)D(xy) = 2ma - f(y) + 2ny - D(x)

for all 2,y € A. Therefore, mz - D(y) = ma - f(y) for all z,y € A. If x = e, we have
f =D, hence f is a linear module left (m, n)-derivation.
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