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1. Introduction

Due to their intensive applications in the modeling of many phenomena in vari-
ous fields of science and engineering, Fractional Differential Equations (FDEs) have
attracted the attention of a great deal of investigators in the last decade. Actually,
the theory of FDEs has been rapidly developed, see the monographs of Kilbas et al.
[14], Kilbas and Trujillo [15, 16], Lakshmikantham et al. [17], Miller and Ross [18],
Srivastava and Saxena [23], Podlubny [22], Agarwal et al. [1], and so we can encounter
in the literature several new results dealing with the FDEs such as in viscoelasticity,
electrochemistry, control, porous media, etc. (see [9, 11, 13, 21] and the references
therein).

Regarding the impulsive fractional differential equations (IFDE), we mention that
they are nowadays an important tool for various mathematical models such as in phys-
ical and mathematical sciences. Due to their effectiveness, impulsive conditions have
been used in specific models dealing with rapid changes which cause the discontinuity
of the solution in a finite or infinite increasing temporal moments. For this reason
several mathematicians are investigating the properties of solutions of such problems;
unfortunately, most of the developed results are studied in the finite interval [0, T ], see
[3, 4, 7, 19]. For instance in [10], the authors studied the existence and uniqueness of
a class of impulsive fractional differential equations on J = [0, T ] and they introduced
a new formula of solutions for an impulsive Cauchy problem with Caputo’s fractional
derivative by applying fixed point methods.
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As far as we are involved in the study of impulsive fractional equations we must
point out that Lemma 2.6 used in [10] to obtain the equivalence between an impulsive
fractional problem and an integral equation is not correct as we see in the following
counter-example:

Let us consider the function described on page 48 of the famous book of B. Nagy and
F. Riesz [20] which is an example of a monotonic continuous function F : [0, 1]→ R,
not constant in any subinterval of [0, 1] and satisfies F ′ = 0, almost everywhere in
[0, 1]. So, in terms of Caputo’s derivative we would have formally for any α ∈ (0, 1)

CDα
0+F (t) =

1

Γ (1− α)

∫ t

0

(t− s)−α F ′ (s) ds = 0, t ∈ [0, 1]

F (a) = F0, (0 < a < 1), F0 being the value of F at a.

However, there is no apparent equivalence between this problem and the fractional
integral representation of F defined in Lemma 2.6 [10], otherwise the function F (t)
would be constant and equal to F0 throughout the interval [0, 1] which is a contradic-
tion! Furthermore, since in the same work Lemma 2.7 is based on Lemma 2.6 then it
is not correct and may lead to apparent contradictions... For further details see the
recent paper of A. Bouzaroura and S. Mazouzi [8]. The reader may find in the recent
comments about the concept of impulsive fractional differential equations of [24] that
the proposed approach in [10] is incorrect.

Our main contribution in this paper is the study of new multi-orders fractional
problems in a finite dimensional normed space (X, ‖. ‖) such as either the Euclidean
space Rn or Cn subject to some impulsive conditions, namely


CDαk

t+k
y(t) = A(t)y(t) + f(t, y(t)), t ∈ Jk = (tk, tk+1], k = 0, 1, ...,

y(0) = y0 ∈ X,
y(t+k ) = y(t−k ) + Ik(y(t−k )), k ≥ 1,

(1.1)

where CDαk

t+k
is the Caputo’s fractional derivative of order αk ∈ (0, 1), k = 0, 1, ...;

J0 = [0, t1]; Jk = (tk, tk+1], for k = 1, ...; and y0 is a given initial value in X. On the
other hand, A : J = [0,+∞)→ B(X), where B(X) is the Banach space of bounded
linear operators on X into itself, f : J×X → X and Ik : X→X are given continuous
functions, 0 = t0 < t1 < ... < tm < tm+1 < ... Finally, y(t+k ) = lim

h→0+
y(tk + h) and

y(t−k ) = lim
h→0−

y(tk + h) represent the right and left limits of y(t) at t = tk.

Let us first anticipate our study by a concrete example of such a problem in R in
a finite interval [0, T ], T > 1, namely


CD

1/2
0+ y (t) = t2 − 1, t ∈ J0 = [0, 1] ,

CD
1/3
1+ y (t) = t2 − 2t+ 1, t ∈ J1 = (1, T ] ,

y (0) = 1,
y (1+) = y (1) + 2.

(1.2)
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First, we look for a piecewise continuous function y : [0, 1] → R satisfying (1.2).
Solving the subproblem {

CD
1/2
0+ y (t) = t2 − 1, t ∈ J0,

y (0) = 1,

we get

y (t) = 1 +
1

Γ (1/2)

∫ t

0

(t− s)−1/2
s2ds− 1

Γ (1/2)

∫ t

0

(t− s)−1/2
ds

= 1 +
16

15
√
π
t5/2 − 2√

π
t1/2,

so that y (1) = 1− 14
15
√
π
.

Next, solving the subproblem{
CD

1/3
1+ y (t) = t2 − 2t+ 1, t ∈ J1,

y (1+) = y (1) + 2 = 3− 14
15
√
π
,

we find

y (t) = y
(
1+
)

+
1

Γ (1/3)

∫ t

1

(t− s)−2/3
(s− 1)

2
ds

= 3− 14

15
√
π

+
27

14Γ (1/3)
(t− 1)

7/3
.

Thus, the piecewise continuous function

y (t) =

{
1 + 16

15
√
π
t5/2 − 2√

π
t1/2, t ∈ J0,

3− 14
15
√
π

+ 27
14Γ(1/3) (t− 1)

7/3
, t ∈ J1,

is a solution to the impulsive fractional problem (1.2).
In view of these new ideas we intent to extend in this paper recent results on frac-

tional differential equations on unbounded domains, for instance those of Benchohra
et al. in [2, 6] established in the absence of impulses, as well as those of K. Balachan-
dran et al. in [5] considered in a Banach space but only for the finite interval [0, T ].
We point out that using the Schauder’s fixed point theorem combined with the diag-
onalization process the authors in [2, 6] proved the existence of bounded real-valued
solutions of some fractional order differential equation on the half-ray J = [0,+∞).

The paper is organized as follows, in section 2 we introduce some basic definitions
and notations, and give some necessary lemmas that will be used throughout this
paper. In section 3 we state and prove our main results. Finally, in the last section
we give a concrete example that illustrates the existence result established in Theorem
3.1.

2. Preliminaries

Let R+ = [0, ∞) and let I be an arbitrary interval of R; we denote by C(I,X)
the linear space of all continuous functions y : I → X.

First, we introduce the Caputo’s fractional derivative as defined in the reference
[14]. We have
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Definition 2.1. We define the left-sided fractional Riemann-Liouville integral of or-
der α ∈ (0, 1) of a function f : [a, b]→ X as follows

Jαa+f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t > a.

We define the left-sided fractional derivative of order α ∈ (0, 1) of a function f :
[a, b]→ X in the sense of Caputo by

CDα
a+f(t) =

1

Γ(1− α)

∫ t

a

(t− s)−αf
′
(s)ds, t > a.

Remark 2.1. We point out that the above integrals are understood in the sense of
Bochner and we assume that the function f satisfies the necessary conditions for
which those integrals are well defined.

We set

J0 = [0, t1] ; Jk = (tk, tk+1], k = 1, ... and mn = max{k ∈ N, tk < n}, for n ≥ 1+[t1] ,

and for each n ≥ 1 + [t1], we introduce the Banach space

PC([0, n] , X) =

{
y : [0, n]→ X : y ∈ C(Jk ∩ [0, n] , X), k = 1, ...,mn,
y(t+k ) and y(t−k ) exist, y(t−k ) = y(tk, ), k = 1, ...,mn

}
,

equipped with the norm

‖y‖n = sup
t∈[0,n]

‖y(t)‖.

We need the following hypotheses:
(H0) {αk}k≥0 ⊂ (0, 1). We set α = sup

k≥0
{αk} and Γ′ = inf

k≥0
{Γ(αk + 1)} .

(H1) f : J ×X → X is a continuous function.
(H2) There exist a continuous bounded function P : J → R+ and a continuous
nondecreasing function ϕ : J → R+ such that

‖f(t, u)‖ ≤ P (t)ϕ(‖u‖), t ∈ J, u ∈ X, (2.1)

and

p∗ =

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1P (s)ds <∞.

We put ‖P‖∞ = sup
t≥0
|P (t)|.

(H3) A : J → X is continuous and satisfies the estimate

‖A(t)‖B(X) ≤ a(t), t ≥ 0,

for some continuous bounded function a : J → R+ such that

a∗ =

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1a(s)ds <∞.

We set ‖a‖∞ = sup
t≥0
|a(t)|.
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(H4) The functions Ik : X → X are continuous and there exists a sequence of positive
numbers {λk}k≥1 such that

‖Ik(u)‖ ≤ λk, u ∈ X,

and

Λ =
∑
k≥1

λk <∞;

(H5) There exists a constant ρ > 0 such that

‖y0‖+ Λ + a∗ρ+ p∗ϕ(ρ) ≤ ρ. (2.2)

Next, consider the impulsive differential equation of fractional multi-orders
CDαk

t+k
y(t) = A(t)y(t) + f(t, y(t)), t ∈ Jk ∩ [0, n] , k = 0, 1, ...,mn,

y(0) = y0 ∈ X,
y(t+k ) = y

(
t−k
)

+ Ik(y(t−k )), k = 1, 2, ...,mn.

(2.3)

To be more rigorous we define a solution to the problem (2.3) as follows

Definition 2.2. A function y ∈ PC([0, n] , X) is said to be a solution to the problem
(2.3) if CDαk

tk+
y (t) exists for t ∈ Jk ∩ [0, n], for each k = 0, ...,mn and satisfies the

equation CDαk
tk+

y(t) = A(t)y(t) + f(t, y(t)) for t ∈ Jk ∩ [0, n], for each k = 0, ...,mn

and the conditions{
y(0) = y0 ∈ X,
y(t+k ) = y

(
t−k
)

+ Ik(y(t−k )), k = 1, 2, ...,mn.
(2.4)

Next, we state and prove a useful equivalence between problem (2.3) and certain
integral equation.
Let h ∈ C(R+, X) and consider the fractional differential equation

CDαk
tk+

y(t) = h(t), t ∈ Jk ∩ [0, n] , k = 0, ...,mn (2.5)

We refer to (2.5)-(2.4) as (pb), we have the following result:

Lemma 2.1. A function y ∈ PC([0, n] , X) is a solution to the problem (pb) if and
only if it satisfies the following integral equation

y(t) =



y0 + 1
Γ(α0)

t∫
0

(t− s)α0−1h(s)ds , t ∈ [0, t1]

y0 +
k∑
i=1

1
Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1h(s)ds

+ 1
Γ(αk)

t∫
tk

(t− s)αk−1h(s)ds+
k∑
i=1

Ii(y(t−i )), t ∈ Jk ∩ [0, n] , k = 1, ...,mn.

(2.6)

Proof. Let y be a solution to problem (pb) and let t ∈ [0, t1], then we have

y(t) = y0 +
1

Γ(α0)

t∫
0

(t− s)α0−1h(s)ds.
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If t ∈ (t1, t2] ∩ [0, n], then

y(t) = y(t+1 ) +
1

Γ(α1)

t∫
t1

(t− s)α1−1h(s)ds

= y(t1) + I1(y(t−1 )) +
1

Γ(α1)

t∫
t1

(t− s)α1−1h(s)ds

= y0 + I1(y(t−1 )) +
1

Γ(α0)

t1∫
0

(t1 − s)α0−1h(s)ds

+
1

Γ(α1)

t∫
t1

(t− s)α1−1h(s)ds.

If t ∈ (t2, t3] ∩ [0, n], then we get once again

y(t) = y(t+2 ) +
1

Γ(α2)

t∫
t2

(t2 − s)α2−1h(s)ds

= y(t−2 ) + I2(y(t−2 )) +
1

Γ(α2)

t∫
t2

(t− s)α2−1h(s)ds

= y0 + I1(y(t−1 )) + I2(y(t−2 )) +
1

Γ(α0)

t1∫
0

(t1 − s)α0−1h(s)ds

+
1

Γ(α1)

t2∫
t1

(t2 − s)α1−1h(s)ds+
1

Γ(α2)

t∫
t2

(t− s)α2−1h(s)ds,

and more generally, if t ∈ Jk ∩ [0, n] , k = 1, ..,mn, then we get

y(t) = y0 +

k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1h(s)ds

+
1

Γ(αk)

t∫
tk

(t− s)αk−1h(s)ds+

k∑
i=1

Ii(y(t−i )).

Conversely, assume that y satisfies (2.6). If t ∈ [0, t1] ∩ [0, n], then y(0) = y0.
Next, since the Caputo’s derivative of a constant is zero, then we merely obtain
CDαk

tk+
y(t) = h(t), t ∈ Jk ∩ [0, n] , k = 0, 1, ..,mn. On the other hand, one can easily

verify that
y
(
t+k
)

= y (tk) + Ik(y(t−k )), k = 1, ...,mn,

which completes the proof. �
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The next Theorem is a piecewise continuous version of the famous Ascoli-Arzela’s
theorem. It is essentially needed in the proof of our main result.

Theorem 2.1. [25] Let X be a Banach space and W a subset of PC([0, n] , X).
Then W is relatively compact if the following conditions are satisfied:
(i) W is a uniformly bounded subset of PC([0, n] , X);
(ii) W is equicontinuous in (tk, tk+1), k = 0, 1, ...,mn, where t0 = 0, tmn+1

= n;

(iii) W(t) = {u(t) | u ∈ W, t ∈ J∗n}, W(t+k ) = {u(t+k ) : u ∈ W} and W(t−k ) =

{u(t−k ) : u ∈ W} are relatively compact subsets of X, where J∗n = [0, n] \ {tk}mn+1

k=0 .

3. Main results

We will establish in this section the global existence of at least one bounded so-
lution to the problem (1.1) by using Schauder’s fixed point theorem combined with
certain continuation process based on Arzela-Ascoli’s Theorem. Our main result is
the following

Theorem 3.1. If the hypotheses (H1)− (H5) are satisfied, then problem (1.1) has at
least one bounded solution y ∈ PC(J,X).

Proof. The proof will be given in two parts:
Part I. We begin by showing that problem (2.3) has a solution

yn ∈ PC([0, n] , X)

satisfying ‖yn‖n ≤ ρ, for any n ≥ 1 + [t1]. We set

Φ(t, y(t)) = A(t)y(t) + f(t, y(t)),

and for each t ∈ Jk ∩ [0, n], k = 0, 1, ...,mn, we define the mapping

F : PC([0, n] , X)→ PC([0, n] , X)

by

(Fy)(t) =



y0 + 1
Γ(α0)

t∫
0

(t− s)α0−1Φ(s, y(s))ds , t ∈ [0, t1],

y0 +
k∑
i=1

1
Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1Φ(s, y(s))ds

+ 1
Γ(αk)

t∫
tk

(t− s)αk−1Φ(s, y(s))ds+
k∑
i=1

Ii(y(t−i )),

t ∈ Jk ∩ [0, n] , k = 1, ...,mn.

Our main goal is to show that the mapping F has a fixed point which is a solution
to the problem (2.3). Indeed, let

C ={y ∈ PC([0, n] , X), ‖y‖n ≤ ρ},

be the closed ball of PC([0, n] , X) centered at 0 and with radius ρ defined in (H5).
It is clear that C is a closed and convex subset of PC([0, n] , X).
We proceed in several steps:
Step 1. F maps C into itself.
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Let y ∈ C, then for t ∈ [0, t1], we have

‖(Fy)(t)‖ ≤ ‖y0‖+
1

Γ(α0)

t∫
0

(t− s)α0−1‖Φ(s, y(s))‖ds

≤ ‖y0‖+ a∗ρ+ p∗ϕ(ρ)

≤ ρ.

Moreover, for each t ∈ Jk ∩ [0, n], k = 0, 1, ...,mn, we have

‖(Fy)(t)‖ ≤ ‖y0‖+

k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1‖Φ(s, y(s))‖ds

+
1

Γ(αk)

t∫
tk

(t− s)αk−1‖Φ(s, y(s))‖ds+

k∑
i=1

‖Ii(y(t−i ))‖

≤ ‖y0‖+ Λ +

k+1∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1‖Φ(s, y(s))‖ds

≤ ‖y0‖+ Λ +

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1‖Φ(s, y(s))‖ds

≤ ‖y0‖+ Λ + ρ

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1a(s)ds

+ ϕ(ρ)

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1P (s)ds

≤ ‖y0‖+ Λ + a∗ρ+ p∗ϕ(ρ).

Thus

‖Fy‖n ≤ ‖y0‖+ Λ + a∗ρ+ p∗ϕ(ρ) ≤ ρ, (3.1)

showing that FC ⊂ C.
Step 2. Let us prove that F is continuous. Indeed, consider a sequence {yq}q≥1

such that yq → y, in PC([0, n] , X), when q →∞. Then, for any t ∈ [0, t1], we have

‖(Fyq)(t)− (Fy)(t)‖ ≤ 1

Γ(α0)

t∫
0

(t− s)α0−1‖Φ(s, yq(s))− Φ(s, y(s))‖ds

≤ nα

Γ′
( sup
s∈[0,n]

‖A(s)(yq(s))− y(s))‖

+ sup
s∈[0,n]

‖f(s, yq(s))− f(s, y(s)))‖).
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Since f and A are continuous, then

‖Fyq −Fy‖n → 0, q →∞.

Next, for each t ∈ Jk ∩ [0, n], k = 1, ...,mn, we have

‖(Fyq)(t)− (Fy)(t)‖ ≤
k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1‖Φ(s, yq(s))− Φ(s, y(s))‖ds

+
1

Γ(αk)

t∫
tk

(t− s)αk−1‖Φ(s, yq(s))− Φ(s, y(s))‖ds

+

k∑
i=1

‖Ik(yq(t
−
k ))− Ik(y(t−k ))‖

≤ (mn + 1)nα

Γ′
( sup
s∈[0,n]

‖A(s)(yq(s))− y(s))‖

+ sup
s∈[0,n]

‖f(s, yq(s))− f(s, y(s)))‖)

+
k∑
i=1

‖Ii(yq(t−i ))− Ii(y(t−i ))‖.

The continuity of the functions f, A, Ii, for i = 1, ..., k, implies that

‖Fyq −Fy‖n → 0, q →∞,

which establishes the continuity of F .
Step 3. F maps C into an equicontinuous family of PC([0, n] , X).
Let 0 < τ1 < τ2 < t1 and y ∈ C, then

‖(Fy)(τ2)− (Fy)(τ1)‖ ≤ 1

Γ(α0)

τ1∫
0

|(τ2 − s)α0−1 − (τ1 − s)α0−1|‖Φ(s, y(s))‖ds

+
1

Γ(α0)

τ2∫
τ1

(τ2 − s)α0−1‖Φ(s, y(s))‖ds

≤ ‖a‖∞‖y‖+ ‖P‖∞ϕ(‖y‖)
Γ(α0)

τ1∫
0

|(τ2 − s)α0−1 − (τ1 − s)α0−1|ds

+
‖a‖∞‖y‖+ ‖P‖∞ϕ(‖y‖)

Γ(α0)

τ2∫
τ1

(τ2 − s)α0−1ds.

Hence

‖(Fy)(τ2)− (Fy)(τ1)‖ ≤ ‖a‖∞ρ+ ‖P‖∞ϕ(ρ)

Γ′
(τα0

1 − τ
α0
2 + 2(τ2 − τ1)α0).
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Obviously, the right-hand side of the above inequality tends to zero as τ1 −→ τ2,
therefore FC is equicontinuous in the interval [0, t1].
More generally, regarding the interval Jk ∩ [0, n], k = 1, ...,mn, if y ∈ C, then for
every τ1, τ2 satisfying tk < τ1 < τ2 < tk+1, we obtain the following estimate

‖(Fy)(τ2)− (Fy)(τ1)‖ ≤ ‖a‖∞ρ+ ‖P‖∞ϕ(ρ)

Γ′
(ταk

1 − ταk
2 + 2(τ2 − τ1)αk)

+
∑

τ1≤ti≤τ2

‖Ii(y(t−i ))‖,

which shows once again that FC is equicontinuous in the interval Jk ∩ [0, n], for
k = 1, ...,mn.
Thanks to the finite dimension assumption of X condition (iii) of Theorem 2.1 is
obviously satisfied. As a consequence of the steps 1-3 together with the fact that X
is of finite dimension we conclude by the PC-type Arzela-Ascoli theorem that F is
completely continuous.
Accordingly, in virtue of Schauder’s fixed point theorem F has a fixed point yn in C
which is a bounded solution to the problem (2.3) satisfying

‖yn‖n ≤ ρ.

Next, in order to extend the foregoing existence result from the finite interval Jn, n ≥
1 + [t1] to the positive half ray we use certain continuation process which can be
described as follows:
Part II. Continuation process. Let {nj}j≥0 be an increasing sequence of integer
numbers satisfying

n0 = 0 < n1 < n2 < ... < nj < ... ↑ ∞.
For each j ∈ N∗, we define the function uj(t) as follows:

uj(t) =

{
yj(t), t ∈ [0, nj ]

yj(nj), t ∈ [nj , ∞),
(3.2)

where yj(t) is the piecewise continuous solution on the interval [0, nj ] obtained in the
above steps. It is easy to see that

‖uj‖n1
≤ ρ, j ∈ N∗,

and for each j ∈ N∗, uj satisfies the following integral equation for t ∈ Jk∩[0, n1], k =
1, 2, ...,mn1

uj(t) = y0 +

k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1Φ(s, uj)ds

+
1

Γ(αk)

t∫
tk

(t− s)αk−1Φ(s, uj)ds +

k∑
i=1

Ii(uj(t
−
i )).

Following the above steps we can prove that the sequence {uj}j≥1 is relatively compact
in PC([0, n1], X), so there is an infinite proper subset N1 of N∗ and a function
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v1 ∈ PC([0, n1], X) such that

uj → v
1

in PC([0, n1], X), as j →∞, (through N1).

We notice that

‖uj‖n2
≤ ρ, j ∈ N1,

and since the sequence {uj(t), j ∈ N1} is relatively compact in PC([0, n2], X), then
there exists an infinite proper subset N2 of N1 and a function v

2
∈ PC([0, n2], X)

such that

uj → v2 in PC([0, n2], X), as j →∞, (through N2).

Continuing in this way we obtain a sequence of decreasing subsets {Nl}l≥1 satisfying

Nl+1 ⊂ Nl, for every l ≥ 1, and a sequence of piecewise continuous functions {vl}l≥1

such that, for each l = 1, 2, ..., we have
(1) vl ∈ PC([0, nl], X),
(2) {uj , j ∈ Nl} → vl in PC([0, nl], X), as j →∞, (through Nl),
(3) vl+1 = vl on the interval [0, nl] since Nl+1 ⊂ Nl,
(4) For each l ∈ N∗, the subsequence {uj , j ∈ Nl} satisfies the following integral
equation

uj(t) = y0 +

k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1Φ(s, uj)ds (3.3)

+
1

Γ(αk)

t∫
tk

(t− s)αk−1Φ(s, uj)ds+

k∑
i=1

Ii(uj(t
−
i )),

for every t ∈ Jk ∩ [0, nl].
Next, define a function y : J = [0,∞)→ X as follows{

y(0) = y0

y(t) = vl(t), t ∈ (nl−1, nl], l = 1, 2, ...
(3.4)

It follows that y ∈ PC(J,X) and ‖y(t)‖ ≤ ρ, t ∈ J . Furthermore, letting j →∞ in
(3.3), we obtain the following integral equation

vl(t) = y0 +

k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1Φ(s, vl(s))ds (3.5)

+
1

Γ(αk)

t∫
tk

(t− s)αk−1Φ(s, vl(s))ds +

k∑
i=1

Ii(vl(t
−
i )),
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for every t ∈ Jk ∩ [0, nl]. Now since we have vl(s) = y(s), for every s ∈ (nl−1, nl],
l = 1, 2, ..., then equation (3.5) merely becomes

y(t) = y0 +

k∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1Φ(s, y(s))ds

+
1

Γ(αk)

t∫
tk

(t− s)αk−1Φ(s, y(s))ds+

k∑
i=1

Ii(y(t−i )), t ∈ Jk ∩ [0, nl]

from which we infer that y satisfies problem (1.1). Accordingly, y is a piecewise
continuous bounded solution to the given problem which completes the proof of the
main theorem. �

Here is a concrete example illustrating the above global existence theorem.

4. Example

Let αk = 1
2 −

1
3+k , k = 0, 1, ... and consider the problem

CDα0

t+0
y(t) = e−t/2

5 y(t) + e−t

10 |y(t)|1/2, t ∈ J0 = [0, π]

y(0) = 1/6,
CDαk

t+k
y(t) = e−t/2

5 y(t) + e−t

10 |y(t)|1/2, t ∈ Jk = (kπ, (k + 1)π]

y((kπ)+) = y(kπ)− |y(kπ)|
k2(4+|y(kπ)|) , k = 1, 2, ...

(4.1)

Here

A(t)x =
e−t/2

5
x, f(t, x) =

e−t

10
|x|1/2, for every (t, x) ∈ J × R,

Ik(t) = − t

k2(4 + t)
, λk =

1

k2
, k = 1, 2, ...

It is clear that hypotheses (H0)− (H3) are satisfied with

a(t) =
e−t/2

5
, P (t) =

e−t

10
, ϕ(|u|) = |u(t)|1/2, ‖P‖∞ =

1

10
, ‖a‖∞ =

1

5
.

On the other hand, we have

p∗ =
1

10

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1e−sds

≤ 1

10

∞∑
i=1

e−(i−1)π

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1ds ≤ 0.231 56 <∞.

Proceeding in the same manner we find that

a∗ =
1

5

∞∑
i=1

1

Γ(αi−1)

ti∫
ti−1

(ti − s)αi−1−1e−
s
2 ds ≤ 0.349 63 <∞.
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In addition, we have

Λ =
∑
k≥1

λk =
∑
k≥1

1

k2
=
π2

6
<∞.

Regarding condition (H5) we notice that we have

‖y0‖+ Λ + a∗ρ+ p∗ϕ(ρ) ≤ 1

6
+
π2

6
+ 0.349 63ρ+ 0.231 56

√
ρ ≤ ρ,

which is satisfied for any ρ ≥ 3.45. Since all the assumptions of Theorem 3.1 are
satisfied, then problem (4.1) has a bounded global solution on J .
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