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Abstract. Arkowitz and Brown [2] presented the system of four axioms characterizing the reduced
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1. Introduction

In recent years there appeared many papers characterizing the Lefschetz number
and related invariants in an axiomatic way. Arkowitz and Brown [2] show that the
Lefschetz number in the category of spaces of the homotopy type of finite, connected
CW -complexes is the unique function which satisfies four natural axioms. Their
approach is a generalization of the characterization of the Euler characteristic given
by Watts in [17]. Later, Gonçalves and Weber [5] extend this approach to the case of
the equivariant Lefschetz number. Moreover, they give also a similar axioms uniquely
characterizing the Reidermeister trace and its equivariant version. Another paper by
Furi, Pera and Spaldini [4] presents a system of axioms which characterizes the local
fixed point index, a more general invariant which is a localized version of the Lefschetz
number. Note that the axioms in [4] are simpler then the one presented in [2], but
authors of [4] work in the category of differentiable manifolds. Staecker [14] and [15]
generalized it to the coincidence theory and the Reidemeister trace on topological
manifolds. There is also a paper [10] by Hadwiger, where the author characterizes
the Euler characteristic in the context of lattice valuations. Recently, Staecker [16]
generalized this approach to the case of the Lefschetz number.

In this paper we show that the number of axioms characterizing the Lefschetz
number presented in [2] is not minimal. Only three axioms are needed in such a
characterization. Suitable analog of our system of axioms also can be applied to the
case of equivariant Lefschetz number, so the number of axioms presented in [5] can
also be reduced to three.
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The main goal of this paper is considering the case of multivalued maps. Precisely,
we investigate the reduced Lefschetz number in a category which morphisms are
equivalence classes of specific diagrams which are closely related to multivalued maps.
Górniewicz and Granas [9] such a category call “category of morphisms”. Let D
denote the category of spaces of the homotopy type of finite, connected CW -complexes
and morphisms in the sense of [9]. Given a morphism ϕ ∈ M(X,X) in the category

D, we define the reduced Lefschetz number L̃m(ϕ) and show that in D the system

of axiom characterizing L̃m is similar to the one characterizing the reduced Lefschetz
number of single-valued maps.

For k ≥ 1, denote by
∨k

S1 the wedge of k copies of the 1-sphere S1. Write

ej : S1
j →

∨k
S1 for the inclusion map into the j-th summand and pj :

∨k
S1 → S1

for the projection map onto the j-th summand for j = 1, . . . , k. Then, we characterize
the reduced Lefschetz number L̃m as follows.

Theorem 1.1. The reduced Lefschetz number L̃m is the unique function λ̃ from
the set of self-morphisms of spaces in D to the integers that satisfies the following
conditions:
(i) (Homotopy equivalence axiom) If ϕ ∈ M(X,X) and h : X → Y is a homotopy

equivalence with homotopy inverse k : Y → X, then λ̃(ϕ) = λ̃(hϕk);
(ii) (Cofibration axiom) Let A be a subcomplex of X. If ϕ ∈ M(X,X) is such that
ϕ(A) ⊆ A and morphisms ϕ′ ∈M(A,A) and ϕ̄ ∈M(X/A,X/A) are induced by ϕ,

A X X/A

A X X/A

i // π //

i // π //

ϕ′

��

ϕ

��

ϕ̄

��

then λ̃(ϕ) = λ̃(ϕ′) + λ̃(ϕ̄);

(iii) (Wedge of circles axiom) If ϕ ∈M
(∨k

S1,
∨k

S1
)

for k ≥ 1, then

λ̃(ϕ) = −(deg(ϕ1) + · · ·+ deg(ϕk)),

where ϕj = pjϕej.

The paper is organized as follows. In Section 2 we show that only three axioms
are needed in a characterization of the reduced Lefschetz number of single-valued
maps. Section 3 takes into account basic definitions related to multivalued maps.
We precisely explain what the category D is and recall its main properties. Then, in
Section 4 we present the proof of Theorem 1.1. In Section 5 we make a comment about
an extension of the system of axioms defining the Lefschetz number to a category of
some spaces of finite type.

2. Axioms for the Lefschetz number of single-valued maps

Let C be the category of spaces of the homotopy type of finite, connected CW -
complexes and continuous single-valued maps. Arkowitz and Brown show in [2] that
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the reduced Lefschetz number is characterized by four axioms. That number of axioms
is not minimal. We show that it is possible to use only three other axioms in such a
characterization. Namely we prove

Theorem 2.1. The reduced Lefschetz number L̃ is the unique function λ̃ from the
set of self-maps of spaces in C to the integers that satisfies the following conditions:
(i) (Homotopy equivalence axiom) If f : X → X is a map and h : X → Y is a homo-

topy equivalence with a homotopy inverse k : Y → X, then λ̃(f) = λ̃(hfk);
(ii) (Cofibration axiom) If A is a subcomplex of X and A→ X → X/A is the resulting
cofiber sequence, and if there exists a commutative diagram

A X X/A

A X X/A,

// //

// //

f ′

��

f

��

f̄

��

then λ̃(f) = λ̃(f ′) + λ̃(f̄);

(iii) (Wedge of circles axiom) If f :
∨k

S1 →
∨k

S1 is a map, k ≥ 1, then

λ̃(f) = −(deg(f1) + · · ·+ deg(fk)),

where fj = pjfej.

Recall that the famous Lefschetz Fixed Point Theorem states that if X is a suf-
ficiently nice space and f : X → X is a continuous map, such that L(f) 6= 0, where
L(f) denotes the Lefschetz number of f , then f has a fixed point. Note that the
reduced Lefschetz number is the Lefschetz number minus 1. Therefore, as an easy
consequence of Theorem 2.1, we get a characterization of the Lefschetz number by
three axioms.

Corollary 2.2. The Lefschetz number L is the unique function λ from the set of
self-maps of spaces in C to the integers that satisfies the following conditions:
(i) (Homotopy equivalence axiom) If f : X → X is a map and h : X → Y is a homo-
topy equivalence with a homotopy inverse k : Y → X, then λ(f) = λ(hfk);
(ii) (Cofibration axiom) If A is a subcomplex of X and A→ X → X/A is the resulting
cofiber sequence, and if there exists a commutative diagram

A X X/A

A X X/A,

// //

// //

f ′

��

f

��

f̄

��

then λ(f) = λ(f ′) + λ(f̄)− 1;

(iii) (Wedge of circles axiom) If f :
∨k

S1 →
∨k

S1 is a map, k ≥ 1, then

λ(f) = 1− (deg(f1) + · · ·+ deg(fk)),
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where fj = pjfej.

The difference between the system of axioms listed in Theorem 2.1 and the one
from [2] is that we replace the commutativity and homotopy axioms by the homotopy
equivalence axiom. To prove Theorem 2.1 we need to do some modifications in the
Arkowitz and Brown approach [2]. First observe that the commutativity axiom is not
used directly in the proof of [2, Theorem 1.1], but it plays an important role in proofs
of [2, Lemmas 3.1, 3.2 and 3.3]. Because of the above observation, to prove Theorem
2.1 it is enough to make some changes in lemmas from [2] and then show that the
homotopy axiom is a consequence of our axioms.

Observe that [2, Lemma 3.1] is the homotopy equivalence axiom. The result [2,
Lemma 3.2] is needed to prove [2, Lemma 3.3]. We can rewrite it in the following
form.

Lemma 2.3. If X is contractible and f : X → X, then λ̃(f) = 0.

Proof. Let {∗} be a single point space and id{∗} : {∗} → {∗} the unique identity map.

Then by the cofibration axiom λ̃(id{∗}) = 0 (see the proof of [2, Lemma 3.2]). The
space X is contractible, so the constant map h : X → {∗} is a homotopy equivalence.
Given x ∈ X, the map k : {∗} → X defined by k(∗) = x is a homotopy inverse of

h. Now, the homotopy equivalence axiom implies λ̃(f) = λ̃(hfk) = λ̃(id{∗}) = 0,
because hfk = id{∗}. �

The proof of [2, Lemma 3.3] needs only easy modifications, so we omit it. Now, we
show that the homotopy axiom is a consequence of our axioms.

Lemma 2.4. If f, g : X → X are homotopic then λ̃(f) = λ̃(g).

Proof. Let h : X × I→ X × I be a fat homotopy between f and g, where I = [0, 1] is
the unit interval. Write CX = X × I/X × {0} for the cone of X and h̄ : CX → CX
for the map induced on CX by h. Then we have a commutative diagram

X X × I CX

X X × I CX.

// //

// //

f

��

h

��

h̄

��

The cone CX is contractible, so Lemma 2.3 leads to λ̃(h̄) = 0 and we have λ̃(f) = λ̃(h)

by the cofibration axiom. Similarly, we show that λ̃(g) = λ̃(h). Summing up we get

λ̃(f) = λ̃(g) and the proof is completed. �

Now, the proof of Theorem 2.1 can be done similarly to that of [2, Theorem 1.1].
Moreover, we can make appropriate changes in Gonçalves and Weber approach, to
get the analog of [5, Theorem 3.1]. Let G be a finite group.

Theorem 2.5. Let λ̃G be a function from the set of G-equivariant endomorphisms of
finite based G-CW -complexes to the Burnside ring A(G) that satisfies the following
axioms:
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(i) (G-Homotopy equivalence axiom) If f : X → X is an equivariant map and h : X →
Y is a G-homotopy equivalence with G-homotopy inverse k : Y → X, then λ̃G(f) =

λ̃G(hfk);
(ii) (Cofibration axiom) If A is a sub-G-CW -complex of X and A→ X → X/A is the
resulting cofiber sequence, and if there exists a commutative diagram

A X X/A

A X X/A,

// //

// //

f ′

��

f

��

f̄

��

then λ̃G(f) = λ̃G(f ′) + λ̃G(f̄);

(iii) (Wedge of circles axiom) If f :
∨k
i=1G/Hi × S1 →

∨k
i=1G/Hi × S1 for k ≥ 1,

then

λ̃G(f) = −(inc(f, c1)[G/H1] + · · ·+ inc(f, ck)[G/Hk]),

where inc(f, ci) is the incidence number for the cell ci with i = 1, . . . , n. Then the

function λ̃G coincides with the reduced equivariant Lefschetz number L̃G.

3. The category of morphisms

Now we recall some basic information about the category of morphisms. More
details one can find in [8] or [11]. In this section we consider only paracompact
spaces.

Let X be a paracompact space. Denote by Hk(X) the k-th Čech cohomology group
with compact carriers of space X with coefficients in the field of rational numbers Q.
Write H∗(X) = {Hk(X)}.

A space X is called acyclic, if:
(i) Hk(X) = 0 for all k ≥ 1;
(ii) H0(X) = Q.

A continuous map p : X → Y is called perfect, provided p is closed and p−1(y) is
compact for all y ∈ Y . The following two propositions will be usefull later.

Proposition 3.1 ([12]). Let p : X → Y be a perfect map. If Y is compact, then X is
compact.

Proposition 3.2 ([1]). Every continuous mapping of a compact space X into Haus-
dorff space Y is closed.

A continuous map p : X → Y is called a Vietoris map, provided the following
conditions hold:
(i) p : X → Y is a perfect surjection;
(ii) the set p−1(y) is acyclic for all y ∈ Y .

Now, we recall some important properties of Vietoris maps.

Proposition 3.3 ([11]). If p : X → Y is a Vietoris map and B ⊆ Y , then the map
p′ : p−1(B)→ B given by p′(x) = p(x) for every x ∈ p−1(B) is a Vietoris map too.
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Proposition 3.4 ([11]). If p1 : X → Y and p2 : Y → Z are Vietoris maps, then so
is the composition p2p1 : X → Z.

Theorem 3.5 (Vietoris, Bagle, [11]). If X and Y are paracompact spaces and p : X →
Y is a Vietoris map, then the induced homomorphism p∗ : H∗(Y ) → H∗(X) is an
isomorphism.

Consider a diagram

X1 Y X2
q // poo

and its pullback

X1 X1 ×Y X2 X2,
q̄ //p̄oo

where X1 ×Y X2 = {(x1, x2) ∈ X1 × X2 | q(x1) = p(x2)} and p̄(x1, x2) = x1,
q̄(x1, x2) = x2 for (x1, x2) ∈ X1 ×X2.

Proposition 3.6 ([11]). In the situation above, if p is a Vietoris map, then p̄ is a
Vietoris map too.

Let D(X,Y ) denote the set of all diagrams of the form

X Γ Y,
q //poo

where p is a Vietoris map and q is a continuous map. A diagram like the above
we denote by (p, q). Given two diagrams (p, q), (p′, q′) ∈ D(X,Y ) we write (p, q) '
(p′, q′) if there exists a homeomorphism h : Γ→ Γ′ such that the following diagram is
commutative

Γ

Y

Γ′.

X

q

��

q′

??

p

��

p′

__ h

��

The relation ' is an equivalence relation and elements of the quotient M(X,Y ) =
D(X,Y )/ ' are called morphisms. If ϕ ∈ M(X,Y ) is represented by the diagram
(p, q), then we write ϕ = [p, q].

If ϕ ∈ M(X,Y ) and ψ ∈ M(Y,Z) are morphisms represented by pairs (p, q) and
(p′, q′) respectively, then we have a commutative diagram

X Γ Y Γ′ Z

Γ×Y Γ′.

poo q // p′oo q′ //

q̄

??

p̄

__

According to Propositions 3.4 and 3.6 the composition pp̄ is a Vietoris map. Define
ψϕ ∈ M(X,Z) by ψϕ = [pp̄, q′q̄]. This definition does not depend on the choice of
the diagrams (p, q) and (p′, q′).



AXIOMS FOR THE LEFSCHETZ NUMBER 393

Paracompact spaces and morphisms considered above constitute a category. The
cohomology functor extends over this category. A morphism ϕ ∈ M(X,Y ) induces
a homomorphism H∗(ϕ) = ϕ∗ : H∗(Y ) → H∗(X) given by ϕ∗ = (p∗)−1q∗. The
homomorphism ϕ∗ does not depend on the choice of the diagram (p, q). If ϕ ∈
M(X,Y ) and ψ ∈M(Y,Z), then (ψϕ)∗ = ϕ∗ψ∗.

Let D be a category of spaces of the homotopy type of finite, connected CW -
complexes and morphisms in the above sense. If X ∈ D and ϕ ∈ M(X,X), then we

define the reduced Lefschetz number of ϕ by L̃m(ϕ) = L̃((p∗)−1q∗), where L̃((p∗)−1q∗)
denotes the reduced Lefschetz number of the homomorphism (p∗)−1q∗. This definition
does not depend on the choice of the diagram (p, q) representing ϕ.

Recall that if X, Y and Γ are metric spaces, then a morphism ϕ ∈ M(X,Y )
determines a multivalued u.s.c. map ϕ : X ( Y given by ϕ(x) = q(p−1(x)), where
p−1 denotes the multivalued inverse function of p.

If A ⊆ X and ϕ ∈ M(X,Y ), then by ϕ(A) we denote a subset of Y given by
ϕ(A) = q(p−1(A)).

Observe that, we can identify a single-valued map f : X → Y with a morphism
f ∈M(X,Y ) represented by the diagram

X X Y.
f //idXoo

This implies that for two singlevalued maps f : Z → X, g : Y → Z and a morphism
ϕ ∈M(X,Y ), we have well defined compositions ϕf ∈M(Z, Y ) and gϕ ∈M(X,Z).

Morphisms ϕ0, ϕ1 ∈ M(X,Y ) are called homotopic if there exists a morphism
ϕ ∈ M(X × I, Y ), called a homotopy, such that ϕij = ϕj , where ij : X → X × I
is given by ij(x) = (x, j) for j = 0, 1 and x ∈ X. Then a homotopy relation is an
equivalence relation in M(X,Y ). Denote by M [X,Y ] the set of all homotopy classes
of M(X,Y ).

We have very useful properties which connect the sets M [X,Y ] and [X,Y ], where
[X,Y ] denotes the set of all homotopy classes of singlevalued maps from X to Y .

Proposition 3.7 ([11]). Let X,Y ∈ D and ϕ ∈ M(X,Y ), ϕ = [p, q]. If there exists
a singlevalued map f : X → Y such that the following diagram

Γ Y

X

p

��

q //

f

??

is homotopically commutative (i.e., fp and q are homotopic as single-valued maps),
then morphisms ϕ and f are homotopic.

Proposition 3.8 ([11]). Let X,Y ∈ D and Y be homotopically simple (i.e., Y is
n-simple for any n ≥ 1). If ϕ ∈ M(X,Y ), then there exists a map f : X → Y
such that ϕ and f are homotopic. Therefore, there is a one-to-one correspondence
M [X,Y ]↔ [X,Y ].
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Denote by ΣX the suspension of a space X. As an easy consequence of Propositions
3.1 and 3.2 we get the following proposition.

Proposition 3.9. If Y is a compact space and p : X → Y is a Vietoris map, then
Σp : ΣX → ΣY is a Vietoris map too.

Let X be a compact space and ϕ ∈M(X,Y ) be represented by a diagram

X Γ Y.
q //poo

Then we define a suspension of ϕ by Σϕ ∈ M(ΣX,ΣY ) which is a morphism repre-
sented by a diagram

ΣX ΣΓ ΣY.
Σq //Σpoo

This definition does not depend on the choice of the diagram (p, q) representing ϕ.

4. The Proof of Theorem 1.1

The main goal of this section is to prove Theorem 1.1. First, we show that the
reduced Lefschetz number on morphisms of D has required properties.

Proposition 4.1. If ϕ ∈ M(X,X) and h : X → Y is a homotopy equivalence with

homotopy inverse k : Y → X, then L̃m(ϕ) = L̃m(hϕk).

Proof. We have

L̃m(hϕk) = L̃(k∗(p∗)−1q∗h∗) = L̃((p∗)−1q∗h∗k∗) = L̃((p∗)−1q∗) = L̃m(ϕ).

Here, the second equality is a consequence of the commutativity of the trace function
in the category of graded vector spaces and the third one follows from the equality
h∗k∗ = idH∗(Y ). �

To state the cofibration property we need the following lemma.

Lemma 4.2. Let A be a subcomplex of X and ϕ ∈ M(X,X) be represented by a
diagram (p, q). If ϕ(A) ⊆ A, then ϕ induces morphisms ϕ′ ∈ M(A,A) and ϕ̄ ∈
M(X/A,X/A) given by diagrams

A p−1(Γ) A,
q′ //p′oo

X/A Γ/p−1(A) X/A,
q̄ //p̄oo

where p′ and q′ are restrictions of p and q respectively and p̄ and q̄ are maps induced
by p and q on the quotient spaces.

Proof. We have to show that p′ and p̄ are Vietoris maps. Proposition 3.3 implies that
p′ is Vietoris. It is easy to see that p̄−1(x) is acyclic and compact for all x ∈ X/A



AXIOMS FOR THE LEFSCHETZ NUMBER 395

(because p−1(x) is acyclic and compact for all x ∈ X). Now, we show that p̄ is closed.
Consider a commutative diagram

XΓ

X/A,Γ/p−1(A)

p //

π

��

π̄

��
p̄ //

where π and π̄ are quotient maps. Let K be a closed subset of Γ/p−1(A). Then
Z = π̄−1(K) is closed in Γ because π̄ is continuous. We have p̄(K) = p̄π̄(Z) = πp(Z).
The set p(Z) is compact because p is perfect and X is compact CW-complex. This
implies that πp(Z) is compact, so p̄(K) = πp(Z) is closed in X/A and the proof is
finished. �

Proposition 4.3. Let A be a subcomplex of X. If ϕ ∈M(X,X) is such that ϕ(A) ⊆
A, then L̃m(ϕ) = L̃m(ϕ′) + L̃m(ϕ̄), where ϕ′ ∈ M(A,A) and ϕ̄ ∈ M(X/A,X/A) are
induced by ϕ.

Proof. If ϕ = [p, q], ϕ′ = [p′, q′] and ϕ̄ = [p̄, q̄], then we have a commutative diagram

A X X/A

p−1(A) Γ Γ/p−1(A)

A X X/A,

� � i // π //

p′

OO

p

OO

p̄

OO

q′

��

q

��

q̄

��
� � i // π //

� � ī // π̄ //

where i, ī are inclusions and π, π̄ are quotient maps. This diagram induced the fol-
lowing commutative diagram

0 // H̃0(X/A)

ϕ̄0

��

// H0(X)

ϕ0

��

// H0(A)

ϕ′0

��

// H1(X/A)

ϕ̄1

��

// . . .

0 // H̃0(X/A) // H0(X) // H0(A) // H1(X/A) // . . .

. . . // HN (X/A) //

ϕ̄N

��

// HN (X)

ϕN

��

// HN (A)

ϕ′N

��

// 0

. . . // HN (X/A) // HN (X) // HN (A) // 0,
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where N is the dimension of X. The result [2, Theorem 2.1] implies that L̃(ϕ∗) =

L̃(ϕ′∗) + L̃(ϕ̄∗) and as a consequence we get L̃m(ϕ) = L̃m(ϕ′) + L̃m(ϕ̄). �

If ϕ ∈M(S1, S1), then we define a degree of ϕ by deg(ϕ) = deg((p∗)−1q∗) provided
ϕ is represented by the pair (p, q). The proof of the following wedge of circles property
is similar to the one for the single-valued case presented in [2].

Proposition 4.4. If ϕ ∈M
(∨k

S1,
∨k

S1
)

, then

L̃m(ϕ) = −(deg(ϕ1) + · · ·+ deg(ϕk)),

where ϕj = pjϕej.

Let D′ be a full subcategory of D which consists of finite connected CW-complexes.
Proofs of the following lemmas are similar to the suitable ones considered in [2] and
Section 2.

Lemma 4.5. If X ∈ D′ is contractible and ϕ ∈M(X,X), then λ̃(ϕ) = 0.

Lemma 4.6. If X ∈ D′ and ϕ ∈M(X,X), then λ̃(Σϕ) = −λ̃(ϕ).

Lemma 4.7. If X ∈ D′ and ϕ,ψ ∈M(X,X) are homotopic, then λ̃(ϕ) = λ̃(ψ).

We showed that the reduced Lefschetz number of morphisms satisfies the axioms
(i)–(iii) of Theorem 1.1. As a consequence we get the following two propositions.

Proposition 4.8. If X ∈ D′ and ϕ,ψ ∈ M(X,X) are homotopic, then L̃m(ϕ) =

L̃m(ψ).

Proposition 4.9. If X ∈ D′ and ϕ ∈M(X,X), then L̃m(Σϕ) = −L̃m(ϕ).

Now, we are able to present the proof of the main theorem.

Proof. (Theorem 1.1) Propositions 4.1, 4.3 and 4.4 show that the reduced Lefschetz
number of morphisms satisfies axioms (i)–(iii).

Now, suppose λ is a function from self-morphisms of spaces in D to the integers
that satisfies axioms (i)–(iii). Because of the homotopy equivalence axiom it is enough
to consider spaces from D′. We have two cases.
(i) If X is homotopically simple, then by Proposition 3.8 there exists a singlevalued
continuous map f : X → X which is homotopic to ϕ : X → X. Lemma 4.7 gives
λ(ϕ) = λ(f). Then λ(f) = L̃(f) by axioms from [2] for singlevalued maps. Moreover,

L̃(f) = L̃m(f) = L̃m(ϕ) by Proposition 4.8. Summing up we get λ(ϕ) = L̃m(ϕ).
(ii) Let X be not homotopically simple. The space X is path-connected, so by a
well known property we have that ΣX is 1-connected. This implies that ΣX is
homotopically simply. Now, by Lemma 4.6 we have λ(ϕ) = −λ(Σϕ). Using (i) we

get λ(Σϕ) = L̃m(Σϕ). Moreover, we have L̃m(ϕ) = −L̃m(Σ(ϕ)) by Proposition 4.9.

Summing up we get λ(ϕ) = L̃m(ϕ) and the proof is completed. �
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5. A comment about AANRs

There is a natural question if we can characterize in an axiomatic way the Lefschetz
number of self-maps in larger categories then C. It is rather impossible to do it for
all spaces of finite type, because in general there are no natural candidates of spaces
which can replace spheres in the wedge of circles axiom. Nevertheless, some extensions
are possible. In this section we recall the definition and basic properties of absolute
approximative neighbourhood retracts (AANRs) and show that in a category E of
spaces of the homotopy type of compact AANRs and single-valued continuous maps
there is a system of axioms uniquly characterizing the reduced Lefschetz number.
Note that in this case the commutativity axiom is used directly in the proof of the
main theorem, so it cannot be removed. Moreover, the homotopy axiom is replaced
by a stronger property, which we called the induced homomorphism axiom. In this
section we use Čech homology with coefficients in the field of rational numbers.

Recall that absolute approximative neighbourhood retracts were introduced by
Noguchi [13] and later generalized by Clapp [3]. Here we use the notation from [8].

Let A be a subset of X and let d be a metric in X. A map rε : X → A is said to
be an ε-retraction, ε > 0, if for every x ∈ A we have d(x, rε(x)) < ε. Note that the
retraction r : X → A is an ε-retraction for every ε > 0.

A subset A ⊆ X is called an approximative retract of X provided for every ε > 0
there exists an ε-retraction rε : X → A; A is called an approximative neighbourhood
retract of X provided there exists an open neighbourhood U of A in X such that A
is an approximative retract of U .

A compact space X is called an absolute approximative retract (written X ∈ AAR)
provided that for every embedding h : X → Y the set h(X) is approximative retract of
Y ; X is called an absolute approximative neighbourhood retract (written X ∈ AANR)
provided that for every embedding h : X → Y the set h(X) is approximative neigh-
bourhood retract of Y .

Recall some usefull properties of AANRs and spaces of finite type.

Proposition 5.1 ([8]). Assume that X ∈ AANR. Then there exists a compact ANR
Y such that X is homeomorphic to an approximative retract of Y .

Proposition 5.2 ([8]). Let (X, d) be a compact metric space of a finite type. Then
there exists ε > 0 such that for every compact space Y and for every two maps
f, g : X → Y , if d(f(x), g(x)) < ε, for all x ∈ X, then f∗ = g∗.

Proposition 5.3 ([8]). If X is a compact AANR, then X is a space of finite type.

Note that because of Proposition 5.3 the Lefschetz number is well defined for self-
maps in E . Now we are to able formulate the main theorem of this section.

Theorem 5.4. The reduced Lefschetz number L̃ is the unique function λ̃ from the
set of self-maps of spaces in E to the integers that satisfies the following conditions:
(i) (Induced homomorphism) If f, g : X → X are such that f∗ = g∗, then λ̃(f) = λ̃(g);
(ii) (Cofibration axiom) If A is a subcomplex of X and A→ X → X/A is the resulting
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cofiber sequence, and if there exists a commutative diagram

A X X/A

A X X/A,

// //

// //

f ′

��

f

��

f̄

��

then λ̃(f) = λ̃(f ′) + λ̃(f̄);

(iii) (Wedge of circles axiom) If f :
∨k

S1 →
∨k

S1 is a map, k ≥ 1, then

λ̃(f) = −(deg(f1) + · · ·+ deg(fk)),

where fj = pjfej;

(iv) (Commutativity axiom) If f : X → Y and g : Y → X are maps, then λ̃(gf) =

λ̃(fg).

Proof. (Sketch) Of course, the Lefschetz number satisfies axioms (i)–(iv). Note, that
the induced homomorphism axiom and the commutativity axiom implies the homo-
topy equivalence property. Let X ∈ E and f : X → X. Because of Proposition
5.1 it is enough to consider the case where X is a compact AANR and there exists
Y ∈ C such that X is an approximative retract of Y . Let s : X → Y be an inclusion.
Propositions 5.2 and 5.3 imply that there exist ε > 0 and an ε-retraction rε : Y → X
such that (rεs)∗ = (idY )∗. Now using the induced homomorphism axiom and the
commutativity axiom we get

λ̃(f) = λ̃(idY f) = λ̃(rεsf) = λ̃(sfrε) = L̃(sfrε) = L̃(rεsf) = L̃(idY f) = L̃(f),

where λ̃(sfrε) = L̃(sfrε), because Y ∈ C and axioms (i)–(iv) uniquely characterize
the Lefschetz number in C. �
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