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1. Introduction

Cone metric and cone normed spaces were introduced in the middle of the 20th

century by using an ordered Banach space instead of the set of real numbers, as the
codomain for a metric [9,10,13]. These spaces have applications in approximation
theory [9,10], in fixed point theory and theory of differential equations in Banach
spaces [1,13]. In recent years, starting from the work by L.G.Huang and X.Zhang
[7], the investigation of fixed point theory in cone metric spaces (in most cases for
contractive mappings) has again attracted much attention from mathematicians. We
refer to the papers [2,3,6,12,13] for some historical notes, discussion on obtained results
and further references.

The aim of this paper is to establish the fixed point theorems by using cone norms
and cone-valued measures of noncompactness. In our opinion, the advantage of using
cone-valued metrics and norms or measures of noncompactness is that we will have
more useful information from the relation between their two values, such as the re-
lation between two elements of an ordered space. For example, in Section 3 of the
paper, our condition for a mapping f to be condensing with respect to cone-valued
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measure of noncompactness ϕ is ϕ [f (Ω)] ≤ A [ϕ (Ω)] ,where ϕ (Ω) , ϕ [f (Ω)] are ele-
ments of an order cone K and A : K −→ K is an increasing operator. The relation
ϕ (Ω) ≤ ϕ [f (Ω)] implies ϕ (Ω) ≤ A [ϕ (Ω)] and then we can use different tools, for
instance, the Gronwall inequality, fixed point theorems for increasing operators, to
prove ϕ (Ω) = θ.

The paper is organized as follows. In the next section, we prove an extension of the
Krasnoselskii fixed point theorem for sum of two operators in cone normed spaces.
We consider two cases. If the underlying cone is normal, we use the Minkowskii
functional to reduce to the case of usual normed spaces. In the case of nonnormal
cone, we introduce a kind of weak topology. In Section 3, we obtain a variant of
the Darbo-Sadovskii fixed point theorem for mappings condensing with respect to a
cone-valued measure of noncompactness. An application to the Cauchy problem with
deviating argument is also given to see the advantage of using cone-valued measures
of noncompactness.

2. Main results

2.1. A fixed point theorem of the Krasnoselskii type in cone normed spaces.
Let E = (E, ‖.‖) be a real Banach space and K ⊂ E be a cone, that is, K is a closed
convex subset such that λK ⊂ K for all λ ≥ 0 and K∩ (−K) = {θ}. If in E we define
a partial ordering by x ≤ y iff y − x ∈ K then the pair (E,K) is called an ordered
Banach space. The cone K is said to be normal if there exists a number N > 0 such
that

θ ≤ u ≤ v implies ‖u‖ ≤ N ‖v‖ . (2.1)

A mapping A : M ⊂ E → E is said to be positive if A(x) ≥ θ for all x ∈ M ,
x ≥ θ; it is called increasing if x, y ∈ M and x ≤ y implies A (x) ≤ A (y). Clearly, if
A : E −→ E is linear and positive then it is increasing. The set

K∗ = {f ∈ E∗ : f (x) ≥ 0 ∀x ∈ K}
is called the dual wedge of K. It is proved that x ∈ K iff f (x) ≥ 0 ∀f ∈ K∗, and so
if x ∈ K\ {θ} then there exists f ∈ K∗ such that f (x) > 0.

The following lemma allows us to choose N = 1 in (2.1).
Lemma 2.1. [11] Let Banach space (E, ‖.‖) be ordered by the cone K and ‖.‖∗ be
the Minkowskii functional of the set [B (θ, 1)−K] ∩ [B (θ, 1) +K]. Then

1) ‖.‖∗ is a norm in E satisfying ‖u‖∗ ≤ ‖u‖ ∀u ∈ E and ‖u‖∗ ≤ ‖v‖∗ if θ ≤ u ≤ v,
2) ‖.‖∗ ∼ ‖.‖ if K is normal.

Definition 2.2. [13] Let (E,K) be an ordered Banach space and X be a real linear
space. A mapping p : X −→ E is called a cone norm (or K-norm) if

(i) p (x) ∈ K or equivalently p (x) ≥ θE ∀x ∈ X and p (x) = θE iff x = θX ,
where θE , θX are the zero elements of E and X respectively,

(ii) p (λx) = |λ| p (x) ∀λ ∈ R, ∀x ∈ X,
(iii) p (x+ y) ≤ p (x) + p (y) ∀x, y ∈ X.

If p is a cone norm in X then the pair (X, p) is called a cone normed space (or
K-normed space). The cone normed space (X, p) endowed with a topology τ will be
denoted by (X, p, τ).

We shall use the following two topologies on a cone normed space.
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Definition 2.3. Let (E,K) be an ordered Banach space and (X, p) be a K-normed
space.

1) We define lim
n→∞

xn = x iff lim
n→∞

p (xn − x) = θ in E and we call a subset A ⊂ X

closed if whenever {xn} ⊂ A, lim
n→∞

xn = x then x ∈ A.

Clearly, τ1 = {G ⊂ X : X\G is closed} is a topology on X.
2) We denote by τ2 the topology on X, defined by the family of seminorms

{f ◦ p : f ∈ K∗}. Thus (X, τ2) is a locally convex topological vector space such that
the sets {

x ∈ X : max
1≤i≤n

fi ◦ p (x) < ε

}
, fi ∈ K∗, n ∈ N∗, ε > 0

form a neighborhood base of zero and a net {xα} ⊂ X converges to x in τ2 iff

lim f (p (xα − x)) = 0 ∀f ∈ K∗.
Definition 2.4. [13] Let (E,K) be an ordered Banach space, (X, p) be a K-normed
space, and τ be a topology on X

1) We say that (X, p, τ) is complete in the sense of Weierstrass if whenever

{xn} ⊂ X,
∞∑
n=1

p (xn+1 − xn) converges in E then {xn} converges in (X, p, τ).

2) We say that (X, p, τ) is complete in the sense of Kantorovich if any sequence
{xn} satisfies

p (xk − xl) ≤ an ∀k, l ≥ n, with {an} ⊂ K, lim
n→∞

an = θE (2.2)

then {xn} converges in (X, p, τ).
The following lemmas will state some relations between the defined notions of

completeness.
Lemma 2.5. Let the Banach space (E, ‖.‖) be ordered by the normal cone K with
N = 1 in (2.1) and (X, p) be a K-normed space. Then the mapping q : X −→ R,
q (x) = ‖p (x)‖ is a norm on X, having the following properties.

1) The topology τ1 coincides with the topology of normed space (X, q).
2) If (X, p, τ1) is complete in the sense of Weierstrass then (X, q) is complete.

Proof. Clearly, q is a norm in X and lim
n→∞

xn = x in (X, p, τ1) iff lim
n→∞

xn = x in

(X, q). Consequently, a set A ⊂ X is closed in (X, p, τ1) iff it is closed in (X, q) and
the first conclusion of the lemma holds. To show completeness of (X, q) we consider

a sequence {xn} ⊂ X such that
∞∑
n=1

q (xn) <∞ and we have to prove the convergence

of the series
∞∑
n=1

xn in (X, q). In fact, for sn = x1 + x2 + ...+ xn, n ∈ N∗ we have

∞∑
n=1

‖p (sn − sn−1)‖ =

∞∑
n=1

q (xn) <∞,

which implies convergence of
∞∑
n=1

p (sn − sn−1) in (E, ‖.‖). Since (X, p, τ1) is complete

in the sense of Weierstrass, we obtain the convergence of {sn} in (X, p, τ1) and in
(X, q).
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Lemma 2.6. Let (E,K) be an ordered Banach space and (X, p) be a K-normed
space, τ be a topology on X.

1) If (X, p, τ) is complete in the sense of Kantorovich then it is complete in the
sense of Weierstrass.

2) If K is normal and (X, p, τ1) is complete in the sense of Weierstrass then
(X, p, τ1) is complete in the sense of Kantorovich.

Proof. 1. Let {xn} ⊂ X be such that
∞∑
n=1

p (xn+1 − xn) converges in E and let s, sn

be the sum and n-th partial sum of the series respectively . For l > k ≥ n we have
p (xl − xk) ≤ sk−1 − sl−1 ≤ s − sn with lim

n→∞
(s− sn) = θ in E. Therefore, {xn}

converges by completeness of (X, p, τ) in the sense of Kantorovich.
2. Consider a sequence {xn} satisfying (2.2). By normality of K we have

‖p (xl − xk)‖ ≤ N ‖an‖, hence {xn} is a Cauchy sequence in (X, q) and therefore
it converges in (X, q) and in (X, p, τ1) by Lemma 2.5.
Theorem 2.7. Let (E,K) be an ordered Banach space, (X, p) be a K-normed space
and τ = τ1 or τ = τ2. Assume that C is a convex closed subset in (X, p, τ) and
S,T : C −→ X are operators such that

(i) T (x) + S (y) ∈ C ∀x, y ∈ C;

(ii) S is continuous and S (C) is compact with respect to the topology τ ;
(iii) there is a positive continuous linear operator Q : E −→ E with the spectral

radius r (Q) < 1 such that

p (T (x)− T (y)) ≤ Q [p (x− y)] for all x, y ∈ C.
Then the operator T + S has a fixed point in the following cases.

(C1) τ = τ1, K is normal, (X, p, τ1) is complete in the sense of Weierstrass.
(C2) τ = τ2, (X, p, τ2) is complete in the sense of Kantorovich.

Proof. First we observe by hypothesis (i) and closedness of C that T (x) + y ∈ C

∀x ∈ C,∀y ∈ S (C). Fix y ∈ S (C), we define the operator Ty : C −→ C by
Ty (x) = T (x) + y. Then, starting with element x0 ∈ C we construct the sequence
xn = Ty (xn−1). Putting u = p (x1 − x0) we easily deduce that p (xn+1 − xn) ≤

Qn (u). We know that
∞∑
n=0

Qn (u) = (I −Q)
−1

(u); let sn be the n-th partial sum of

the series, then for l > k ≥ n we obtain

p (xl − xk) ≤
l−1∑
i=k

p (xi+1 − xi) ≤
l−1∑
i=k

Qi (u)

≤ (I −Q)
−1

(u)− sn −→ θ as n −→∞.
Since (X, p, τ) is complete in the sense of Kantorovich, it follows that there exists
x∗ = lim

n→∞
xn. We have

p [Ty (x∗)− x∗] ≤ p [Ty (x∗)− Ty (xn)] + p (xn+1 − x∗)
≤ Q [p (x∗ − xn)] + p (xn+1 − x∗) (2.3)

and

f (p [Ty (x∗)− x∗]) ≤ f ◦Q [p (x∗ − xn)] + f ◦ p (xn+1 − x∗) ∀f ∈ K∗, (2.4)
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By letting n → ∞ in (2.3) we deduce that Ty (x∗) = x∗ for the case (C1). For
the case (C2) we use (2.4) and that f ◦ Q ∈ K∗ to get the same conclusion.
This fixed point of Ty will be unique. Indeed, if we also have Ty (a) = a then

p (a− x∗) = p [Ty (a)− Ty (x∗)] ≤ Q [p (a− x∗)]. Since (I −Q)
−1

is positive and
linear we conclude that p (a− x∗) = θE and a = x∗.

Since the operator Ty (x) = T (x) + y has a unique fixed point ∀y ∈ S (C) then

there exists operator (I − T )
−1

: S (C) −→ C. We shall prove its continuity. In

fact, let a net {yα} ⊂ S (C) be convergent to y ∈ S (C) in topology τ . Putting

xα = (I − T )
−1

(yα), x = (I − T )
−1

(y) we have

p (xα − x) ≤ p [T (xα)− T (x)] + p (yα − y)

≤ Q [p (xα − x)] + p (yα − y) ,

which implies

p (xα − x) ≤ (I −Q)
−1

[p (yα − y)] (2.5)

and

f ◦ p (xα − x) ≤ f ◦ (I −Q)
−1

[p (yα − y)] ∀f ∈ K∗. (2.6)

In the case (C1) we deduce from (2.5) and the normality of the cone K that {xα}
converges to x in the topology τ1. For the case (C2), it follows from (2.6) and f ◦
(I −Q)

−1 ∈ K∗ that the net {xα} converges to x in the topology τ2. The operator

(I − T )
−1 ◦ S : C −→ C is continuous, the set (I − T )

−1 ◦ S (C) is equal to compact

set (I − T )
−1
(
S (C)

)
since (I − T )

−1
is isomorphism. By the Tychonoff theorem

there exists x ∈ C such that x = (I − T )
−1 ◦ S (x) or equivalently x = T (x) + S (x) .

2.2. A fixed point theorem via cone-valued measures of noncompactness
and application.

2.2.1. Cone-valued measures of noncompactness. In this subsection we use
some definitions and statements from [4]. For the convenience of the reader we recall
the relevant material without proofs.
Definition 2.8. [4] Let (E,K) be an ordered Banach space, X be a Banach space, z
be a family of bounded subsets of X such that: if Ω ∈ z then co (Ω) ∈ z. A mapping
ϕ : z −→ K is called a measure of noncompactness if

ϕ [co (Ω)] = ϕ (Ω) ∀Ω ∈ z.
A measure of noncompactness ϕ is said to be
1) regular if ϕ (Ω) = 0 ⇐⇒ Ω is relatively compact,
2) semi-homogeneous if ϕ (tΩ) = |t|ϕ (Ω) for Ω ∈ z such that tΩ ∈ z,
3) algebraic semi-additive if ϕ (Ω1 + Ω2) ≤ ϕ (Ω1) + ϕ (Ω2) for Ω1,Ω2 ∈ z such

that Ω1 + Ω2 ∈ z,
4) invariant under translations if ϕ (x+ Ω) = ϕ (Ω) whenever Ω, x+ Ω ∈ z,
5) continuous with respect to the Hausdorff metric ρ if

∀ε > 0, ∀Ω ∈ z ∃δ > 0 : ∀Ω′ ∈ z, ρ (Ω′,Ω) < δ =⇒ ‖ϕ (Ω′)− ϕ (Ω)‖ < ε,

where

ρ (Ω1,Ω2) = inf {ε > 0 : Ω1 + εB ⊃ Ω2, Ω2 + εB ⊃ Ω1}
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and B = {x ∈ X : ‖x‖X < 1} .
Example. [4] Consider a Banach space (Y, |.|) and a real-valued measure of non-
compactness ϕ defined for all bounded subsets of Y . In X = C ([a, b] ;Y ) we con-
sider the norm ‖x‖ = sup {|x (t)| : t ∈ [a, b]}. For each bounded subset Ω ⊂ X
we set Ω (t) = {x (t) : x ∈ Ω} and define a function ϕc (Ω) : [a, b] −→ R by
ϕc (Ω) (t) = ϕ [Ω (t)]. If the measure ϕ is continuous and a set Ω ⊂ X is equicontin-
uous then the function ϕc (Ω) is continuous. Consequently, there exists the mapping
ϕc from the family z of all equicontinuous subsets of X into the cone of nonnegative
functions in C ([a, b] ;R). This mapping ϕc is a measure of noncompactness in the
sense of Definition 2.8 and if ϕ has a property in Definition 2.8 then ϕc has the same
property.
Definition 2.9. [4] Let (E,K) be an ordered Banach space, X be a Banach space
and ϕ : z ⊂ 2X −→ K be a cone-valued measure of noncompactness. A continuous
mapping f : D ⊂ X −→ X is called condensing if for Ω ⊂ D such that Ω ∈ z,
f (Ω) ∈ z and ϕ [f (Ω)] ≥ ϕ (Ω) then Ω is relatively compact.
Theorem 2.10. [4, Generalization 1.5.12] Assume that (E,K) is an ordered Banach
space, X is a Banach space and ϕ : z ⊂ 2X −→ K is a cone-valued measure of
noncompactness such that z contains any bounded sequence and

ϕ ({xn : n ≥ 1}) = ϕ ({xn : n ≥ 2}) . (2.7)

Let D ⊂ X be a nonempty convex closed subset and let f : D −→ D be a condensing
mapping. Then f has a fixed point in D.
Theorem 2.11. Let (E,K) be an ordered Banach space, X be a Banach space and
ϕ : z ⊂ 2X −→ K be a regular measure of noncompactness having property (2.7).
Assume that D ⊂ X is a nonempty convex closed subset and f : D −→ D is a
continuous mapping such that there exists a mapping A : K −→ K satisfying

(H1) ϕ [f (Ω)] ≤ A [ϕ (Ω)] whenever Ω ⊂ D,Ω ∈ z, f (Ω) ∈ z,
(H2) if x0 ∈ K, x0 ≤ A (x0) then x0 = θ.
Then f has a fixed point in D.

Proof. We shall show that f is condensing and then apply Theorem 2.10. Indeed, if
Ω ⊂ D is such that Ω ∈ z, f (Ω) ∈ z and ϕ (Ω) ≤ ϕ [f (Ω)] then by the hypothesis
(H1) we get ϕ (Ω) ≤ A [ϕ (Ω)] which implies ϕ (Ω) = 0 by (H2). Consequently, Ω is
relatively compact.
Corollary 2.12. Suppose the measure ϕ and the mapping f satisfy hypothesis (H1)
and

(H′2) The mapping A is increasing and lim
n→∞

An (x) = θ ∀x ∈ K.

Then f has a fixed point in D.
Proof. Let us prove that (H′2) implies (H2). In fact, if x0 ∈ K, x0 ≤ A (x0) then
x0 ≤ An (x0) by monotonicity of A and so x0 = θ by using (H′2).
Corollary 2.13. Suppose the measure ϕ and the mapping f satisfy hypothesis (H1)

and (H
′′

2 )
1) The mapping A is increasing, the sequence {A (xn)} converges whenever {xn}

is an increasing sequence in D,
2) A does not have fixed points in K\ {θ}.
Then f has a fixed point in D.
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Proof. We shall prove that the hypothesis (H2) holds. Assume the contrary that

∃x0 ∈ K\ {θ} , x0 ≤ A (x0) . (2.8)

From 1) in (H
′′

2 ) and (2.8) and using a result of [5,8] about fixed points of increasing
mappings we deduce that A has a fixed point x ≥ x0 which contradicts the hypothesis
2) in (H

′′

2 ).

2.2.2. Application. Let (Y, |.|) be a Banach space and ϕ be a real-valued measure
of noncompactness, defined for all bounded subsets of Y. We assume that ϕ satisfies
all of properties 1-5 in Definition 2.8. We shall use the corresponding cone-valued
measure of noncompactness ϕc, which is introduced in Example.

Let B (x0, r) be a ball in Y , f : [0, b] × B (x0, r)× B (x0, r) −→ Y be a uniformly
continuous bounded mapping and h : [0, b] −→ R be a continuous function, satisfying

(f1) ∃m, l > 0, ∃α ∈ (0, 1] : ϕ [f (t, L,M)] ≤ lϕ (L) + m [ϕ (M)]
α

for all subsets
L,M ⊂ B (x0, r) ;

(f2) 0 ≤ h (t) ≤ t1/α.
Let us consider the Cauchy problem

x/ (t) = f [t, x (t) , x (h (t))] , x (0) = x0. (2.9)

In the case that f does not depend on second variable, (2.9) has been studied in
[4]. Here we also follow the method of [4] by using the cone-valued measure ϕc.
Theorem 2.14. Let the hypotheses (f1),(f2) be satisfied. Then there exists a number
b1 ∈ [0, b] such that (2.9) has a solution on [0, b1] .
Proof. First we observe that if Ω ⊂ C ([0, b] , Y ) is an equicontinuous subset then by

using properties 2, 3, 5 of the measure ϕ and that the value
t∫
0

x (s) ds can be uniformly

approximated by the integral sums we deduce that

ϕ


t∫
0

x (s) ds|x ∈ Ω


 ≤ t∫

0

ϕ [Ω (s)] ds. (2.10)

By boundedness of f and that α ≤ 1 we may choose b1 ∈ [0, b) small enough so

that b
1/α
1 ≤ b1 and

|f (t, x, y)| ≤ r

b1
∀ (t, x, y) ∈ [0, b]×B (x0, r)×B (x0, r) ,

Then we shall prove that the operator

Fx (t) = x0 +

t∫
0

f [s, x (s) , x (h (s))] ds

has a fixed point in the set

D =

{
x ∈ C ([0, b1] , Y ) : x (0) = x0, x is Lipschitz with constant

r

b1

}
.
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Let E = C ([0, b1] ,R) and K ⊂ E be the cone of nonnegative functions and ϕc be the
K-valued measure of noncompactness, which is defined in Example. Let us define the
operators B : E −→ E, C : K −→ K by

Bu (t) = l

t∫
0

u (s) ds, Cu (t) =

t∫
0

(u [h (s)])
α
ds.

Clearly, B is positive linear with spectral radius r (B) = 0 and C is increasing. For
Ω ⊂ D, by using (2.10) and (f1) we have

ϕ [F (Ω) (t)] = ϕ


t∫
0

f [s, x (s) , x (h (s))] ds : x ∈ Ω




≤
t∫
0

ϕ (f [s,Ω (s) ,Ω (h (s))]) ds

≤ l
t∫
0

ϕ [Ω (s)] ds+m

t∫
0

(ϕ [Ω (h (s))])
α
ds.

Consequently, ϕc (F (Ω)) ≤ (B +mC) (ϕc (Ω)).
Consider an element x0 ∈ K satisfying x0 ≤ (B +mC) (x0) or equivalently

x0 (t) ≤ l
t∫
0

x0 (s) ds+m

t∫
0

(x0 [h (s)])
α
ds. (2.11)

By the Gronwall inequality, if

x0 (t) ≤ l
t∫
0

x0 (s) ds+ g (t)

and g (t) is a nondecreasing function, then we have x0 (t) ≤ eltg (t). Hence, we deduce
from (2.11) that

x0 (t) ≤ k
t∫
0

(x0 [h (s)])
α
ds = kC (x0) (t) (2.12)

for some k > 0. From (2.12) we can prove by induction that

x0 (t) ≤ (kC)
n

(x0) (t)

≤ k1+α+...+α
n

· ‖x0‖α
n

· tn ·
[
2α

n−2

· 3α
n−3

. . . (n− 1)
α · n

]−1
which implies x0 = θ. Thus, the operator A = B+mC satisfies conditions (H1), (H2)
of Theorem 3. Therefore, the operator F has a fixed point in D.
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