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with a finite family of nonexpansive mappings. By combining the viscosity approximation method,
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1. INTRODUCTION AND FORMULATIONS

Let H be a real Hilbert space with its inner product and norm are denoted by (-, -)
and || - ||, respectively. The set of all fixed points of a mapping 7' : H — H is denoted
by Fix(T'), that is, Fix(T) = {# € H : Tz = z}. Throughout the paper we follow the
usual notation in nonlinear analysis (see [2]).
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Let K be a nonempty convex subset of a Hilbert space H and F' : K — H be
a monotone mapping, that is, (Fx — Fy,z —y) > 0, Vx,y € K. The monotone
variational inequality problem [7] is to find z* € K such that

(Fax*,x —2*) >0, VrelkK.

The set of solutions of this problem is denoted by VI(K, F'). The following variational
inequality problem defined over the set Fix(7T') of fixed points of a mapping T': H — H
is called hierarchical variational inequality problem (in short, HVIP).

Problem 1.1. Given a monotone, continuous operator A : H — H and a nonexpan-
swe mapping T : H — H,

find ¥ € VI(Fix(T), A) := {a* € Fix(T) : (Az*,v — z*) >0, Vv € Fix(T)}.

Recently, Tiduka [3, 4] introduced three-stage variational inequality problem, that is,
the monotone variational inequality problem over the solution set of HVIP.
Problem 1.2. Assume that

(Al) Ay : H — H is a-inverse-strongly monotone;

(A2) As: H — H is n-strongly monotone and k-Lipschitzian;
(A3) T : H — H is a nonezpansive mapping with Fix(T) # (;
(A4) VI(Fix(T), A1) # 0.

Then, the purpose is to find x* € VI(VI(Fix(T), A1), As), where

VI(VI(Q,Ar), As) = {x € VI(Q, A1) : (Aga® v —2*) > 0,Yv € VI (Q, Ay) }

The convergent analysis of the above problem was treated in the first part of this
work, see [2].

Very recently, Ceng et al. [1] considered the following monotone variational in-
equality problem over the solution set of the variational inequality which is defined
over the set of common fixed points of N nonexpansive mappings T; : H — H.
Problem 1.3. Assume that

(Bl) Ay : H — H is a-inverse-strongly monotone;

(B2) As: H — H is n-strongly monotone and k-Lipschitzian;

(B3) for ¢ = 1,2,...,N, T, : H — H is a nonexpansive mapping with
N, Fix(T3) # 0

(B4) VI (NI, Fix(Ty), A1) # 0.

Then the objective is to find x* € VI (VI (ﬂfvzl Fix(Ti),Al) 7A2) )

In [1], the authors also proposed another relaxed hybrid steepest-descent algorithm
with variable parameters for computing the approximate solutions of Problem 1.3.

We remark that Ty := Tkmoan for integer k > 1 with the mod function taking
values in the set {1,2,..., N}, that is, if k = jN + ¢ for some integers j > 0 and
0<g<N, thenT[k] =TN ifq:OandT[k] =T if0<g<N.

In this paper, by combining the viscosity approximation method hybrid steepest-
descent method and Mann’s iteration method, using the approach given in the first
part of this work for one mapping, we introduce two hybrid steepest-descent viscosity
approximation algorithms for computing the appropriate solutions of Problem 1.3.
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The strong convergence of the sequences generated by this algorithm is derived un-
der some appropriate conditions. Obviously, whenever 3, = v, = 0, Vn > 0, this
algorithms reduce to Algorithm 2, in [1].

2. PRELIMINARIES

Let H be a real Hilbert space. We denote by x,, — x (respectively, z,, — x) to
indicate that the sequence {z,,} converges weakly (respectively, strongly) to .
Definition 2.1. An operator A : H — H is called

(a) strongly monotone (or more precisely, a-strongly monotone) if there exists a
constant a > 0 such that
<AI*Ay,IE7y> Za”zfy”Q’ V.T,yGH;
(b) inverse-strongly monotone (or more precisely, B-inverse-strongly monotone)
(also called co-coercive) if there exists a constant 5 > 0 such that
(Az — Ay, x —y) > al|Az — Ay||®>, Vz,y € H;
(¢c) hemicontinuous if for all z,y € H, the mapping g : [0,1] — H, defined by
g(t) := Atz + (1 — t)y), is continuous.
Definition 2.2. Let C be a nonempty convex subset of a real Hilbert space H.
A function ¢ : C' — R is said to be
(a) convex if for all x,y € C and all X € [0,1],

Az + (1= ANy) < Ap(x) + (1= Ne(y);
(b) strongly convez if there exists a > 0 such that for all z,y € C and all A € [0, 1],

P+ (1= N)y) < Xple) + (1= Nply) — 50A(1 ~ Nl — gl

The metric projection Po : H — C' onto the nonempty, closed and convex subset
C of H is defined by Pex € C and |z — Pez| = infyec |z —y|, Vo € H. The
metric projection Po onto a given nonempty, closed and convex subset C' of H is
nonexpansive with Fix(Pg) = C.

3. ITERATIVE METHODS INVOLVING A NONEXPANSIVE MAPPING

In this section, we just recall the main result (proved in [2]), concerning the fol-
lowing hybrid steepest-descent viscosity iterative algorithm for solving Problem 1.2.
Suppose that the assumptions (A1)-(A4) in Problem 1.2 are satisfied.

Algorithm 3.1.

Step 0. Take {\,} C (0,2a], {n} C (0,2n/x?), {an} C (0,1] and {B,}, {7n} C [0,1]
with G, + v, <1, ¥n > 0. Choose zy € H arbitrarily, and let n := 0.

Step 1. Given z,, € H, compute z,11 € H as

yn = ﬂnxn + 7nf(xn) + (1 - ﬂn - rYn)Tnxn7
Tn+1 = Yn — anﬂnAQyn7 n >0,

where T, :==T(I — N\, A1), Vn > 0.
Update n :=n + 1 and go to Step 1.
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The main result concerning the convergence of the above algorithm is as follows.

Theorem 3.1. Assume that the sequence {y,} generated by Algorithm 3.1 is bounded.
Let {pn} € (0,n/k2], {an} € (0,1], {Bn} C [0,1], {7} C (0,1] and {A\,} C (0,2q]
be such that the following conditions hold:

(i) Zvn =00, lim A, =0,

n=0

(i) lm (1/yn) [1/An = 1/Anta| =0,
n—oo
(iii) nILHOlO (1/)‘n+1) |1 - 7n+1/7n| =0,

(iv) lim appin/An =0, lim ()\nﬁn + Y + )\i) Janfin =0,
n—oo n—oo
(V) D> (UBn = Bl + lompin — an—1ptn—1) /An < 0.
n=1
Then, the sequence {x,,} generated by Algorithm 3.1 satisfies the following assertions:
(a) The sequences {x,}, {A1zn} and {Asyn} are bounded;
(b) lim ||Zpt1 — zn|l/An =0, lim ||z, — yn|l/An =0 and lim ||z, — Tx,|| =0;
(¢) The sequence {x,} converges strongly to a unique solution of Problem 1.2
provided that there exists r > 0 such that ||z — Tzl > r inf |z —yl| for
Yy

f
EFix(T)
allx € H.

4. ITERATIVE METHODS INVOLVING A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

In this section, we consider a hybrid steepest-descent viscosity iterative algorithm
for solving Problem 1.3 in the setting of a real Hilbert space H. We write Tj;) =
Tkmodn for integer k > 1 with the mod function taking values in the set {1,2,..., N},
that is, if K = jN + ¢ for some integers j > 0 and 0 < g < N, then T}y = Ty if
q=0and T} =T, if 0 <qg < N. For each i =1,2,..., N, assume that the operator
T; : H — H is nonexpansive and ﬂf\;l Fix(T;) # 0, and the mappings Ay, As : H — H
satisfy the conditions (B1)—(B4) such that VI (ﬂf;l F(Ty), Al) # 0.

Algorithm 4.1.

Step 0. Take {\,,} C (0,2q], {un} C (0,277//12), {an} C (0,1] and {8, }, {7} € [0,1]
with G, + v, <1, ¥n > 0. Choose xy € H arbitrarily, and let n := 0.

Step 1. Given z,, € H, compute z,11 € H as

Yn 1= Bnn + Ynf(zn) + (1 — Bn — 'Yn)f[n-&-l]xm
Tpt1 = Yn — ppnA2yn, n >0,

where T[nJrl] = Tipyy(I — AnAr), Vn > 0.
Update n :=n + 1 and go to Step 1.

In Algorithm 4.1, we introduce a sequence {u,} of positive parameters that takes
into account possible inexact computation. Taking p € (0,277/ /<52) and N =1 and
putting p, = p and B, = v, = 0 for all n > 0, then Algorithm 4.1 reduces to [3,
Algorithm 3.1].

(4.1)
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We prove that the sequence {x,} generated by Algorithm 4.1 converges strongly
to a unique solution of Problem 1.3.

Theorem 4.1. Assume that the sequence {y,} generated by Algorithm 4.1 is bounded.

Suppose that {u,} C (0,n/k%], {an} € (0,1], {B.} € [0,1], {va} C (0,1] and {\,} C
(0,2a] such that

o0
(D) D =00,
n=0
(i) lim (1/7) [1/An = 1/Angn| =0,
(iii) Tim (1/An41) [1 = Yy /| =0,
(iv) Apn 1 0 as n — oo,
(v) lim appn/A, =0,

(Vi) lim (Anﬁn + Y + )‘31) /anun =0,

n—
oo

(vii) Z (|1BneN=1 = Bn-1]| + |ane N1 fint N—1 — Qn—1fin—1]) /An < 00.
n=1

Assume, in addition, that

N
(Fix(T;) =Fix(TyoTyo---oTy)
i=1

= Fix (TNOT1 O"'OTN—I) (42)

=Fix(TooT30---0TyoTy).

Then, the sequence {x,,} generated by Algorithm 4.1 satisfies the following assertions:

(a) The sequences {x,}, {A1zn} and {Asyn} are bounded;
(b) Jim flanin = zall/An =0 and lim f[on —Tingny o 0 Tnsnyzn | = 0;

(¢) The sequence {x,} converges strongly to a unique solution of Problem 1.3
provided that lim ||Zn4+1 — @y||/An = 0 and that there r > 0 such that
n—oo

o — Tjz|| > r inf |lz—vy|, VxeH, andj=1,2,...,N.
yéﬂle Fix(T;)

Proof. (a) By using the similar argument as in the proof of Theorem 3.1 (a) in part
I, we obtain that the sequences {z,}, {412, } and {Asy,} are bounded.
(b) We prove

nlLrI;o |Tntn — Tnll/An = nlirxgo |z — Tigny 0 -+ 0 Tinsnjzn|| = 0.
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Indeed, from assumption (A3), Proposition 2.3, and the condition \,, < 2a, ¥n > 0,
we have, for all n > 0,

1 Tons v %N — Tng ol = [ Ting v (= AN AD TN — T (I = ApAr )2 ||
< ”(I - )‘n+NA1)$n+N - (I - )‘nAl)mn”

=l = AnaNA1)TraN — (I — i N A1) Tr + (A, — Ak N) A1 20 ||

SN = AnsnA)Tnen — (I = Anan AL + [An = Ay [[[Arza ||
< ||xn+N - xn” + |)\n - )\n+N|||A1xn||>

and hence,

lYn+n = Ynll = 1Bt NTrt N + Vi N f(Tnin)
+(1 - ﬁn—&-N - ’Yn+N)T[n+N+1]xn+N - 6nxn - ’Ynf(-rn) - (1 - 671 - 'Yn)j:[nJrl]an

< ||ﬁn+N~Tn+N - annH + ||'7n+Nf(=Tn+N) - 'Ynf(mn)H

- ’Vn)T[n—&-l]‘rn”
<|Busn = Bulllzn+ Nl + BallZnsn — ol + (Vs N — Wulllf (@)l

+H(1 - ﬁn+N - 'Vn+N)T[n+N+1]xn+N - (1 - ﬁn

Fnllf (@ngn) = F@n) | + (1 = Botn = Ynan) — (1 = Bn — 1)
Tt v+ Zna v |+ (1= Bn = ¥ Tt v 41 Zns v — T 2o
S |Bnan = Bulllzntn | + Ballzntny — @all + [ynsn = Yol f (@nan) |l
Pl TneN — Tl + (|Brtn — Bul + [yntn — %|)||T[n+N+1]$n+NH
(1 = Bn = Y)llznsen — znll + [An = Ang [l Arzn]
< (Bn+n = Bl + 1Ny — Dl Zns v | + Bullznsn — 24|
FUBn+n = Bl + [Ny = WD f @nte )l + Wnpllznen — |
+(IButn = Bul + [vnen — WD) s N1 %0t |l
(1 = Bn = y)llznen — znll + [An = Ang [l Arzn]
== @ =pllznsn —znll + (1= Bn = 1) An = Angn [ Arzn]
+(Bn+n = Bul + 1vn+n = YUz n | + 1 f (@0t )1 + ”T[nJrNJrl]anrNH)

<1 =l = plzntn = zall + (Busn = Bul + s = Yal + [Angn — An|) M.
From Proposition 2.4, noticing that

My = supd[lenll + |1 @n)ll + [Tyl + 14120 ][} < oo,



APPROXIMATION FOR TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES (II) 243

we obtain

|Znin — o) = HT(Q1L+N—15M1L+N—l)yn+N_1 _ T(anflﬁin—l)yn_lH

< "T(an+N—l1Nn,+N—l)yn+N_1 _ T(Oén+N—17lln+N—1)yn_1 H

+ HT(Oén+N—17Hn+N71)yn71 _ T(O‘"*h*‘”*l)yn,l H

< (1= ang N1 N-1) [Yn+N-1 = Yn—1]|

+ | N1 png N -1 = Ot -1 ||| Azyn—1 |

< (= anpn-1Tnan-1){1 = Y—1(1 = p)][|Tnsv—1 — Tn—1]

+ (IBntN=1 = Bn-1| + Vs N-1 — V-1l

+ [AneN—1 = Anc1[)Ma} + o N—1ftnt N -1 — Qn—1pn—1] | A2yn—1]]
<=1 = p)lllznsn-1 — Tp-1]]

+ (IBnen—1 = Bn1l + Va1 — Yn-1l

A N—1 = A1 )Mo+ |y No 1 N1 — Q11| Mo,

where 7,4 ny_1 =1 — \/1 — fntN—1(20 — pinyn—162) € (0,1] as in Proposition 2.4
and My := sup || A2y, < oc.
n>0

Note that A, 1 0 as n — oo, that is, {\,} is a decreasing sequence such that
An — 0.
If we notice that M3 := sup ||xn+n — zp| + M1+ Mz < 0o, we obtain, for all n > 1,
n>0

that
T —x T 1 — Ty
|| n+N n” < [1 _’Yn—l(l _p)] H n+N—1 n 1”
An An
+|5n+N—1 — Bn—1| + \%+N-}1\ — Yn—1| + [Angn-1 — >\n—1|M1
n O N1 fingN=1 — 04n—1,un—1|M2 =1 = yp_1(1 = p)] [Zn4n—1 — Tn-1]|
>\n )\nfl
”anerl - xnflu ||xn+N71 - xnfln
1—v,—1(1— _
#1= a1 - g { B -
+ |ﬁn+N71 - 67171' + h’nJer)l\ - 7n71| + |)\n+N71 - )\n71|M1
Ay —1Hn -1 — Op—1Mn—
+| +N—-1HM +N>\1 1 1|M2
|TntN—1 — Zp_1]| 1 1
[ 7 1( p)] >\n—1 3 )\n /\n—l
n -1 7 In— + A’I’L — —An_
+|7 FN—1 1\)\ [AnsN=1 1‘M3

n |Brn+N—1— Bn-1| + |an+>\N—l,un+N—l - Oén—lun—ﬂMB
n
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Tp4N—-1 — Tn-1
e
n—1
204M3 1
Tn—1(1—p

1
Tn—1
M3 1 |7n+N—1 - "Yn—ll
S (1=
oA "
+ |ﬁn+N—l - 5n—1| + |Oln+N—1,Ufn+N—1 - an—l,un—l‘M
An
Tn4+N—-1 — Tn-1
< [1— s (1 — ) Ent 3 ”
n—1
1 1
>\n—1 >\n+N—1
1 1
An—1  AngnN-1
M3 1 Yn+N—1
=S (1= p)—]1 — AL
o 1 p)/\nl — |
n |Brn+N—1— Bn-1| + |an+>\N—1,un+N—l - Oén—lun—l\M

= (1= s (1 - ) oL = Enc]
)\nfl

M3 1 1 1 1 Tn+N—-1
+'771—1(1p)'l_p{(l+2a) | - |+)\7|1* + |}

1 1
/\n >\n—1

M. AntN—1 — Ap—
+ 2B (- ) |An+N—1 1

1—p

Tn—1 2a)\,

M, 1
e 1( P)%_l

20[M3 1

n— 1-
1_p’Y 1( P)%_l

VYn-1 An—1  AngyN-1 n—1

4 |BnaN=1— Bn-1| + |Oén+)\N—1,Un+N—1 - an—l/f['n—1|M3.
n
Therefore, by Lemma 2.1 and the conditions (i), (ii), (iii) and (vii), we obtain

lim ”z"“zifz"” = 0. (4.3)

Since ||Zn+1 — Ynll = anpinl|A2yn || < Moy, i, by condition (v), we get

lim st — gnll = 0.
n—0oo
From conditions (v) and (vi), we have
n n nHn )\n n nHn
lim 2% = lim 2. 2of bu_ anp

=0and lim £, = lim
n—=00 An N—00 Qip fln )\n n—0o0 n—=00 Qinfbn An

Since lim (8, + v,) = 0, it follows from (4.1) that:

=0. (44

||$n+1 - T[n+1] (xn - )\nAlmn)” < ||xn+1 - ynH + ||yn - T[n+1] (mn - )\nAlxn)H
= ||33n+1_yn||+||ﬂn($n - T[n+1] (ajn - )\nAlxn>)+’7n(f($n) - T[n+1] (-rn_)\nAlxn))H

< ||xn+1 - yn” + ﬂn“xn - T[n+1]an + 'Yn”f('rn) - T[n—o—l]xn”

< llnsr = gnll + Ballnl + 1 Tinsn@all) + A (1f @)l + 1Tt yza )
<N ens1 = Yall + (Ba + )My — 0 as n — oo,
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that is, lim, co [|Tn41 — Tjpg1)(Tn — AnA12,)|| = 0. Since A, — 0 and each T;
(i=1,2,...,N) is nonexpansive and {A;z,} is bounded, we obtain

|Znt N = TineN)(TnaN—1 — Ay N—1A1Znyin—1)| — 0,

T4 N (TN —1 — AnaN—1A1Z0 N 1)

— Tt N Tt N—1) (T N—2 — AngN 212N —2)|| — 0,

||T[n+N} 00Ty (Tnt1 — Ant1A1T041)
= Ty 0 0 Thnga) (o0 — Andazy)|| — 0.
Furthermore, we observe that

TpyN — Tn = TN — Ting N (TneN—1 = At N—1A1Tny N 1)
+ Tng N (T N—1 — Mg N1 A1Zng N 1)
— Tty N Tt N1 (T N—2 — Ay N2 A1Zny N —2)
+ -
+ Tinny © 0 0 T (T — A1 A1Tn41)
—Tipgny © -+ 0 Tipgr)(Tn — AnA1y)
+ Tgny 0 0 Ting1) (T — AnA12n) — T

Consequently, we have lim,, ||T[n+N] o0 Tpyy (xn, — A\pAr1zy,) — an =0.
Note that

[Tin4ny 00w 0 Thgay@n — 2|
S| Tgny o 0 Tg1)Tn — Tingny © -+ - © Thg1) (T — AnAry)||
+ HT[nJrN] 0---0 T[n+1] (Tn — A A17n) — 20|
S allArzn || + [ Tingny 0 - 0 Thg1)(Tn — Andizn) — 20| — 0 as n — oo,
that is,
Jim || Ty ny 0+ 0 Thy 1y — 2 || = 0. (4.5)

(¢) We divide the proof into the following three steps:
(I) We prove limsup(z* — xp41, Aoz™) < 0.

n—oo
We note that
[2n —ynll < lNzns1r — zall + 2041 = Ynll = [[2nt1 — Toll + anpin || A2ynll
< ||xn+1 - an + aanM2~
Hence, by the condition (v) and the assumption ||zp41 — Zn||/An — 0, we get

lzn — ynll lTni1 —anll | anpin
< M.
T VD

which implies
im ————— =

n— o0 )\n

0. (4.6)
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By the condition (vi), (4.6) and
An/anpn)llzn = ynll = O /anptn) (20 = ynll/An) (V0 > 0),
we get lim (A, /anpin)||Tn — yn|l = 0.
n—0oo

Put z, := x, — A\yAi2,, Vo > 0. Then, we have ||z, — x,| = A\p||A12, ] < A\ M,
and hence, (An/anpin)||2n — 2nll < (A2 ), )My for every n > 0. The condition (vi)

implies that lim, oo (An/@nfin)]2n — Zn|| = 0. Consequently, we get
An n~— In
ti 2l =il (47)
n—00 Qi ln

Now, we choose a subsequence {z, } of {z,} such that limsup,,_, . (z* —z,, Asx™) =
lim; oo (@™ — zp,, A22*). The boundedness of {x,,} implies the existence of a subse-
quence {J}m]} of {z,,} and a point & € H such that {xnlj} converges weakly to .
Since limy, oo || Tn+1 — Tn|| = limp 00 ||2n — Zn || = 0, we have

limj_wo(mmjﬂ,w)e = limj_,oo<zni7,,w> = limj_wo(a:mj,w) = (%,w), Ywe H.

Without loss of generality, we may assume that lim (z,,,w) = (&, w),Yw € H.
Since the pool of mappings {7; : 1 <14 < N} is finite, we may further assume (passing
to a further subsequence if necessary) that, for some integer k € {1,2,..., N}, we have
Tin,) = T, Vi > 1. Then, it follows by (4.5) that |2y, — Tjixn) © - © Tjit1]Zn,
0. Hence, by Lemma 2.4, we conclude that & € Fix(T};n) 0 -+ o Tjj41)). Together
with the condition (4.2), this implies that & € ﬂi\[:l Fix(T;).

Let y € ﬂfil Fix(T;) be fixed but arbitrarily chosen and put My := sup{|z, —

n>0

—

Yl + lyn —yll + || f(zn) —y||} < co. Then, it follows by (A3) and Proposition 2.3 that,
for every n > 0, we have

lyn = ylI* = 1Bn(@n — 1) + 30 (F(@n) = 1) + (1= B — ) Tt y@a — 9|12
< Bullwn =y + 4l f(@n) = ylI* + (1 = B = W) 1Tt yzn — vl

= Bullzn — ylI* + wll f(20) — yl?

+ (1= Bn — v Tins1) (@0 — AnArzy) — Tignyll?

< Bullzn = ylI*> + vall f(zn) = ylI> + (1 = Bn — 70 llzn — yII?

= Bullzn — ylI* + vl f(22) = F() + f(y) =yl

+ (1= B = ¥) | (@0 — AnArzn) — (¥ — AnAry) — AnAry|)?

< Bullzn = ylI? +ynlll f(@n) = FWI? +2(f(y) =y, f(2n) — v)]

+ (1= Bn = W) l(@n = Adrzn) = (¥ — A A1) |I” + 220 (y — 20, A1)

< Ballen = yl* + vnlo®lon — yl* + 20 £ () =yl £ (@n) — yll]

+ (1= Bn = y)llzn — ylI” + 220y — 20, A1y)]

<[ =3 (1 = p)lllen = ylI? + 29l £ () — yll | £ (20) — yll

+2(1 = B — ) Ay — 20, A1y)

<lzn = yll* + 29l £ () = yllllf (2n) = yll + 201 = Bo — W) Ay — 2n, Ary),  (4.8)
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which implies that, for every n > 0, we get
1 Yn
0 < =(llzn = yll* = llym — yI*) +25= £ () = ylll £ (zn) = vl
lzn —yll = llyn — yll

An

lzn = yll = llyn — yll
An

+2(1 = Bn = )y — 20, A1) < (lzn — yll + llyn — yll)

Tn
+ 2>\7||f(y) - y||M4 + 2(1 - ﬁn - 7n)<y - zn7A1y> < M4

231 () = Yl M + 20 = B = 7)Y = 2, Ary) <

Tn — Yn n
i (B2 1700) = o) 4200 = B = 3000 = 200 A0,

By the weak convergence of {z,,} to & € ﬂfil Fix(T;), and (4.4) and (4.6), we get
N
(y—2,A1y) >0, forallye ﬂ Fix(T3).
i=1
Assumption (A1) ensures (y — &, A1&) > 0, for all y € ﬂf\il Fix(T;), that is, & €
VI (mfvzl Fix(Ti),Al). Since {z*} = VI (VI (mfvzl Fix(Ti),Al) ,Ag), we have

limsup(z* — &p41, Aoz™) = lim (2" — zp, 41, Aoz™) = (2 — F, A2z™) < 0.  (4.9)

n— o0 1—00

(IT) We next prove limsup (A, /appin){x* — 25, A1z™) < 0.

Sinee Brye, picryn € (VL Fix(T) and & € VL (YL, Fix() 4,), we have
<,ZL'* — Zn, A1$*> = <Pmi\7=1 FiX(Ti)Z'n, — Zn, A1I*> —+ <l’* — Pﬂf\;l FiX(Ti)Znﬂ Alx*>
< <Pﬂf\7:1 Fix(Ti)zn — Zn, Alx >
S NPAN, Fix(ry)zn = ZnlllArz™[l, Vn = 0.

The hypothesis of (c) implies that

* 1 *
lAsz™l < —ll2n = Ty 2a [l 4227l

(x* — z,, A1x™) < Hva:l Fix(T;)%n — #n

[t

< Cllzn = ynll + llyn = T za ]Il As2™]

< =[llzn = ynll + Bullzn — T[n+1]ZnH + Yl f(2n) — T[n+1]ZnH]||Alx*||

S|

1 *
< [z = gall + (B + 10) Ms]l| 412"
for every n > 0, where

Ms = Sg%{”xn - T[n-i-l]zn” + 1 f(zn) — T[n-i-l]zn”} < 0.

So, we obtain

An Ajx* Anllzn — Yn An(Bn n
o sy U =l el 3 )

Qo fhn o r Ol fhn Qo fn
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for every n > 0. This relation together with the condition (vi) and (4.7) implies that

lim sup (x* — zp, Arz™) <0. (4.10)
n—oo Qplin
(III) Finally, we prove lim ||z, — z*|| = 0.
n—oo
Indeed, repeating the same argument as that of lim |z, — z*| = 0 in the proof
n—oo

of Theorem 3.1 from part I, from (4.8) we have
lim ||la, —2*|| = 0.
n—oo

This completes the proof. O

Remark 4.1. We extended [3, Algorithm 3.1] to develop Algorithm 4.1 for solving
Problem 1.3. Since Algorithm 4.1 involves a contractive self-mapping f, the pool of
nonexpansive self-mappings {7;}~ , and several variable parameters, Algorithm 4.1 is
more flexible and more subtle than [3, Algorithm 3.1]. However, the proof of Theorem
4.1 is very different from that of Theorem 3.2 in [3] because our argument depends
on Lemmas 2.1 and 2.4.

Theorem 4.2. Assume that the sequence {y,} generated by Algorithm 4.1 is bounded.
Suppose that {u,} C (0,n/k%], {an} € (0,1], {B.} € [0,1], {7va} C (0,1] and {\,} C
(0,2a] satisfying

(i) Z Qi fly, = 00,
n=0
(ii

) nli_)ngo(l/an—&-NMn-i-N)u/)\n = 1/Ansn| =0,

(i) Tim (1/An41)[1 = Gnpin /0N pnsn| =0,

(iv) Ap L0 asn — oo,
)

(v

(Vi) nlggo()‘nﬂn + Yn + )\EL)/Oén,Un =0,

lim appn /A, =0,

o0

(Vll) Z(|ﬁn+N—l - ﬁn—l' + |'Yn+N—1 - ’Yn—ll)/An < 00.

n=1
Assume, in addition, that (4.2) in Theorem 4.1 holds. Then the sequence {x,} gen-
erated by Algorithm 4.1 satisfies the following assertions:
(a) The sequences {x,}, {A1zn} and {Asyn} are bounded;
(b) lm [2pin = nll/An =0 and lim || — Tjnsny 0 -+ © Thngrjan|| = 0;
n—oo n—oo
(c) The sequence {x,} converges strongly to a unique solution of Problem 1.3
provided lim ||zp4+1 — o[/ An =0 and there is r > 0 such that

|zn — Tjzn| > inf lzn —yl|(Yn >ng and j =1,...,N)
yeﬂf;l FiX(Ti)

for some integer ng > 1.
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Proof. (a) By using the similar arguments as in the proof of Theorem 4.1 (a), we
obtain the sequences {z,}, {4A1z,} and {Asy,} are bounded.

(b) We prove that

nlirrgo |Zntn — Tnll/An = nan;O |lzn — Tigny 0 -+ 0 Tinsq)an|| = 0.

As in the proof of Theorem 4.1 (b), from assumption (A3), Proposition 2.3, and
the condition A, < 2« (Vn > 0), we obtain, for all n > 0,

| Tonwsnnsn = Tonrn| < lowss = @all + 1A = Ansnl Arzal),

and hence,

[n+n = Ynll = [|Brt N Tnt N + YN f(@ntn) + (1 = BogN — Yot N) Tint N+1) Tt N

—BnTn — Yo f(¥n) — (1 — Bn — ’Yn)T[n—&-l]fcn”

< ||ﬂn+an+N - ﬁnxn” + ||7n+Nf(xn+N) - 'an(wn)H

HI(1 = BN = Y4 N) Tina N4 11Tt N — (1= Br — ¥n) Ting 11T
< Bntn = Bulllzntn|l + Bullzneny — znll + [varn = Wlllf (@nen) |l
+ll f(@nan) = F@) | 411 = Busn = Ynen) = (1= B = Yl Tins N1 n |
+(1 = B — 'Yn)HT[n+N+1]xn+N - T[n+1}xn||
< Bnan = Bulllznn |l + Bullzntny = Zall + [Vntnv = W llLf (20t )l
¥l Tntn = Tl + (1BnsN = Bul + [Vntn — 7n|)||f[n+N+1]33n+NH
(1 = Bn = Y)llznen — znll + [An = Ang [l Arzn]
< (IBnan = Bl + [+ — WDl Znan |l + Bull@nsn — zn|
+(1Bn4n = Bul + [man = DI f @nan) | + mpllznsen — @l
+(1Bntx = Bal + & = WD) [ Tpns v 11w |
+(1 = Bn = W)llzn+ny = znll + [An = Angn [ Aran ]
=[1 = = plllznsn — zall + (1 = B = )| An — Angn[[[Arza]|
+(1Bntn = Bul + 1w = WD) (T n | + 1 F @nin)ll + 1 T 41120 s 1)
S =7m@ = p)ll|#ntny = @nll + (IBntn = Bl + [Tntn — ol + [Angn — An|) M1

S ‘lanrN - an + (lﬁnJrN - ﬁn| + |’7n+N - 'Yn‘ + |An+N - )\n|)M17
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where My := sup,,>o{l|znll + [If (zn) | + [Tisgzall + [|Ar1zal]} < oo
From Proposition 2.4, we get

| = ||T(an+N—1yHn+N—1) (anfl,unfl)yniln

HanrN _mn‘ Yn+N-1 =T

< ||T(0‘n+N—17#n+N—1) T(Oin+N—1nUfn+N—1)yn

Yn+N-1 — —1l

+ ||T(an+N—1an+N—1)yn_l _ T(“"*l’“"*l)yn_lH

< (1= anyN- 1Tt N-D)|Ynt N1 — Yn—1]|

+ [t N1t N1 — Q1 i1 || A2yn 1|

< (1 - O‘n+N—1Tn+N—1){”mn+N—1 - 1'n—1||

+ ([BngN-1 = Bn-1| + [meN-1 — Yn-1]

+ ‘)‘n+N71 - )‘n71|)Ml}

+ [t N1 N1 — Q1 i1 || A2yn 1|

< (1= ansn-1TnaN-1)Znin-1 = Tnoa || + (|Bngrv—1 = Bn1]
+ [ VneN—1 — Yn-1]

+ [ Antn—1 = A1 )Mi + Qg N1t N—1 — Q-1 fin—1|Ma,

where 7,4 ny_1 =1 — \/1 — fntN—1(20 — pinyn—162) € (0,1] as in Proposition 2.4
and My := sup || A2y, || < co. At the same time, observe that for all n > 0,
n>0

1
V1= i (20 = pn?) < VT = iy < 1= S,

and hence,

1 1
o= 1= V/1— (20 — ppr?) > 1 - (1 - 2Mn77) = SHnl,
where 0 < j1,, < n/k? for all n > 0. Also, note that A, | 0 as n — oo, that is, {\,} is
a decreasing sequence such that A, — 0. Thus, by a similar argument as in the proof
of Theorem 4.1, we obtain for all n > 1,

x -z L : —
||n+]§7n” < (1 — 2an+N1,U/n+N1n> || n+N/\1 - 1”
n "

1

Ap4 N—1Mn+N—-1

1 1
An—1 AngN-1

1 2M.
+§an+N71Nn+N7177 : 73{(1 + 2a)

I P } n |Bnn—1 = Bn-1| + [Ynin-1 — 'Yn—1|M3’
)\n An N—1MHn4+N—1 )\n
where M3 := sup ||znen — Tn|| + M1 + M2 < co. Therefore, by Lemma 2.1 and the
n>0

conditions (i), (ii), (iii) and (vii), we have

lim 1Tty =Tl (4.11)

n—oo )\n
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From ||@n11 — Ynl| = npin||A2yn| < Maayp, and the condition (v), we get
lim [[zn41 — ynl = 0.
n—oo

In addition, note that the conditions (v) and (vi) imply

liml:hm Tn_ Gt =0 and lim G, = lim b Gkt

n—oo \p, n—00 Qi An n—oo n—00 Qi flp An

= 0. (4.12)
Since lim (8, + v,) = 0, as in the proof of Theorem 4.1, it follows from (4.1) that

|Zn+1 — Tint1] (@ — A A12n)[| < |Tns1 — ynll + (Ba +90) M1 — 0 as n — oo,
that is,
nhjgo [#n+1 = Tty (2n — Andrzn)|| = 0.
Since A, — 0, each T; (i = 1,2,..., N) is nonexpansive and {A;x,} is boundedness,
we have
lZns N = TN (TnyN—1 — AngN—1A1ZniN—1)]| = 0,

||T[n+N] (xn%»Nfl - )\n+N71A11'n+N71)
Tt N Tt N—1] (B N—2 — Ang N2 1Ty N—2)| — 0,

||T[n+N] 0---0 T[n+2] (Tny1 — A1 A1Zn41)
_T[n+N] ©--+0 T[n+1] (xn — )\nAlxn)H — 0.

Furthermore, observe that
Tn+N — Tp = Tpn+N — T[n+N] ($n+N—1 - )\n+N—1A19€n+N—1)
+ TN (TnaN—1 — Ap N1 A1 T N 1)
— Ty N Tt N1 (T N—2 — Mg N—2A1Zng N —2)
+ Tingny 0 0 Tlngg) (Tnt1 — An141Zn41)
—Tipyny © -+ 0 Tipga) (@0 — ApAiy)
+ Tgny 0 0 Tng) (T — AnA12n) — T
Consequently, we have
nhﬂn;Q ||T[n+N] 00Ty (Tn — AnAr12y) — an =0.
Note that
||T[n+N] 00Ty Tn — Znl|
S Tingny o 0 Tng1)Tn — Tingny © -+ © Tingen) (20 — An A1y ||
+ | Ty 0 -+ - 0 Tig1] (0 — A A1) — 24|
S AallArz || + [ Tigeny 0 - 0 Thg1)(Tn — Andizn) — 20| — 0 as n — oo,

that is,
lim ||T[n+N] o:--0 T[n+1]l‘n - l‘nH =0. (413)

n—00

(c) We divide the proof into the following three steps:
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(I) As in the proof of Theorem 4.1, we have lim sup(z* — 41, Aaz™) < 0.
n—oo
(IT) We next prove limsup (A, /o pin){x* — 25, A1z™) < 0.
n—oo
We may assume, without loss of generality, that, for some r > 0, one have

lxn — Tjzn| > r inf ln —yl| (YR >0and j=1,...,N).
yeNN, Fix(Ty)

Since PN pix(r,)%n € ﬂf\il Fix(T;) and z* € VI(ﬂ 1 Fix(T3), A1), we have
(" — zp, Arx™)
<PmN Fix(T;)?n — %n, Az®) + (2" — Pﬂf\;l Fix(T,-)ZmAlfU*>

< 1 Fix(T; )Z’ﬂ - Zﬂ’Alx*>

< 1P pix(mzn = 2znl[[Arz”]|

IA

[HPm Fix(t) e — Py i) @oll H 1PAN | Fixery)@n — all + (|20 — zn]|][| A1z
< 2llzn = zall + 1PAY | pixcry@n — Talllll A",

for every n > 0. This together with the hypothesis of (¢) implies that

(" — zp, Ar2™)
< IPA , Fixery)@n — TnllllAra™|| + 2[|zn — zp [l Ar2” ||

IN

1 * *
“ln = TngyzalllArz”| + 2llen — 2| 4227

1 * *
< Cllen = yall + l1yn = TinsnzallllArz™[| + 2l|zn — 2ull| Arz”]
1
< ;[Hxn Ynll + Bnllzn — Tint1) Tpl| + yull f(#0) — T[n+1]an
+(1 -8 — 'Vn)HT[n+1]Zn - T[n+1]xn||]||A1x [+ 2llzn — 2n ||| Ar2™|
1 *
< ;[”xn = Yull + BnllTn — T[n—&-l]xn” + Yl f(zn) — T[n-i—l]an + [[2n — zall]l[ A1z
+2||lzn — zall[| A1z
1 *
= ~llzn =yall + Bullzn = Tingall + ynllf(@n) = Tinsnzal]llArz™]]
1 .
+ (4 2)[lzn = znll v’

IN

1 a1 .
Sz = yull + 5o s+ Ms] || Arz™|| + (— + 2) |20 — 2l Ara”]
1 * 1 *
= —llzn = ynll + (Bn + ) Ms]l| Ar™ || + (= + 2)llzn — zn [l 27,

for every n > 0, where

M; = sgp0 {||:1:n — Tipp11 2l + |1 f (2n) — T[n_,_l]an} < 00.
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So, we obtain

An A * An n - In An mn n
—— (2" — 2, A12”) < Az { lzn =y + (Bn 13 )Ms}
Qnfn r On fn Qip
1 )\n Tn — Zn *
+ ( +2) MHAﬁC I
r A fp
A * 2 _
Al At )
T Qp fbn An Qp

]- )\n n - “n *
+(+2> Anlln = znlly 4 o vn > 0.
Qn ft

T nMHn

This relation together with the condition (vi) implies that

lim sup (x* — zp, Arz™) <0. (4.14)
n—oo Qnlin
(IIT) Finally, we prove lim ||z, —2*|| = 0.
n—oo
Indeed, repeating the same argument as that of lim |z, — 2*|| = 0 in the proof
n—oo

of Theorem 3.1 of the first part, we get that lim,_, ||z, — 2*|| = 0. This completes
the proof. O

Remark 4.2. If N =1 in Theorems 4.1 and 4.2, then the conclusion lim |@,+y —

Zn||/An = 0 reduces to lim ||xp11 — zp||/An = 0. In this case, we have
n—oo

[2n = ynll _ 20 = Znpall 4 (201 = ynll _ 20 = 2ol | anpn
S = + A 5
)\n )\n An >\n || Qy"’b H

which together with the condition (v) implies lim |z, — yn||/An = 0. Thus, the
n—oo

condition lim ||Z,4+1 — Zp||/An = 0 in the conclusion (c) can be deleted.
n—oo

The following result is derived under some mild conditions, which are very different
from those in Theorems 4.1 and 4.2.

Theorem 4.3. Assume that the sequence {y,} generated by Algorithm 4.1 is bounded.

Suppose that {p,} C (0,n/k%], {an} C (0,1], {Bn}, {7} C [0,1] and {\,} C (0,20]
satisfy the following conditions:

(i) Z Yn = 00 and nlirgo(ﬂn +vn) =0;
n=0
(11) Z (lﬂnJrN - ﬁn| + |’7n+N - '7n| + |)\n+N - )\nl) < oo

n=0

oo
(iii) Z |Qnt Nt N — Qppin] < 00 and lim ag,p, = 0;
n:O n—oo

(iv) v = 0(An) and A, < appin, Yn > 0.

In addition, assume that the condition (4.2) in Theorem 4.1 also holds.
Then the sequence {x,} generated by Algorithm 4.1 satisfies the following assertions:
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(a) The sequences {x,}, {A1xn} and {Asy,} are bounded;

(b) lim [|#nqn — 2nl| =0 and lim |2, — Tjpqnjo -0 T[n+1]xn" =0;

(¢) The sequence {x,} converges strongly to a unique solution of Problem 1.3

provided ||z, — yn| = o(\y).
Proof. We divide the proof into several steps.
Step 1. By using the same argument as that in the proof of Theorem 4.1 (a), we see
that the sequences {x,}, {4A12,} and {42y, } are bounded.
Step 2. lim ||zpyn — 2p| = lim Hxn = Tingny © -+ © Tipgj@al|| = 0.
Assumption (A3), Proposition 2.3, and the condition \,, < 2« (n > 0) imply that,

for all n > 0, we have:

Hﬁn-{—N-‘,—l]xn—i—N - T[n+1]$n
= HT[n-s-N—H} (I = AN AD)To N — Tgyy (L — )\nAl)san

SN = AsnAD)Znn — (I = A Ar)an ||

= (I = AN AD)Tnsn — (I = AN A Tn + (An — Ans N) A1, |
<N = AngnAD)ZrgN — (L = AN AT + [An = Apgn| [[Arzn |
Szntn = @all + [An = Angn || Aran.

Thus

[Yn+N = Unll = [|Bns NTrtN + Yot N f (@4 )

+ (1= Brav = Yot V) Dot N1 T4 N — B — Yo f (@) = (1= B = V) T 1)
S |BrtNZnaN = Buall + [Vt N f(@nten) — o f(z0)]l

+ 111 = Bty = Vs V) Thnt v411Zns 8 — (1= Bo — Yn) T 1120l

< Bn+n = Bualllzntn || + Ballzntn — zull + [N = Yol f (@nsn) |l

+ Wl f(@nsn) = flza)ll + (1 = Bogn — Ynin) — (1= Bp — 'Yn)|||f[n+N+1]xn+N“
+ (1= B = ¥ | Thns N2 8 — Tn1) T

< |Bn+n = Bualllzntn || + Ballzntn — zall + [N = Yol f(@nsn) |l

+ mpllensn = Zoll + Bty = Bul + sy = WD) 1 Tt N Zntn |

+ (1= Bn = Wlllnseny = nll + Ao = Angn|l[Arzn]

< (1Bnsn = Bl + [nan — WDl Zntn || + Bull#nsn — 2ol

(
+ (1Bntn = Bul + s v = Y DIf (@ns N + Mpllznsen — zall
+ (1Busn = Bal + Pnsn = VD)1 Tt N1 o
+ (1 = Bn = y)llznt N — Znll + [An — Ans N[l A1zn ]
=1 = = pllzntn — 2ol + (1 = Bn = )| An — Angn ||| Arza|
+ (1Bnrn = Bl + ynany = WD) (s n || + 1 @ni )l + 1Tt v+ 1204 1)
<M=y =pllznsn = zall + (1Bn+n = Bul + Vo8 — Yol + [Angn — Anl) M,
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where My := sup { |zall + 1/ (@)l + [Tzl + [ dra] } < oo,
n>0

From Propositi?)n 2.4, we have

|Zpen — Zn| = HT(Q"JrN’l’”"*N’l)yn+N71 _ T(a"*““"*l)yan
< HT(anJrN—hltn+N—1)yn+N_l _ T(an+N—1,Hn+N—1)yn_1H
+ HT(Q"*N‘l’“”*N‘l)ynq _ T(O‘"‘l’“"‘l)yn_lu

S (1 - an+N—lTn+N—1)“yn+N—l - yn—1||

+ ‘anJerl/inJerl - Oén—lﬂn—1|||A2ynf1||

< (1= anpnvortuen-0){ [ = a1 (0 = D)ll@atn—1 = o |

+ (|/6n+N71 - 6n71| + |7n+N71 - ’Ynfl‘

+ [ AngN—1 — )\n—1|)M1} + ot N1t N—1 — Qp—1ftn—1]||A2Yn—1]]
<1 (L= mrnot — zaa

+ (|/8n+N71 - ﬁn71| + |'7n+N71 - ’Ynfl‘

+ [ AnaeN—1 = A1 )My + Qe N1 it N—1 — Qo1 fin—1]| M2,

where Tin—1 = 1 — /1 — s N—1(20 — pinsn—152) € (0,1] as in Proposition 2.4
and My := sup || A2y, || < oo. Hence, for all n,m > 0,
n>0

[Tntmtn = Tngmll < [1 = Ynsm-1(1 = p)l[|TnsmeN-1 = Tnsm-1]
+(|ﬁn+m+N71 - ﬁn+m71| + |7n+m+N71 - '7n+m*1|
+|)‘n+m+N—1 - )‘n+m—1|)M1 + |O‘n+m+N—1:Un+m+N—1 - O‘n+m—1ﬂn+m—1‘M2
<= Yatm-1(1 = p)H[L = Yatm—2(1 = P Zntmtn—2 — Tngm—2]|
+(|5n+m+N72 - ﬂn+m72| + "YnerJerZ - 'Yn+m72| + |>‘n+m+N72 - )‘n+M72|)M1
+ O tm e N2t m+ N—2 = Qntm—2Hn+m—2|Ma}
+M1(|Bn+m+N—1 - 6n+m—1| + "Yn—i—m-i-N—l - 'Vn-i-m—ll + |/\n+m+N—1 - )‘n-i-m—l‘)

+M> |04n+m+N—1,UJn+m+N—1 - O‘n+m—1ﬂn+m—1|
n+m—1

< I 0= = p)lllzmen =zl
k=m
n+m—1
+My Z (1Bk+8 = Brl + 1ve+n — Yol + [ AN — Axl)
k=m
n+m—1
+My Y ok NN — Q-
k=m
Since the condition (i) implies [[r-, [1 —vx(1 — p)] = 0 (Vm > 0), we have for all
m > 0, that

i sup [|2n 4 n — @nl|* = Hmsup [Zfmin = Tnpoml|®
n—oo n—oo
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oo o0

<M Z 1Bk = Brl + [veen — el + [ Aoy — Ai|) + Mo Z |y NN — Qeflre]-

k=m k=m

This together with the conditions (ii) and (iii) ensures that

limsup ||Zp1n — zp] <0, that is lim ||z,4n — 24| = 0. (4.15)
n—oo n—oo
From ||zp+1 — Ynll = anpnlldayn]l < Maopp, and the condition (iii), we get

limy, 00 ||Znt1 — ynl| = 0. Since nlerDlo(ﬁn +v») = 0, it follows from (4.1) that
[#n41 = Tinra)(@n — Andrzn) | < @ns1 = ynll + lyn — Tty (@0 — AnArzn) ||
= |Zn+1 = Ynll + [1Bn(@n — Tpg1) (@0 — AnA120)) + Vo (f (@) = Tingr) (T — AnArzn)) ||
< |@nt1 = Ynll + Ballzn — T[nH]QCnH + Yl f(2n) — f[n+1]35n||
< Nznss = gl + B (Jall + | Tinsnza]) + 3 (1@l + 1 Tinsual)
< N@nt1r = yall + (B + )My — 0 as n — oo,

that is, lim,, oo Hmnﬂ — Ty (w0 — )\nAlxn)H =0.
This together with A, — 0 and the nonexpansiveness of each T; (i = 1,2,...,N)
and boundedness of {A;x,} implies that

|Znsn = TN (@ngn—1 — Mg N1 A1z n—1)|| = 0,
| Tin N (TneN—1 = AngN—1A1Zng N 1)

Ty N Tt N—1] (ZngN—2 = Ang N2 1Ty N—2)| — 0,

| Tingny 0o 0 Tingo) (Tng1 — Anr1A1T041)

Ty © -+ 0 Tipga](Tn — ApAr2y)|| — 0.
Furthermore, observe that
Tyt N = Tn = Ty N — Ty N (@Tns N-1 = Anp N—1A1Tn N 1)
+ Tng N (T N—1 — Ap N1 A1 Ty N 1)
— T N T N 1) (T N—2 — Ay N2 A1 Ty N—2) + -+
+ Tgny 0 0 Tingo) (Tng1 — Ang1A1%n41) = Tigny © - - - 0 1) (0 — AnArzy)
+ Tigny 0 0 Tg) (T — AnA12n) — T
Consequently, we have that lim, oo || Tjn+n) © -+ © Ting1)(2n — AnA12,) — 24| = 0.
Note that
||T[n+N] 00 Tlpi)Tn — Zn |
< Tpany o 0 Tnn)@n — Tina Ny © - 0 T 1) (Tn — An A1z, )|
+ 1Tty 0+ 0 Ting1)(Tn — A A1) — 20|
< MallArzn|| + [ Tigny 0 - 0 Tingr) (B0 — A Arn) — 25| — 0 as n — oo,

that is,
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Step 3. limsup{A;z*, 2" — z,,) <0.
n—oo

Choose a subsequence {z,,} of {z,} such that limsup,_, (A12* a* — x,) =
lim; oo (A12*, 2* — x,,). The boundedness of {x,,} implies the existence of a sub-
sequence {xm]} of {x,,} and a point & € H such that Tn,, — &. Without loss of
generality, we may assume that x,,, — &, that is, lim; o (w, x,,) = (w, &), Yw € H.

Since the pool of mappings {T; : 1 < ¢ < N} is finite, we may fur-
ther assume (passing to a further subsequence if necessary) that, for some in-
teger k € {1,2,...,N}, T, = Tk, Vi > 1. Then, it follows from (4.16)
— 0. Hence, by Lemma 2.4, we conclude that

that Hfﬂnl — T[l-‘,—N] o-+-0 T[i+1]mni
T € Fix (T[HN] 0-+-0 T[i+1])- Together with the condition (4.2), this implies that

ze ﬂf;l Fix(T;). Now, since z* € VI (ﬂi\]:l Fix(Ti),Al), we obtain

limsup(Aiz*, z* — z,) = lim (412", 2" — z,,,) = (A", 2" — &) <0. (4.17)

n—00 100

Step 4. limsup{Asz™, 2" — x,,) < 0.
n—oo

Choose a subsequence {x,, } of the sequence {z,, } such that lim sup,,_, . (Asz*, x*—
Zp) = limg oo (Asx™, * — x,, ). The boundedness of {z,,} implies that there is a
subsequence of {z,,} which converges weakly to a point Z € H. Without loss of
generality, we may assume that x,, — Z. Repeating the same argument as in the
proof of & € ﬂf\[:l Fix(T;), we have T € ﬂil Fix(T;).

Let y € ﬂfil Fix(T;) be an arbitrary fixed point. Then, it follows from the nonex-
pansiveness of each T; (i = 1,2,..., N) and monotonicity of A; that for all n > 0, we
have:

lym =yl = 11Bn(@n — v) + W (f(@n) = 1) + (1 = Bn — ¥0) Ty yn — )1

< Bullzn = yl? + vl £ (@) = yl* + (1 = B = %) [ Tins 1y — v

= Bullen — ylI? + wllf(@n) — fy) + f) — yl?

+ (1= Bn— 'Vn)”T[nJrl] (Tn — Andrzn) — T[n+1]y||2

< Bullzn = ylI? + ynlll f(@n) = FOIZ + 20 (y) — y, () — )]

+ (1= B = 1)l (@0 — y) = AnArzn®

< Bullzn — yl? + nlo® |z — yl> +2(F (v) — y, f(2n) — v)]

+ (1= B = )llzn = yll* + 20 (A1zn, y — x0) + X% [ Arzn %]

<[ =31 = p)lllen — yl? + 2%l £ () =yl £ (z0) — o

+2(1 = Bn — V) A (A1, y — zn) + A2 || Arz, |

< lzn — yll? + 29l F (W) = wlllF (@n) = yll + 21 = B — ) An(A1@n, ¥ — )
+ A5 Ar, |

<wn = ylI* + 29l £ (v) — gl (My + lyll) + 201 = Bn = ¥u) An(Ary, y — )
+ N2 M2 (4.18)
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The above relation implies that, for all n > 0, one have:

1 Yr
0< = (llzn = ylI? = llyn — ylI*) + 2)\*lllf(y) —yll(My + [|yll)

+2(1 = Bn — V) {A1y, y — Tp) + A M7

[z = yll = llyn — yll
An
+ 2(1 - 671 - 771)<A1ya y— xn> + )\nM12
lzn = ynll | %
% + 2)\*Lllf(y) = yll(M1 + [lyll)
+ 2<Aly7y - -rn> + Q(ﬁn + 'Yn)HAly||M3 + )‘nM12a

where Ms := sup ([[zn — yll + llyn — yll) < oo
n>0

= (lzn =yl + llyn —yl) + 2%:Hf(y) = yll(My + [yl

< Mj

From |2, — ynl = 0(An), 70 = 0(An) and lim (8, +7,) = 0, we deduce that for

any € > 0, there exists an integer mg > 0 such that
2 —ynll 57

MU 925 () — M+ )+ 208 + 30| Ayl Ms + Au M < 22
for all n > mg. Hence, 0 < 2e + 2(Ay,y — x,) for all n > my. Putting n := ny,
we derive 2e + 2(A1y,y — Z) > 0 as k — oo, from x,, = T € ﬂfvzl Fix(T;). Since
e > 0 is arbitrary, it is clear that (A;y,y — ) > 0 for all y € ﬂfil Fix(T;). By
Proposition 2.2 (i), we obtain from the a-inverse strong monotonicity of A; that
7 eVl (ﬂfil Fix(Ti),Al). Therefore, from {z*} = VI (VI (mjvzl Fix(T}), A1> ,Ag),

we have

limsup(Asx™, 2™ — x,) = klim (Agx™, x* — xp, ) = (Agz™, 2" — ) < 0. (4.19)
Step 5. lim ||z, —2"|| =0.

Indeed, repeating the same argument as in Step 5 of the proof of Theorem 3.3,
from (4.18), we have lim, . ||z, — 2*|| = 0. This completes the proof. O
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