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Abstract. Let us consider a mapping T : A ∪ B → A ∪ B such that T (A) ⊆ A and T (B) ⊆ B,
where A and B are two nonempty subsets of a metric space (X, d). We provide sufficient conditions

for the existence of a point (p, q) ∈ A×B, called best proximity pair, which satisfies p = Tp, q = Tq

and d(p, q) = dist(A, B) := inf{d(x, y) : (x, y) ∈ A × B}, in the setting of convex metric spaces for
noncyclic contractions. Then, we present a similar result of Goebel-Karlovitz lemma for noncyclic

relatively nonexpansive mappings in convex metric spaces.
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1. Introduction and Preliminaries

Let (X, d) be a metric space and let A and B be two nonempty subsets of X.
A mapping T : A ∪ B → A ∪ B is said to be a noncyclic mapping provided that
T (A) ⊆ A and T (B) ⊆ B. A point (p, q) ∈ A×B is said to be a best proximity pair
for noncyclic mapping T , provided that

Tp = p, Tq = q and d(p, q) = dist(A,B).

Let (A,B) be a nonempty pair of subsets of a metric space (X, d). A mapping
T : A ∪B → A ∪B is said to be a noncyclic relatively nonexpansive if T is noncyclic
and d(Tx, Ty) ≤ d(x, y) for all (x, y) ∈ A×B.

In [3], Eldred et al. studied the existence of best proximity pairs for noncyclic
relatively non-expansive mappings in Banach spaces with a geometric property, called
proximal normal structure. They proved the following theorem.
Theorem 1.1. (Theorem 2.2 of [3]) Let (A,B) be a nonempty, weakly compact and
convex pair in a strictly convex Banach space X. Let T : A∪B → A∪B be a noncyclic
relatively nonexpansive mapping. If the pair (A,B) has proximal normal structure.
The T has a best proximity pair.

Also, in [2], the authors investigated sufficient conditions which ensure the existence
of a best proximity pair for noncyclic mappings.

The notion of convexity in metric spaces was introduced by Takahashi as follows.
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Definition 1.2. ([7]) Let (X, d) be a metric space and I := [0, 1]. A mapping
W : X × X × I → X is said to be a convex structure on X provided that for each
(x, y;λ) ∈ X ×X × I and u ∈ X,

d(u,W(x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex metric
space, which is denoted by (X, d,W). A Banach space and each of its convex subsets
are convex metric spaces. But a Frechet space is not necessary a convex metric space.
The other examples of convex metric spaces which are not imbedded in any Banach
space can be founded in [7].

Here, we recall some notations and definitions of [1, 7].
Definition 1.3. ([7]) A subset K of a convex metric space (X, d,W) is said to be a
convex set provided that W(x, y;λ) ∈ K for all x, y ∈ K and λ ∈ I.
Proposition 1.4. ([7]) Let (X, d,W) be a convex metric space and let B(x; r) denote
the closed ball centered at x ∈ X with radius r ≥ 0. Then B(x; r) is a convex subset
of X.
Proposition 1.5. ([7]) Let {Kα}α∈A be a family of convex subsets of X, then⋂

α∈A Kα is also a convex subset of X.
Definition 1.6. ([7]) A convex metric space (X, d,W) is said to have property (C) if
every bounded decreasing net of nonempty closed convex subsets of X has a nonempty
intersection.

For example every bounded, closed and convex subset of a reflexive Banach space
X has property (C).

Let A and B be two nonempty subsets of a convex metric space (X, d,W). We
shall say that a pair (A,B) in a convex metric space (X, d,W) satisfies a property if
both A and B satisfy that property. For instance, (A,B) is convex if and only if both
A and B are convex; (A,B) ⊆ (C,D) ⇔ A ⊆ C, and B ⊆ D. We shall also adopt
the following notations.

δx(A) := sup{d(x, y) : y ∈ A} for all x ∈ X,

δ(A,B) := sup{d(x, y) : x ∈ A, y ∈ B},
diam(A) := δ(A,A).

The closed and convex hull of a set A will be denoted by con(A) and defined as below.

con(A) :=
⋂
{C : C is a closed and convex subset of X such that C ⊇ A}.

The pair (x, y) ∈ A × B is said to be proximal in (A,B) if d(x, y) = dist(A,B).
Moreover, we set

A0 := {x ∈ A : d(x, y′) = dist(A,B), for some y′ ∈ B},
B0 := {y ∈ B : d(x′, y) = dist(A,B), for some x′ ∈ A}.

Note that if (A,B) is a nonempty weakly compact and convex pair of subsets of a
Banach space X, then also is the pair (A0, B0) and it is easy to see that dist(A,B) =
dist(A0, B0).
Definition 1.7. A pair of sets (A,B) is said to be proximal if A = A0 and B = B0.

The following result follows from the proof of Theorems 2.2 in [3].
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Lemma 1.8. Let (A,B) be a nonempty weakly compact convex pair of a Banach space
X and T : A ∪ B → A ∪ B a noncyclic relatively nonexpansive mapping. Then there
exists (K1,K2) ⊆ (A0, B0) ⊆ (A,B) which is minimal with respect to being nonempty
closed convex and T -invariant pair of subsets of (A,B) such that

dist(K1,K2) = dist(A,B).

Moreover, the pair (K1,K2) is proximal.
In this article, we study sufficient conditions which ensure the existence of best

proximity pairs for noncyclic contractions in convex metric spaces. In this way, we
obtain a similar result of Goebel-Karlovitz lemma [4, 5] which is a key lemma in fixed
point theory.
Lemma 1.9. (Goebel-Karlovitz lemma [4, 5]) Let A be a nonempty, weakly compact,
convex subset of a Banach space X and let T : A → A be a nonexpansive mapping.
Assume that K is a subset of A which is minimal with respect to being nonempty,
weakly compact, convex and T -invariant, and suppose {xn} is a sequence in K such
that

lim
n→∞

‖xn − Txn‖ = 0.

Then, for each x ∈ K, limn→∞ ‖x− xn‖ = diam(K).

2. Existence of best proximity pairs for noncyclic contractions

In this section, we prove a best proximity pair theorem for noncyclic contractions
in convex metric spaces. We begin our main result with the following notion.
Definition 2.1. A convex metric space (X, d,W) is said to have property (D) pro-
vided that for each x1, x2, y in X with x1 6= x2 we have

d(W(x1, x2,
1
2
), y) <

1
2
[d(x1, y) + d(x2, y)].

It is clear that every strictly convex Banach space is a convex metric space which
satisfies the property (D).

We now state the main result of this section.
Theorem 2.2. Let (A,B) be a nonempty, bounded, closed and convex pair in a convex
metric space (X, d,W). Suppose that T : A ∪B → A ∪B is a noncyclic contraction,
that is, there exists α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y) + (1− α)dist(A,B), (2.1)

for each (x, y) ∈ A × B. If X satisfies the properties (C) and (D) then T has a best
proximity pair.
Proof. Let Σ denote the set of all nonempty, bounded, closed and convex pairs
(E,F ) which are subsets of (A,B) and such that T is noncyclic on E ∪ F . Note
that (A,B) ∈ Σ. Also, Σ is partially ordered by revers inclusion, that is (E1, E2) ≤
(F1, F2) ⇔ (F1, F2) ⊆ (E1, E2)). Since X has the property (C), every increasing chain
in Σ is bounded above. By using Zorn’s lemma, we obtain a minimal element say
(E,F ) ∈ Σ. Note that (con(T (E)), con(T (F ))) is a nonempty, bounded, closed and
convex subset of (E,F ). By the fact that T is noncyclic,

T (con(T (E))) ⊆ T (E) ⊆ con(T (E)),
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and also,
T (con(T (F ))) ⊆ con(T (F )).

So, T is noncyclic on con(T (E)) ∪ con(T (F )). The minimality of (E,F ) implies that

con(T (E)) = E , con(T (F )) = F.

Let x ∈ E, then F ⊆ B(x; δx(F )). Now, if y ∈ F we have

d(Tx, Ty) ≤ αd(x, y) + (1− α)dist(A,B)

≤ αδ(E,F ) + (1− α)dist(A,B).
Thus, for all y ∈ F we have

Ty ∈ B(Tx;αδ(E,F ) + (1− α)dist(A,B)),

and so,
T (F ) ⊆ B(Tx;αδ(E,F ) + (1− α)dist(A,B)).

Then,
F = con(T (F )) ⊆ B(Tx;αδ(E,F ) + (1− α)dist(A,B)),

which implies that

d(z, Tx) ≤ αδ(E,F ) + (1− α)dist(A,B), ∀z ∈ F.

Hence,

δTx(F ) ≤ αδ(E,F ) + (1− α)dist(A,B). (2.2)

Similarly, if y ∈ F we obtain

δTy(E) ≤ αδ(E,F ) + (1− α)dist(A,B). (2.3)

Put,
E′ := {x ∈ E : δx(F ) ≤ αδ(F, F ) + (1− α)dist(A,B)},
F ′ := {y ∈ F : δy(E) ≤ αδ(E,F ) + (1− α)dist(A,B)}.

We now have T (E) ⊆ E′ and T (F ) ⊆ F ′ and it is easy to see that

E′ =
⋂

y∈F

B(y;αδ(E,F ) + (1− α)dist(A,B)) ∩ E,

F ′ =
⋂

x∈E

B(x;αδ(E,F ) + (1− α)dist(A,B)) ∩ F.

We note that by Propositions 1.4 and 1.5 the pair (E′, F ′) is convex. Moreover, by
relations (2.2) and (2.3) we conclude that T is noncyclic on E′ ∪ F ′. Minimality of
(E,F ) guarantees that E′ = E and F ′ = F . Therefore,

δx(F ) ≤ αδ(E,F ) + (1− α)dist(A,B), ∀x ∈ E.

Thus,

δ(E,F ) = dist(A,B). (2.4)

Let (p, q) ∈ E × F . It now follows from (2.4) that d(p, q) = dist(A,B). We claim
that E and F are singleton. Assume that p 6= p′ ∈ E and q ∈ F . Since E is a convex
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set, (W(p, p′, 1
2 ),W(q, q′, 1

2 )) ∈ E×F . Now, by the fact that X satisfies the property
(D), we deduce that

dist(A,B) ≤ d(W(p, p′,
1
2
), q)

<
1
2
[d(p, q) + d(p′, q)] ≤ δ(E,F ) = dist(A,B),

which is a contradiction. Hence, E and F are singleton. This completes the proof of
theorem.

Remark 2.3. Theorem 2.2 holds once the minimal sets E and F have been fixed and
the noncyclic mapping T : A ∪ B → A ∪ B, satisfies the condition that there exists
α ∈ [0, 1) such that

d(Tx, Ty) ≤ αδ(E,F ) + (1− α)dist(A,B), (2.5)

for all (x, y) ∈ A×B.

The next result obtains from Theorem 2.2, directly.
Corollary 2.4. Let (A,B) be a nonempty, bounded, closed and convex pair in a
reflexive and strictly convex Banach space X. Suppose that T : A ∪ B → A ∪ B is a
noncyclic contraction. Then T has a best proximity pair.

3. Goebel-Karlovitz lemma for noncyclic
relatively nonexpansive mappings

The purpose of this section is to give a similar result of Goebel-Karlovitz lemma
for noncyclic relatively nonexpansive mappings in convex metric spaces. We start our
results of this section by the next definitions.

Definition 3.1. Let (A,B) be a nonempty pair of subsets of a metric space (X, d).
We say that the pair (A,B) is a proximal compactness pair provided that every
net {(xα, yα)} of A × B satisfying the condition that d(xα, yα) → dist(A,B), has a
convergent subnet in A × B. Also, we say that A is semi-compactness if (A,A) is
proximal compactness.

It is clear that if (A,B) is a compact pair in a metric space (X, d) then (A,B) is
proximal compactness.
Definition 3.2. Let (A,B) be a nonempty pair of sets in a Banach space X. A
point p in A (q in B) is said to be a diametral point with respect to B (w.r.t. A) if
δp(B) = δ(A,B) (δq(A) = δ(A,B)). A pair (p, q) in A×B is diametral if both points
p and q are diametral.

The following result is another version of Lemma 1.8 for noncyclic mappings in
convex metric spaces.
Lemma 3.3. Let (A,B) be a nonempty, bounded, closed and convex pair of a convex
metric space (X, d,W) such that A0 is nonempty and (A,B) is a proximal compactness
pair. Assume that T : A∪B → A∪B is a noncyclic relatively nonexpansive mapping.
If X has the property (C) then there exists a pair (K1,K2) ⊆ (A,B) which is minimal
with respect to being nonempty, closed, convex and T -invariant pair of subsets of
(A,B) such that

dist(K1,K2) = dist(A,B).
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Proof. Let Σ denote the set of all nonempty, closed and convex pairs (E,F ) which are
subsets of (A,B) and such that T is noncyclic on E ∪ F and d(x, y) = dist(A,B) for
some (x, y) ∈ E × F . Since A0 is nonempty set, (A,B) ∈ Σ. Moreover, Σ is partially
ordered by revers inclusion. Suppose {(Eα, Fα)}α is a descending chain in Σ. Put
E :=

⋂
Eα and F :=

⋂
Fα. By the fact that X has the property (C), we conclude

that (E,F ) is a nonempty pair. By Proposition 1.5, (E,F ) is a convex pair. Also,

T (E) = T (
⋂

Eα) ⊆
⋂

T (Eα) ⊆
⋂

Eα = E.

Similarly, T (F ) ⊆ F , that is, T is noncyclic on E ∪ F . Now, let (xα, yα) ∈ Eα × Fα

be such that d(xα, yα) = dist(A,B). Since (A,B) is proximal compactness, (xα, yα)
has a convergent subsequence say (xαi , yαi) such that xαi → x ∈ A and yαi → y ∈ B.
Thus,

d(x, y) = lim
i

d(xαi , yαi) = dist(A,B).

Therefore, there exists an element (x, y) ∈ E × F such that d(x, y) = dist(A,B). So,
every increasing chain in Σ is bounded above with respect to revers inclusion relation.
Thus, by using Zorn’s Lemma we can get an element say (K1,K2) which is minimal
with respect to being nonempty, closed, convex and T -invariant pair of subsets of
(A,B) such that

dist(K1,K2) = dist(A,B).

Lemma 3.4. Let (A,B) be a nonempty, bounded, closed and convex pair of a convex
metric space (X, d,W) such that A0 is nonempty. Suppose that X has the property
(C) and (A,B) is a proximal compactness pair. Let T : A∪B → A∪B be a noncyclic
relatively nonexpansive mapping. Suppose that (K1,K2) ⊆ (A,B) is a minimal closed
convex pair which is T -invariant and such that dist(K1,K2) = dist(A,B). Then each
pair (p, q) ∈ K1 × K2 with d(p, q) = dist(A,B) is a diametral pair (with respect to
(K1,K2)), that is,

δp(K2) = δq(K1) = δ(K1,K2).
Proof. By the similar argument of Theorem 2.2 we conclude that T is noncyclic on
con(T (K1))∪ con(T (K2)). Let (p, q) ∈ K1×K2 be such that d(p, q) = dist(A,B) and
suppose

min{δp(K2), δq(K1)} < δ(K1,K2). (3.1)

Since T is noncyclic relatively nonexpansive,

dist(con(T (K1)), con(T (K2)) = dist(A,B).

Minimality of (K1,K2) concludes that

con(T (K1)) = K1, con(T (K2)) = K2.

Put, r1 := δp(K2) and r2 := δq(K1). So, min{r1, r2} < δ(K1,K2). Let

K∗
1 := K1

⋂
(∩x∈K2B(x; r1)), K∗

2 := K2

⋂
(∩x∈K1B(x; r2)).

Then (K∗
1 ,K∗

2 ) is a nonempty, closed and convex pair in X by Propositions 1.4 and
1.5. Also, since (p, q) ∈ (K∗

1 ,K∗
2 ),

dist(K∗
1 ,K∗

2 ) = dist(A,B).
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It is easy to see that for (x, y) ∈ K1 ×K2,

(x, y) ∈ (K∗
1 ,K∗

2 ) ⇔ K2 ⊆ B(x; r1), K1 ⊆ B(y; r2).

We now claim that T is noncyclic on K∗
1 ∪K∗

2 . Let x ∈ K∗
1 . We must show that Tx ∈

K∗
1 , or equivalently, K2 ⊆ B(Tx; r1). For y ∈ K2, the relatively nonexpansiveness of

T deduces that
d(Tx, Ty) ≤ d(x, y) ≤ r1,

then Ty ∈ B(Tx; r1) which implies that T (K2) ⊆ B(Tx; r1). Therefore, K2 =
con(T (K2)) ⊆ B(Tx; r1) and hence, Tx ∈ K∗

1 . Thus, T (K∗
1 ) ⊆ K∗

1 . Similarly, we can
see that T (K∗

2 ) ⊆ K∗
2 . Therefore, T is noncyclic on K∗

1 ∪K∗
2 . It now follows from the

minimality of (K1,K2) that K∗
1 = K1 and K∗

2 = K2. Then, K1 ⊆
⋂

x∈K2
B(x; r1)

and so, for each x ∈ K1, δx(K2) ≤ r1. We now conclude that

δ(K1,K2) = sup
x∈K1

δx(K2) ≤ r1.

Similarly, we can see that δ(K1,K2) ≤ r2, which is a contradiction with the relation
(3.1) and this completes the proof.

Here, we introduce the notion of proximal approximate fixed point sequence for
noncyclic mappings as follows.
Definition 3.5. Let (A,B) be a nonempty pair of subsets of a metric space (X, d).
Suppose that T : A∪B → A∪B is a noncyclic mapping. Then a sequence {(xn, yn)}
in A×B is said to be a proximal approximate fixed point sequence for T if

d(xn, Txn) → 0, d(yn, T yn) → 0 and d(xn, yn) → dist(A,B).

The following lemma guarantees the existence of a proximal approximate fixed
point sequence for noncyclic relatively nonexpansive mappings.
Lemma 3.6. Let (A,B) be a nonempty, bounded, closed and convex pair of a convex
metric space (X, d,W) such that A0 is nonempty, X has the properties (C) and (D)
and (A,B) is a proximal compactness pair. Let T : A ∪ B → A ∪ B be a noncyclic
relatively nonexpansive mapping. Then there exists a proximal approximate fixed point
sequence for T .
Proof. By using Lemma 3.3, there exists a pair (K1,K2) ⊆ (A,B) which is minimal
with respect to being nonempty, closed, convex and T -invariant pair of subsets of
(A,B) and there exists (p, q) ∈ K1 ×K2 such that

dist(K1,K2) = d(p, q) = dist(A,B).

For any α ∈ (0, 1) let r := 2α−α2. Then r < 1. Define the mapping Tα : A∪B → A∪B
with

Tα(x) =

{
W(Tx, p, α); x ∈ A,

W(Tx, q, α); x ∈ B.

Since T is noncyclic and (A,B) is a convex pair in convex metric space (X, d,W), we
conclude that Tα is noncyclic on A ∪B. Now, for each (x, y) ∈ A×B we have

d(Tαx, Tαy) = d(W(Tx, p, α),W(Ty, q, α))

≤ αd(W(Tx, p, α), T y) + (1− α)d(W(Tx, p, α), q)
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≤ α[αd(Ty, Tx) + (1− α)d(Ty, p)] + (1− α)[αd(Tx, q) + (1− α)d(p, q)]

≤ α2d(x, y) + α(1− α)d(Ty, p) + α(1− α)d(q, Tx) + (1− α)2d(p, q)

≤ α2δ(K1,K2) + 2αδ(K1,K2)− 2α2δ(K1,K2) + (1− α)2dist(A,B)

= (2α− α2)δ(K1,K2) + [1− (2α− α2)]dist(A,B)

= rδ(K1,K2) + (1− r)dist(A,B).
Hence, for each α ∈ (0, 1) we have

d(Tαx, Tαy) ≤ rδ(K1,K2) + (1− r)dist(A,B).

It now follows from Remark 2.3 that for each α ∈ (0, 1) the noncyclic mapping Tα has
a best proximity pair say (pα, qα) ∈ A × B. That is, for each α ∈ (0, 1) there exists
(pα, qα) ∈ A×B such that

pα = Tα(pα), qα = Tα(qα) and d(pα, qα) = dist(A,B).

We now have

d(pα, T (pα)) = d(Tα(pα), T (pα)) = d(W(Tpα, p, α), Tpα)

≤ (1− α)d(p, Tpα) ≤ (1− α)diam(A).
Now, if α → 1− in above relation, we conclude that

d(pα, Tpα) → 0.

Similarly, we can see that d(qα, T qα) → 0. Therefore, there exists a sequence
({xn}, {yn}) ∈ A×B such that

d(xn, Txn) → 0, d(yn, T yn) → 0 and d(xn, yn) → dist(A,B).

The next result is a new version of Goebel-Karlovitz lemma for noncyclic mappings
in convex metric spaces.
Theorem 3.7. Let (A,B) be a nonempty, bounded, closed and convex pair of a convex
metric space (X, d,W) such that X has the properties (C) and (D). Assume that A0

is nonempty and (A,B) is a proximal compactness pair. Let T : A ∪B → A ∪B be a
noncyclic relatively nonexpansive mapping. Suppose (K1,K2) ⊆ (A,B) is a minimal
closed and convex pair which is T -invariant and such that dist(K1,K2) = dist(A,B)
and let ({xn}, {yn}) ∈ A×B be a proximal approximate sequence in A×B. Then for
each (p, q) ∈ K1 ×K2 with d(p, q) = dist(A,B) we have

lim sup
n→∞

d(xn, q) = lim sup
n→∞

d(p, yn) = δ(K1,K2).

Proof. The existence of the proximal approximate fixed point sequence for T obtains
from Lemma 3.6. By this reality that (A,B) is proximal compactness, there exists
a subsequence ({xnk

}, {ynk
}) of the sequence ({xn}, {yn}) such that xnk

→ p∗ and
ynk

→ q∗ for some (p∗, q∗) ∈ K1 ×K2. Hence,

d(p∗, q∗) = lim
k→∞

d(xnk
, ynk

) = dist(A,B).

It follows from Lemma 3.4 that (p∗, q∗) is a diametral pair. Let

r1 := lim sup
n→∞

d(xn, q), r2 := lim sup
n→∞

d(p, yn).
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We claim that

r1 = r2 = δ(K1,K2). (3.2)

Suppose that r1 < δ(K1,K2). Set,

K∗
1 := {x ∈ K1 : lim sup

n→∞
d(x, yn) ≤ r1}, K∗

2 := {y ∈ K2 : lim sup
n→∞

d(xn, y) ≤ r2}.

Note that (p, q) ∈ K∗
1 ×K∗

2 and (K∗
1 ,K∗

2 ) is a closed pair in X. Moreover, (K∗
1 ,K∗

2 )
is a convex pair in X. In fact, if x1, x2 ∈ K∗

1 , then

lim sup
n→∞

d(W(x1, x2, α), yn) ≤ lim sup
n→∞

[αd(x1, yn) + (1− α)d(x2, yn)] ≤ r1.

Thus, W(x1, x2, α) ∈ K∗
1 , that is, K∗

1 is convex. Similarly, we can see that K∗
2 is

convex. Further, T (K∗
1 ) ⊆ K∗

1 . Indeed, if x ∈ K∗
1 , then

lim sup
n→∞

d(Tx, yn) ≤ lim sup
n→∞

[d(Tx, Tyn) + d(Tyn, yn)]

≤ lim sup
n→∞

d(x, yn) ≤ r1,

which concludes that Tx ∈ K∗
1 . Similarly, we can see that T (K∗

2 ) ⊆ K∗
2 . Therefore,

T is noncyclic on K∗
1 ∪ K∗

2 . It now follows from the minimality of (K1,K2) that
(K1,K2) = (K∗

1 ,K∗
2 ). Then for each y ∈ K2 we have

d(p∗, y) = lim
k→∞

d(xnk
, y) ≤ lim sup

n→∞
d(xn, y) ≤ r1.

Hence, δp∗(K2) ≤ r1 < δ(K1,K2) which is a contradiction by the fact that p∗ is a
diametral point with respect to K2. By the similar way, we can see that if r2 <
δ(K1,K2), then we get a contradiction. That is, (3.2) holds.

Corollary 3.8. Under the conditions of Theorem 3.7 if, in addition, the sequence
{xn} is converges to p∗ ∈ A then T has a best proximity pair.
Proof. By Theorem 3.7, if d(p∗, q∗) = d(A,B) for some q∗ ∈ K2, we have

dist(K1,K2) = dist(A,B) = d(p∗, q∗) = lim sup
n→∞

d(xn, q∗) = δ(K1,K2).

Now, by the fact that the convex metric space X has the property (D) we conclude
that K1 and K2 are singleton and the result follows.
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