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Abstract. In this paper we prove some fixed point theorems for different type of contractions in
the setting of a b-metric space. The starting point was a recent result of Rus and Serban [16]. The
presented theorems extend, generalize and unify several recent results in the literature.
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1. INTRODUCTION

The aim of this paper is to prove some fixed point theorems for nonself singlevalued
operators in the context of a b-metric space. The main idea came from some recent
results (see [16]) where the authors give another proof of the main result in Reich
and Zaslavski [13]. We generalize the reults in the sense that we consider the case
of a b—metric space. We prove fixed point theorems where the operators are -
contractions, Kannan contractions, Hardy-Rogers contractions. We also give some
data dependence results.

2. PRELIMINARIES

Throughout this paper, the standard notations and terminologies in nonlinear anal-
ysis are used. We recollect some essential definitions and fundamental results. We
begin with the definition of a b-metric space.

Definition 2.1. (Bakhtin [2], Czerwik [10]) Let X be a set and let s > 1 be a given
real number. A functional d: X x X — [0,00) is said to be a b-metric with constant
s > 1 if the following conditions are satisfied:

(1) d(x,y) =0 if and only if x = y,

(2) d(z,y) = d(y, ),

(3) d(z,z) < sld(x,y) +d(y, 2)],
for all z,y,z € X. A pair (X,d) is called a b-metric space.
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For more details and examples on b-metric spaces, see e.g. [1, 2, 3, 6, 7, 9, 10].
We consider next the following families of subsets of a b-metric space (X, d):

P(X):={Y eP(X)|Y #0}, P(X):={Y € P(X)| §(Y) < o0},
P, (X):={Y € P(X)| Y is compact}, Py(X):={Y € P(X)|Y is closed}
Py o (X) = Pb(X) n Pcl(X)
Let us consider the following functionals.
First, we will denote by §(A) = sup{d(a,b), a,b € A}, the diameter functional.
The maximal displacement functional is given as follows.
Let (X, d) be a b-metric space, Y € Py(X), f : Y — X continuous, Ey : P(Y) —
Ep(A) = sup{d(z, f(z)) x € A}

We have the following properties:

(i) A,Be P(Y), AC B imply E¢(A) < E¢(B);

(ii) Ef(A) = E¢(A) for all A€ P(Y).

Let (X,d) be a b-metric space and Y C X and let f : Y — X. The set Fiz(f) :=
{z € X|z = f(x)} is called the fixed point set of f. In the case when f has a unique
fixed point z* € X, we write Fiz(f) = {z*}.

Let us consider the following definitions and lemmas, which are useful in the proofs
of our main theorems.

Definition 2.2. Let (X, d) a metric space, Y € Py(X). An operator f:Y — X is
an a-graphic contraction if 0 < a < land z €Y, f(z) €Y imply

d(f*(@), f(2)) < ad(z, f(2)).

If f:Y — X is an a—Kannan operator, i.e. 0 < a < % and
d(f(z), f(y)) < ald(z, f(z)) +d(y, f(y))], Yo,y €Y,

then f is %~ —graphic contraction.

Lemma 2.1. Let (X,d) be a b-metric space, Y € Py(X) and f :' Y — X be a
continuous a-graphic contraction. Then:

(1) Ef(f(A) <a-Ef(A), for all ACY with f(A) CY;

(i) Ef(f(A)NY) <a-E¢(A)), forall ACY with f(A)NY # 0.

Proof. The proof follows from the definition of Ey. O

Definition 2.3. Let ¢ : Ry — Ry be a function. Then:
(i) ¢ is called a comparison function if ¢ is increasing and ¢™(t) — 0, as n — oo,
for all ¢t — 0;

(ii) ¢ is called a strong comparison function if ¢ is a comparison function and is
o0

monotone increasing and Z " (t) < oo, for all t > 0;
n=1
(iii) ¢ is called a strict comparison function if ¢ is a comparison function and
t—@(t) = o0, as t — oo.
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Let ¢ : Ry — Ry be a strict comparison function. We define the function 0, :
Ry — Ry as follows
0,(t) :=sup{r e Ry|r—s-p(r) <s-t}
‘We need the above function when we study the data dependence of the fixed points.

Definition 2.4. Let (X, d) be a b-metric space. f: X — X is a ¢—contraction if
there exists a comparison function ¢ : Ry — Ry such that

d(f(x), f(y)) < p(d(z,y)).
Lemma 2.2. (Czerwik [10]) Let (X, d) be a b-metric space with constant s > 1 and let
{xp}P_y C X. Then d(zy,, o) < sd(xo,x1) + ... + $"  d(Tp_2, Tpn_1) + $"d(Tp—1,Tp).

For more considerations on the above notions see: [4, 5, 8, 11, 14, 15]. For the
multivalued case see [12].

3. MAIN RESULTS
In the following we state and prove our main results.

Theorem 3.1. Let (X,d) be a complete b-metric space with s > 1 with Y C X
nonempty and closed. Let f : Y — X be a p— contraction. Suppose there ezist a
bounded sequence (x,,) such that f™(x,) is defined for all n € N.
Then Fiz(f) = {z*}, f*(x,) — z* and f* (z,) — x*.
Proof. Let A € P, (Y) be such that z,, € A for all n € N*. We consider the following
construction Ay := f(A), Ay := f(A1NA), -, Apy1 = f(AnNA), n € N*.
We have:
(a) Aps1 C A,y Yn e N*
(b) f™(zn) € Ap, Vn € N* s0 A, # 0, Vn € N*,
We also have that:
o T(A N A) € (A)

o f(f(A)NA) C f(A)
T €A, f"(xn) € An, Ap = f(An_1NA)
Since f is a ¢ contraction and:
d(f(z), f(y)) < pld(z,y)), forall z,y €.V

It follows that:
0(f(B)) < ¢(6(B)), for all B € P,(Y).

Using the properties of ¢ and § we obtain:
5(Ans) = 8(F(An NA)) = 5(F(An N A)) < 6(F(An)
< p(6(A5)) < - < P"H(S(A)) = 0,

as n — 0o.
From Cantor’s intersection theorem we have:

Ao = Npendn # wv 5(1400) =0, f(AOO n A> C Ao



228 MONICA-FELICIA BOTA AND VERONICA ILEA

From A # 0 and §(As) = 0 we have that A = {z*}.

On the other hand f"(x,) € A,, f* ! € A,_.1NY. So {f*,)}nen,
{f" Yxn)}nen are fundamental sequences. Since A,,n € N* are closed, we have
that

f(zn) = 2%, " Hxn) — 2%, asn — 0.
Since f is continuous, it follows that f™(x,) — f(z*) as n — oo, so f(z*) =2*. O

Theorem 3.2. Let f: Y — X be as in Theorem 3.1, where @ is a strict comparison
function. Then:

(i) d(f"(wn), 27) < " (d(wn, z"));
(i) d(z,2%) < 0, (d(, f(z))), for allz € Y,
where 0,(t) :==sup{r e Ry|r —s-p(r) <s-t};
(ii) Let g : Y — X such that there exists n > 0 such that d(f(z),g(x)) <mn, for
allz €Y and Fix(g) # 0. Then d(z*,y*) < 0,(n), for all y* € Fixz(g).

Proof. (i) d(f"(zn), ™) = d(f" (zn), f(2")) < p(d(wn,27)).
(ii) Estimating d(x, 2*) we obtain:
d(z,2") < s-ld(z, f(x)) +d(f(z),27)] < s-d(z, f(z)) + s p(d(z,27)).
We obtain:
dz,2*) — s p(d(z,27)) < s-d(z, f(z))
Hence:
d(z,z*) < 0,(d(z, f(x))), Ve €Y
(iii) Choosing in (ii) z = y* we obtain that
d(a”,y") < 0,(d(y™, f(y7)) = 0. (d(9(y"), F(y7))) < O,(n) O
The next main result is a fixed point theorem for a nonself Kannan operator.
Theorem 3.3. Let (X,d) be a complete b metric space with s > 1, Y C X a non-
empty, bounded, closed subset and f:Y — X a continuous operator. Suppose that:

(a) f is an a-Kannan operator;
(b) there exist a sequence (xp)nen+ inY such that f(x,,) is defined for alln € N*;
(c) Ef(Y) < oo

Then
(i) Fizf={z"};
(i) fmYx,) — 2* and f*(x,) — =* as n — oo;
(iii) d(z,z*) <s-(1+a)-d(z, f(z)), for all z,y € Y;
('Vg d(f”_l(xn)7x*) <---d(xp, f(zy)), for alln € N;

v) Let g: Y — X such that there exists g : Y — X such that d(f(z),g(z)) <mn,
for allz €Y and let Fixz(g) # 0.
Then d(z*,y*) <n-s-(1+ «), for all y* € Fix(g).

Proof. (1)+(ii) Let Y1 := f(Y), Yo := f(V1NY), -+, Yyq1 = f(YaNY), n € N
We remark that Y, 11 C Y, f™(x,) € Yy. So Y, # 0, n € N*.
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Since f is a Kannan operator it follows that f is 2— graph contraction. We apply
lema 2.1 and we have:

§(Yns1) = 6(F(Vn N Y)) = 8(f(Y, NY)) < 1%Ef(yn NY) < 2aE(Y, NY)

=20E¢(f(Yoo1 NY)NY) =2aE(f(Yoo1 NY)NY)
20/ 201
E/(Y,_iNY)<...< — _F¢Y , .
N f(Yn1nY) < S0=ar (V) —0, asn — o0
The rest of the proof is similar with the proof from the previous theorem.
(iii) We have the following;:

d(z,x") < sld(z, f(2)) + d(f(x),27)] = sld(z, f(2)) + d(f(z), f(z7))]
sld(z, f(2)) + ad(z, f(2)) + ad(z”, f(z7))]
= sd(z, f(2)) + sad(z, f(x)) = d(z, f(x))s - (1 + a).

(iv) The conclusion of (iii) follows from (iii).
(v) Now we choose = = y* in the above inequality and we have:

d(z*,y*) < d(y*, fy™))s - (1 +a).
From y* = g(y*) it follows that
d(@,y") <d(g(y™), f(y")(s+s-a)<n-s- (1+a). O

We will introduce the concept of the Hardy-Rogers operator in the setting of a b-metric
space.

Definition 3.1. Let (X, d) be a b-metric space with s > 1, Y € Py(X), f: Y - X
an operator. f is Hardy-Rogers operator if there exist a, b, ¢ € Ry with a4+2b+4+2¢s < 1
such that

d(f(x), f(y)) < ad(z,y)+bld(z, f(z))+d(y, f(y))]+cld(z, f(y))+d(y, f(2))]; V%y(e Y)
3.1

<

Regarding the above definition we have the following auxiliary result.

Lemma 3.1. Let (X,d) be a b-metric space with s > 1, Y € Py(X), f: Y —- X
a nonself Hardy-Rogers operator. Then f is a nonself a-graphic contraction with

Proof. Let x € Y such that f(x) € Y. Then (by choosing y := x,x := f(z)) we have:
d(f*(z), f(2)) <

<a-d(f(z),x) +b-[d(f(z), f2(2) + d(z, f(@))] + c- [d(f(2), f(2)) + d(z, f*())]

= a-d(z, f(x)) +b-d(f(x), f*(x)) +b-d(z, f(2)) + - sld(z, f(2)) +d(f(z), [*(x))]
= d(z, f(z))la+b+c-s]+d(f(x), f*(x))[b+c- ]

a =

Hence
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It follows that f is an a-graphic contraction with o = %. O

Lemma 3.2. Let (X,d) be a b-metric space with s > 1, Y € Py(X), f:Y = X a
nonself Hardy-Rogers operator. Then:

(a) (f(A)NY) < (a+2cs)d(A) + (2b+ 2¢cs)E¢(A), for all ACY;
(b) Ei(f(A)NY) < aEf(A), for all ACY, where o = Ebtes

a—b—c-s

Proof. (a) Let A C Y. Then, we have:

5(f(A)NY) = sup{d(z,y)|z,y € f(A)NY}
= sup{d(f(u), f(v))[u,v € A, f(u), f(v) € Y}
< a-sup{d(u,v)u,v € A} + 2b- sup{d(u, f(u))|u € A}
+ 2 sup{d(u, f(u)]u € A, f(v) € Y}
<a-6(A)+2b- Ef(A) +2c- [sup{s - d(u,v)|u,v € A}
+ s -sup{d(v, f(v))lv € A, f(v) € Y}] < (a+ 2¢s) - §(A) + (2b+ 2¢s) - E¢(A)

(b) The proof follows from Lemma 2.1 and Lemma 3.1. O

The next result is a fixed point theorem for a nonself Hardy-Rogers operator.

Theorem 3.4. Let (X, d) be a complete b-metric space with 1 < s < 1722“;217, YcX
a nonempty, bounded, closed subset and f :'Y — X a continuous operator. We

suppose:

(a) f is Hardy-Rogers operator;

(b) there exists a sequence (Tp)nen+ in'Y such that f™(x,) is defined for all
n € N*;

(c) E¢(Y) < 0.

Then:

(i) Fiaf = {a*};
(ii) d(z,z") < % ~d(x, f(x)), for allx € Y, with s € (1, =atva+8e).

(iii) Let g:Y — X such that there exist n > 0 such that d(f(x),g(x)) <mn, for all
z €Y and Fizg # 0. Then

b+ s? —a+Va? 18
STt e o Yy* € Fiz(g) andse(l,—a+ ot ))

* * <
d(z*,y") "

—1—sa— s2c— 52

Proof. (i) Let Y1 := f(Y), Ya:= f(Y1NY), -+, Yoi1:= f(Yo,NY), n € N*.
We remark that Y, 11 C Y, f*(x,) € Yy. So Y, # 0, n € N*.
Since f is a Hardy-Rogers operator, from Lemma 3.2 denoting by a; := a + 2¢s and
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b1 := 2b + 2¢s we have:
6(Yn41) =0(f(Yn NY)) < a16(Yn) +01E¢(Yy) < a16(Yy) + 01 Ef(f(Yn—1)NY)
< a18(Yy) + biaEr (Y1) < ar[a16(Yo—1) + biaEs(Y,—2) + biaEf(Y—1)]
< al(S(Yn 1) FaibiaEr(Y,_o) + biaEs(Ya_1)
< a3a16(Yn—2) + biaEf(Yy_3) + arbiaEs(Yn_2) + biaEs (Y, _1)]
< a3s (Vo) + alblaEf(Yn,g) +a1biaEf(Y,_2) +biaEs(Y,—1)
< atar16(Yn_3) + biaEf(Y_4) + aibiaE;(Yn_3) + artbiaE; (Vo) + biaE s (Y_1)]
< ajé(Vy_3)+ a?blaEf(Yn,zl) + alblaEf(Yn,g) +arbiaEf(Y,_2) +biaEs(Y,_1)
<< at T (Ya) 4+ af T PhiaEr (Y1) + af R aEy (V)
+ oot arb 0B (Vo) + biaEp(Y_y)
n—2
< af Mard(Y1) + biaEp (V)] + bia Y afEp(Yu_p_1)
&
< atds(Wh) + ab thiaEs (V)] + b Z aAVE;(Yn_k-1)
k=0
< at(f(Y) +ai ™ 01aB(Y) + biafa] 2 Ef (Y1) + af T* By (Ya)
Tt aBp(Yo2) + Ep(Yo-1)]
< apd(f(Y)) +ay " braEy(Y) + biafa! 2aE(Y) + af B (Y)
+ @ 2B (Y) + 0 (V)]
aPd(f(Y) + ay ' braEp(Y) + biaEs(YV)[a! 2 +a}?a? + -+ afa™ ]
1

ayd(f(Y)) + brafat™ 1a°+a1 Patai?a® 4 4 afa" ]

IN +

IN

<ad(f(Y)) +biaEs(Y Zala” 1

We have that af — 0, as n — oo. From a < 1 and applying a Cauchy type Lemma
(see [17]) it follows that the sum written above tends to 0. Thus 6(Y,4+1) — 0, as
n — 00. The rest of the proof follows as in the above main theorems.

(ii) Let z € Y. From the definition of Hardy-Rogers operator we have:

d(z,z%) < sd(z, f(2)) + sd(f(x),2") < sd(z, f(z))
+ s{ad(z, 27) + 0ld(z, f(2)) + d(z", f(27))] + cld(z, f(«")) + d(=", f(x))]}
< sd(z, f(x)) + sad(x,x™) + sbld(z, f(z)) + sed(x,x™)
+ sclsd(z,z") + sd(z, f(x))]
= (s + sb+ s%c)d(z, f(2)) + (sa + sc + s%c)d(z, z*).

2¢ — s%¢ > 0. Hence

d(x, f(x)).

From the hypothesis we have that 1 — sa — s

s+ sb+ s%¢
d ) <
(w,2%) < 1 —sa — s2¢c— s2c
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) In (ii) we choose x = y*, where y* € Fiz(g) and we obtain:
s+ sb+ s%c
d x*, * < d *, *
(@ y7) < 1 —sa— s?c— s2¢c W™ Fy™)
s+ sb+ s’c s+ sb+ s%c

= d(g(y*), f(y*)) <

= n
1—sa — s2c— s2¢ 1—sa— s?2c— s2c

O
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