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Abstract. Let C be a closed convex subset of a real Hilbert space H. Let T be a supper hybrid

mapping of C into H, let A be an inverse strongly monotone mapping of C into H and let B be a
maximal monotone operator on H such that the domain of B is included in C. In this paper, we

introduce two iterative sequences by hybrid methods of finding a point of F (T )∩ (A+B)−10, where

F (T ) is the set of fixed points of T and (A+B)−10 is the set of zero points of A+B. Then, we prove
two strong convergence theorems in a Hilbert space. Using these results, we give some applications.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.
Let T be a mapping of C into H. Then, we denote by F (T ) the set of fixed points
of T . For a constant α > 0, the mapping A : C → H is said to be α-inverse strongly
monotone if

〈x− y,Ax−Ay〉 ≥ α ‖Ax−Ay‖2

for all x, y ∈ C. An α-inverse strongly monotone mapping is also Lipschitz continuous
with a Lipschitz constant 1

α . A mapping S of C into H is nonexpansive if ‖Su−Sv‖ ≤
‖u−v‖ for all u, v ∈ C. A mapping T : C → H is said to be a strict pseudo-contraction
[6] if there exists a real number k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2 (1.1)

for all x, y ∈ C. We also call such a mapping T a k-strict pseudo-contraction. A k-
strict pseudo-contraction T : C → H is nonexpansive if k = 0. A mapping T : C → H
is quasi-nonexpansive if F (T ) 6= ∅ and ‖Tu − v‖ ≤ ‖u − v‖ for all u ∈ C and
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v ∈ F (T ). If S : C → H is a nonexpansive mapping, then I − S is 1
2 -inverse

strongly monotone, where I is the identity mapping on H. A nonexpansive mapping
S : C → H with F (S) 6= ∅ is quasi-nonexpansive; see, for instance, [27]. We also know
that if T : C → H is a k-strict pseudo-contraction with 0 ≤ k < 1, then A = I − T is
a 1−k

2 -strict pseudo-contraction; see, for instance, Marino and Xu [18]. A mapping S
of C into H is nonspreading if

2‖Su− Sv‖2 ≤ ‖Su− v‖2 + ‖Sv − u‖2

for all u, v ∈ C; see [15, 16]. A mapping S of C into H is hybrid if

3‖Su− Sv‖2 ≤ ‖Su− v‖2 + ‖Sv − u‖2 + ‖u− v‖2

for all u, v ∈ C; see [28]. Recently, Kocourek, Takahashi and Yao [14] introduced a
broad class of nonlinear mappings which contains nonexpansive mappings, nonspread-
ing mappings and hybrid mappings in a Hilbert space. They called such mappings
generalized hybrid mappings; see Section 2. Furthermore, they defined a class of
nonlinear mappings called super hybrid containing generalized hybrid mappings. We
know that a super bybrid mapping is not quasi-nonexpansive generally. A multi-
valued mapping B ⊂ H × H is said to be monotone if 〈x − y, u − v〉 ≥ 0 for all
x, y ∈ H, u ∈ Bx and v ∈ By. A monotone operator B on H is said to be maximal if
its graph is not properly contained in the graph of any other monotone operator on
H.

In this paper, we introduce two iterative sequences by hybrid methods of finding
a point of F (T ) ∩ (A+ B)−10, where T is a supper hybrid mapping, A is an inverse
strongly monotone mapping and B is a maximal monotone operator in a Hilbert
space. Then, we prove two strong convergence theorems in a Hilbert space. Using
these results, we obtain well-known, or new results.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product 〈·, · 〉 and
norm ‖ · ‖. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. From [27], we know the following basic
equality. For x, y ∈ H and λ ∈ R, we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.1)

We also know that for x, y, u, v ∈ H,

2 〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2. (2.2)

Let C be a nonempty closed convex subset of H and x ∈ H. Then, we know that
there exists a unique nearest point z ∈ C such that ‖x − z‖ = infy∈C ‖x − y‖. We
denote such a correspondence by z = PCx. The mapping PC is called the metric
projection of H onto C. It is known that PC is nonexpansive and

〈x− PCx, PCx− u〉 ≥ 0

for all x ∈ H and u ∈ C; see [27] for more details.
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For a sequence {Cn} of nonempty closed convex subsets of a Hilbert space H, define
s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there exists {xn} ⊂ H such
that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N. Similarly, y ∈w-LsnCn
if and only if there exist a subsequence {Cni

} of {Cn} and a sequence {yi} ⊂ H such
that {yi} converges weakly to y and yi ∈ Cni

for all i ∈ N. If C0 satisfies

C0 =s-LinCn =w-LsnCn, (2.3)

it is said that {Cn} converges to C0 in the sense of Mosco [19] and we write C0 =M-
limn→∞ Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion,
then {Cn} converges to ∩∞n=1Cn in the sense of Mosco. For more details, see [19]. We
know the following theorem [35].

Theorem 2.1. Let H be a Hilbert space. Let {Cn} be a sequence of nonempty closed
convex subsets of H. If C0 =M-limn→∞ Cn exists and nonempty, then for each x ∈ H,
{PCn

x} converges strongly to PC0
x, where PCn

and PC0
are the mertic projections of

H onto Cn and C0, respectively.

Let H be a Hilbert space and let C be a nonempty closed and convex subset of H.
Then, a mapping T : C → H is called generalized hybrid [14] if there exist α, β ∈ R
such that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 (2.4)

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
Notice that the mapping above covers several well-known mappings. For example, an
(α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0, nonspreading
for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 . We can also show that if

x = Tx, then for any y ∈ C,

α‖x− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖x− y‖2 + (1− β)‖x− y‖2

and hence ‖x−Ty‖ ≤ ‖x−y‖. This means that an (α, β)-generalized hybrid mapping
with a fixed point is quasi-nonexpansive. We also know a more general class of
mappings than the class of generalized hybrid mappings in a Hilbert space. A mapping
S : C → H is called super hybrid [14] if there exist α, β, γ ∈ R such that

α‖Sx− Sy‖2 + (1− α+ γ)‖x− Sy‖2 ≤(
β + (β − α)γ

)
‖Sx− y‖2 +

(
1− β − (β − α− 1)γ

)
‖x− y‖2

+ (α− β)γ‖x− Sx‖2 + γ‖y − Sy‖2 (2.5)

for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. We
notice that an (α, β, 0)-super hybrid mapping is (α, β)-generalized hybrid. So,
the class of super hybrid mappings contains generalized hybrid mappings. A super
hybrid mapping is not quasi-nonexpansive generally. A mapping U : C → H is called
extended hybrid [9] if there exist α, β, r ∈ R such that

α(1 + r)‖Ux− Uy‖2 + (1− α(1 + r))‖x− Uy‖2

≤ (β + αr)‖Ux− y‖2 + (1− (β + αr))‖x− y‖2 (2.6)

− (α− β)r‖x− Ux‖2 − r‖y − Uy‖2
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for all x, y ∈ C. We call such a mapping an (α, β, r)-extended hybrid mapping.
Putting γ = −r

1+r in (2.5) with 1 + r > 0, we get that for all x, y ∈ C,

α‖Sx− Sy‖2 + (1− α+
−r

1 + r
)‖x− Sy‖2 ≤(

β + (β − α)
−r

1 + r

)
‖Sx− y‖2 +

(
1− β − (β − α− 1)

−r
1 + r

)
‖x− y‖2

+ (α− β)
−r

1 + r
‖x− Sx‖2 +

−r
1 + r

‖y − Sy‖2.

Since 1 + r > 0, we have

α(1 + r)‖Sx− Sy‖2 + (1 + r − α(1 + r)− r)‖x− Sy‖2 ≤(
β(1 + r)− (β − α)r

)
‖Sx− y‖2 +

(
1 + r − β(1 + r) + (β − α− 1)r

)
‖x− y‖2

− (α− β)r‖x− Sx‖2 − r‖y − Sy‖2

and hence

α(1 + r)‖Sx− Sy‖2 + (1− α(1 + r))‖x− Sy‖2 ≤(
β + αr

)
‖Sx− y‖2 +

(
1− (β + αr

)
‖x− y‖2

− (α− β)r‖x− Sx‖2 − r‖y − Sy‖2.
This implies that S is (α, β, r)-extended hybrid. Similarly, if S is an (α, β, r)-extended
hybrid mapping with 1 + r > 0, then S is an (α, β, −r1+r )-super hybrid mapping. We

know the following important lemma from [32].

Lemma 2.2. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let T : C → H be a k-strict pseudo-contraction with 0 ≤ k < 1. Then, T is a
(1, 0,−k)-extended hybrid mapping.

If T : C → H is a k-strict pseudo-contraction with 0 ≤ k < 1, we have 1− k > 0.
So, we have from Lemma 2.2 that T is a (1, 0, k

1−k )-supper hybrid mapping.

We know the following theorem from [34].

Theorem 2.3. Let C be a nonempty subset of a Hilbert space H and let α, β and
γ be real numbers with γ 6= 1. Let S and T be mappings of C into H such that
T = 1

1+γS + γ
1+γ I. Then, S is (α, β, γ)-super hybrid if and only if T is (α, β)-

generalized hybrid. In this case, F (S) = F (T ).

From [14], we know the following theorem for generalized hybrid mappings in a
Hilbert space.

Theorem 2.4. Let C be a nonempty closed convex subset of a Hilbert space H and
let T : C → C be a generalized hybrid mapping. Then T has a fixed point in C if and
only if {Tnz} is bounded for some z ∈ C.

As a direct consequence of Theorem 2.4, we have the following result.

Theorem 2.5. Let C be nonempty bounded closed convex subset of a Hilbert space H
and let T be a generalized hybrid mapping from C to itself. Then T has a fixed point.
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Using Theorems 2.3 and 2.5, we have the following fixed point theorem [14] for
super hybrid mappings in a Hilbert space.

Theorem 2.6. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let α, β and γ be real numbers with γ ≥ 0. Let S : C → C be an (α, β,
γ)-super hybrid mapping. Then, S has a fixed point in C.

The following lemma for generalized hybrid mappings in a Hilbert space is essencial
for proving our main theorems; see Takahashi, Yao and Kocourek [34].

Lemma 2.7. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let T : C → H be a generalized hybrid mapping. If xn ⇀ z and xn−Txn → 0,
then z ∈ F (T ).

3. Strong convergence theorems

In this section, using the hybrid method by Nakajo and Takahashi [20], we first
prove a strong convergence theorem for maximal monotone operators and super hybrid
mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty convex closed
subset of H. Let α > 0. Let A : C → H be α-inverse strongly monotone, let
B : D(B) ⊂ C → 2H be maximal monotone and let Jλ = (I + λB)−1 be the resolvent
of B for any λ > 0. Let α, β and γ be real numbers with γ 6= −1 and let S : C → H be
an (α, β, γ)-super hybrid mapping such that F (S)∩ (A+B)−1(0) 6= ∅. Let {xn} ⊂ C
be a sequence generated by x1 = x ∈ C and

zn = Jλn
(I − λnA)xn,

yn = αnxn + (1− αn)( 1
1+γSzn + γ

1+γ zn),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x, ∀n ∈ N,

where PCn∩Qn
is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and

{λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn ≤ c < 2α

for some a, b, c ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩(A+B)−1(0)x, where

PF (S)∩(A+B)−1(0) is the metric projection of H onto F (S) ∩ (A+B)−1(0).

Proof. Put T = 1
1+γS + γ

1+γ I. Then, we have from Theorem 2.3 that T is an (α,

β)-generalized hybrid mapping of C into H and F (S) = F (T ). Since F (T ) is closed
and convex, F (S) is closed and convex. We know that (A + B)−1(0) is closed and
convex [24]. Then, F (S) ∩ (A + B)−1(0) is closed and convex. So, there exists the
mertic projection of H onto F (S) ∩ (A+B)−1(0). Furthermore, we have

yn = αnxn + (1− αn)Tzn



112 DAVID KUO AND WATARU TAKAHASHI

for all n ∈ N. Since

‖yn − z‖2 ≤ ‖xn − z‖2

⇐⇒‖yn‖2 − ‖xn‖2 − 2〈yn − xn, z〉 ≤ 0,

we have that Cn, Qn and Cn ∩Qn are closed and convex for all n ∈ N. We next show
that Cn ∩Qn is nonempty. Let z ∈ F (T )∩ (A+B)−1(0). Put zn = Jλn

(I − λnA)xn.
From z = Jλn

(I − λnA)z, we have from 0 < b ≤ λn ≤ c < 2α that for any n ∈ N,

‖zn − z‖2 = ‖Jλn
(I − λnA)xn − Jλn

(I − λnA)z‖2 (3.1)

≤ ‖xn − λnAxn − z + λnAz‖2

= ‖xn − z‖2 − 2λn〈xn − z,Axn −Az〉+ λ2n ‖Axn −Az‖
2

≤ ‖xn − z‖2 − 2λnα ‖Axn −Az‖2 + λ2n ‖Axn −Az‖
2

= ‖xn − z‖2 + λn(λn − 2α) ‖Axn −Az‖2

≤ ‖xn − z‖2.

Since T is quasi-nonexpansive, we have from (3.1) that

‖yn − z‖2 = ‖αnxn + (1− αn)Tzn − z‖2

≤ αn‖xn‖2 + (1− αn)‖Tzn − z‖2

≤ αn‖xn − z‖2 + (1− αn)‖zn − z‖2

≤ αn‖xn − z‖2 + (1− αn)‖xn − z‖2

= ‖xn − z‖2.

Thus we have z ∈ Cn and hence F (T ) ∩ (A + B)−1(0) ⊂ Cn for all n ∈ N. Next,
we show by induction that F (T ) ∩ (A + B)−1(0) ⊂ Cn ∩ Qn for all n ∈ N. From
F (T )∩ (A+B)−1(0) ⊂ Q1, it follows that F (T )∩ (A+B)−1(0) ⊂ C1 ∩Q1. Suppose
that F (T ) ∩ (A + B)−1(0) ⊂ Ck ∩ Qk for some k ∈ N. From xk+1 = PCk∩Qk

x, we
have

〈xk+1 − z, x− xk+1〉 ≥ 0, ∀z ∈ Ck ∩Qk.
Since F (T ) ∩ (A+B)−1(0) ⊂ Ck ∩Qk, we also have

〈xk+1 − z, x− xk+1〉 ≥ 0, ∀z ∈ F (T ) ∩ (A+B)−1(0).

This implies F (T ) ∩ (A + B)−1(0) ⊂ Qk+1. So, we have F (T ) ∩ (A + B)−1(0) ⊂
Ck+1 ∩Qk+1. By induction, we have F (T ) ∩ (A+B)−1(0) ⊂ Cn ∩Qn for all n ∈ N.
This means that {xn} and {zn} are well-defined.

Since xn = PQnx and xn+1 = PCn∩Qnx ⊂ Qn, we have from (2.2) that

0 ≤ 2〈x− xn, xn − xn+1〉 (3.2)

= ‖x− xn+1‖2 − ‖x− xn‖2 − ‖xn − xn+1‖2

≤ ‖x− xn+1‖2 − ‖x− xn‖2.
So, we get that

‖x− xn‖2 ≤ ‖x− xn+1‖2. (3.3)
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Furthermore, since xn = PQnx and z ∈ F (T ) ∩ (A+B)−1(0) ⊂ Qn, we have

‖x− xn‖2 ≤ ‖x− z‖2. (3.4)

We have from (3.3) and (3.4) that limn→∞ ‖x− xn‖2 exists. This implies that {xn}
is bounded. Hence, {yn}, {zn} and {Tzn} are also bounded. From (3.2), we have

‖xn − xn+1‖2 ≤ ‖x− xn+1‖2 − ‖x− xn‖2

and hence

‖xn − xn+1‖ → 0. (3.5)

From xn+1 ∈ Cn, we have that ‖yn − xn+1‖ ≤ ‖xn − xn+1‖. From (3.5), we have
‖yn − xn+1‖ → 0. So, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖ → 0. (3.6)

From ‖xn − yn‖ = ‖xn − αnxn − (1− αn)Tzn‖ = (1− αn)‖xn − Tzn‖, we also have
from 0 ≤ αn ≤ a < 1 that

‖Tzn − xn‖ → 0. (3.7)

Using (3.7), we show ‖Tzn − zn‖ → 0. We have from (3.1) that for any z ∈ F (T ) ∩
(A+B)−1(0),

‖yn − z‖2 = ‖αnxn + (1− αn)Tzn − z‖2

≤ αn ‖xn − z‖2 + (1− αn) ‖zn − z‖2

≤ αn ‖xn − z‖2 + (1− αn){‖xn − z‖2 + λn(λn − 2α) ‖Axn −Az‖2}

= ‖xn − z‖2 + (1− αn)λn(λn − 2α) ‖Axn −Az‖2 .

Thus we have

(1− a)b(2α− c) ‖Axn −Az‖2 ≤ (1− αn)λn(2α− λn) ‖Axn −Az‖2

≤ ‖xn − z‖2 − ‖yn − z‖2

= (‖xn − z‖+ ‖yn − z‖)(‖xn − z‖ − ‖yn − z‖)
≤ (‖xn − z‖+ ‖yn − z‖) ‖xn − yn‖ .

From ‖yn − xn‖ → 0, we have that

lim
n→∞

‖Axn −Az‖ = 0. (3.8)
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Since Jλn is firmly nonexpansive, we have that

‖zn − z‖2 = ‖Jλn
(I − λnA)xn − Jλn

(I − λnA)z‖2

≤ 〈zn − z, (I − λnA)xn − (I − λnA)z〉

=
1

2
{‖zn − z‖2 + ‖(I − λnA)xn − (I − λnA)z‖2

− ‖zn − z − (I − λnA)xn + (I − λnA)z‖2}

≤ 1

2
{‖zn − z‖2 + ‖xn − z‖2

− ‖zn − z − (I − λnA)xn + (I − λnA)z‖2}

=
1

2
{‖zn − z‖2 + ‖xn − z‖2

− ‖zn − xn + λn(Axn −Az)‖2}

=
1

2
{‖zn − z‖2 + ‖xn − z‖2 − ‖zn − xn‖2

− 2λn〈zn − xn, Axn −Az〉 − λ2n‖Axn −Az‖2}.
Therefore, we have

‖zn − z‖2 ≤ ‖xn − z‖2 − ‖zn − xn‖2

− 2λn〈zn − xn, Axn −Az〉 − λ2n‖Axn −Az‖2.
So, we have

‖yn − z‖2 ≤αn ‖xn − z‖2 + (1− αn) ‖Tzn − z‖2

≤αn ‖xn − z‖2 + (1− αn) ‖zn − z‖2

≤αn ‖xn − z‖2 + (1− αn){‖xn − z‖2 − ‖zn − xn‖2

− 2λn〈zn − xn, Axn −Az〉 − λn2 ‖Axn −Az‖2}

≤‖xn − z‖2 − (1− a) ‖zn − xn‖2 − λn2(1− αn) ‖Axn −Az‖2

− 2λn(1− αn)〈zn − xn, Axn −Az〉.
This means that

(1− a) ‖zn − xn‖2 ≤ ‖xn − z‖2 − ‖yn − z‖2

+ ‖Axn −Az‖ {2c ‖zn − xn‖+ c2 ‖Axn −Az‖}
≤ (‖xn − z‖+ ‖yn − z‖) ‖xn − yn‖

+ ‖Axn −Az‖ {2c ‖zn − xn‖+ c2 ‖Axn −Az‖}.

Since limn→∞ ‖Axn −Az‖ = 0, limn→∞ ‖xn − yn‖ = 0, and {yn}, {zn} and {xn} are
bounded, we have

lim
n→∞

‖zn − xn‖ = 0. (3.9)

Since yn = αnxn + (1 − αn)Tzn, we have yn − Tzn = αn(xn − Tzn). So, from (3.7)
we have

‖yn − Tzn‖ = αn‖xn − Tzn‖ → 0. (3.10)
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Since

‖zn − Tzn‖ ≤ ‖zn − xn‖+ ‖xn − yn‖+ ‖yn − Tzn‖,
from (3.6), (3.9) and (3.10) we have

‖zn − Tzn‖ → 0. (3.11)

Since {xn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ z∗.
We have from (3.9) and xni ⇀ z∗ that zni ⇀ z∗. From (3.11) and Lemma 2.7, we
have z∗ ∈ F (T ). Next, let us show z ∈ (A+B)−1(0). From the definition of Jλn

, we
have that

zn = Jλn(I − λnA)xn

⇔ (I − λnA)xn ∈ (I + λnB)zn = zn + λnBzn

⇔ xn − zn − λnAxn ∈ λnBzn

⇔ 1

λn
(xn − zn − λnAxn) ∈ Bzn.

Since B is monotone, we have that for (u, v) ∈ B,

〈zn − u,
1

λn
(xn − zn − λnAxn)− v〉 ≥ 0

and hence

〈zn − u,
xn − zn
λn

− (Axn + v)〉 ≥ 0. (3.12)

Furthermore, since A is α-inverse strongly monotone,

〈xni − z∗, Axni −Az∗〉 ≥ α ‖Axni −Az∗‖
2
.

From xni
⇀ z∗ and Axni

→ Az, we have 〈xni
− z∗, Axni

− Az∗〉 → 0 and hence
Axni → Az∗. We also know from (3.12) that

lim
i→∞
〈zni
− u, xni

− zni

λni

− (Axni
+ v)〉 ≥ 0.

So, we have from zni
⇀ z∗ that 〈z∗ − u,−Az∗ − v〉 ≥ 0. Since B is maximal

monotone, we have (−Az∗) ∈ Bz∗ and hence z∗ ∈ (A + B)−1(0). So, we have z∗ ∈
F (T ) ∩ (A+B)−1(0).

Put z0 = PF (T )∩(A+B)−1(0)x. Since z0 = PF (T )∩(A+B)−1(0)x ⊂ Cn∩Qn and xn+1 =
PCn∩Qn

x, we have that

‖x− xn+1‖2 ≤ ‖x− z0‖2. (3.13)

Since ‖ · ‖2 is weakly lower semicontinuous, from xni
⇀ z∗ we have that

‖x− z∗‖2 = ‖x‖2 − 2〈x, z∗〉+ ‖z∗‖2

≤ lim inf
i→∞

(‖x‖2 − 2〈x, xni〉+ ‖xni‖2)

= lim inf
i→∞

‖x− xni
‖2

≤ ‖x− z0‖2.
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From the definition of z0, we have z∗ = z0. So, we obtain xn ⇀ z0. We finally show
that xn → z0. We have

‖z0 − xn‖2 = ‖z0 − x‖2 + ‖x− xn‖2 + 2〈z0 − x, x− xn〉, ∀n ∈ N.

So, we have from (3.13) that

lim sup
n→∞

‖z0 − xn‖2 = lim sup
n→∞

(‖z0 − x‖2 + ‖x− xn‖2 + 2〈z0 − x, x− xn〉)

≤ lim sup
n→∞

(‖z0 − x‖2 + ‖x− z0‖2 + 2〈z0 − x, x− xn〉)

= ‖z0 − x‖2 + ‖x− z0‖2 + 2〈z0 − x, x− z0〉
= 0.

So, we obtain limn→∞ ‖z0 − xn‖ = 0. Hence, {xn} converges strongly to z0. This
completes the proof. �

Next, we prove a strong convergence theorem by the shrinking projection method
[30] for supper hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a real Hilbert space and let C be a nonempty convex closed
subset of H. Let α > 0. Let A : C → H be α-inverse strongly monotone, let
B : D(B) ⊂ C → 2H be maximal monotone and let Jλ = (I + λB)−1 be the resolvent
of B for any λ > 0. Let α, β and γ be real numbers with γ 6= −1 and let S : C → H
be an (α, β, γ)-super hybrid mapping such that F (S)∩(A+B)−1(0) 6= ∅. Let C1 = C
and let {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

zn = Jλn(I − λnA)xn,

yn = αnxn + (1− αn)( 1
1+γSzn + γ

1+γ zn),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1, and {αn} ⊂ [0, 1] and {λn} ⊂
(0,∞) are sequences such that

lim inf
n→∞

αn < 1 and 0 < b ≤ λn ≤ c < 2α

for some b, c ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩(A+B)−1(0)x, where

PF (S)∩(A+B)−1(0) is the metric projection of H onto F (S) ∩ (A+B)−1(0).

Proof. Put T = 1
1+γS + γ

1+γ I. Then, we have from Theorem 2.3 that T is an (α,

β)-generalized hybrid mapping of C into H and F (S) = F (T ). Since F (T ) is closed
and convex, so is F (S). We know that (A + B)−1(0) is closed and convex. Then,
F (S) ∩ (A + B)−1(0) is closed and convex. So, there exists the mertic projection of
H onto F (S) ∩ (A + B)−1(0). We shall show that Cn are closed and convex, and
F (T )∩ (A+B)−1(0) ⊂ Cn for all n ∈ N. It is obvious from assumption that C1 = C
is closed and convex, and F (T ) ∩ (A+B)−1(0) ⊂ C1. Suppose that Ck is closed and
convex, and F (T )∩ (A+B)−1(0) ⊂ Ck for some k ∈ N. From Nakajo and Takahashi
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[20], we know that for z ∈ Ck,

‖yk − z‖2 ≤ ‖xk − z‖2

⇐⇒‖yk‖2 − ‖xk‖2 − 2〈yk − xk, z〉 ≤ 0.

So, Ck+1 is closed and convex. By induction, Cn are closed and convex for all n ∈ N.
Put zk = Jλk

(I − λkA)xk and take z ∈ F (T ) ∩ (A + B)−1(0) ⊂ Ck. From z =
Jλn

(I − λnA)z, we have that

‖zk − z‖2 = ‖Jλk
(I − λkA)xk − Jλk

(I − λkA)z‖2 (3.14)

≤ ‖xk − λkAxk − z + λkAz‖2

= ‖xk − z‖2 − 2λk〈xk − z,Axk −Az〉+ λ2k ‖Axk −Az‖
2

≤ ‖xk − z‖2 − 2λkα ‖Axk −Az‖2 + λ2k ‖Axk −Az‖
2

= ‖xk − z‖2 + λk(λk − 2α) ‖Axk −Az‖2

≤ ‖xk − z‖2.

Since T is quasi-nonexpansive, we have from (3.14) that

‖yk − z‖2 = ‖αkxk + (1− αk)Tzk − z‖2

≤ αk‖xk‖2 + (1− αk)‖Tzk − z‖2

≤ αk‖xk − z‖2 + (1− αk)‖zk − z‖2

≤ αk‖xk − z‖2 + (1− αk)‖xk − z‖2

= ‖xk − z‖2.

Hence, we have z ∈ Ck+1. By induction, we have that F (T )∩ (A+B)−1(0) ⊂ Cn for
all n ∈ N. Since Cn is nonempty, closed and convex, there exists the metric projection
PCn

of H onto Cn. Thus, {xn} is well-defined. Furthermore, we have

yn = αnxn + (1− αn)Tzn

for all n ∈ N.
Since {Cn} is a nonincreasing sequence of nonempty closed convex subsets of H

with respect to inclusion, it follows that

∅ 6= F (T ) ∩ (A+B)−1(0) ⊂ M- lim
n→∞

Cn =

∞⋂
n=1

Cn. (3.15)

Put C0 =
⋂∞
n=1 Cn. Then, by Theorem 2.1 we have that {PCnx} converges strongly

to x0 = PC0
x, i.e.,

xn = PCnx→ x0.

To complete the proof, it is sufficient to show that x0 = PF (T )∩(A+B)−1(0)x.
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Since xn = PCnx and xn+1 = PCn+1x ∈ Cn+1 ⊂ Cn, we have from (2.2) that

0 ≤ 2〈x− xn, xn − xn+1〉 (3.16)

= ‖x− xn+1|2 − ‖x− xn‖2 − ‖xn − xn+1‖2

≤ ‖x− xn+1‖2 − ‖x− xn|2.

So, we get that

‖x− xn‖2 ≤ ‖x− xn+1‖2. (3.17)

Furthermore, since xn = PCn
x and z ∈ F (T ) ∩ (A+B)−1(0) ⊂ Cn, we have

‖x− xn‖2 ≤ ‖x− z‖2. (3.18)

So, we have that limn→∞ ‖x−xn‖2 exists. This implies that {xn} is bounded. Hence,
{yn}, {zn} and {Tzn} are also bounded. From (3.16), we have

‖xn − xn+1‖2 ≤ ‖x− xn+1‖2 − ‖x− xn‖2.

So, we have that

‖xn − xn+1‖2 → 0. (3.19)

From xn+1 ∈ Cn+1, we also have that ‖yn − xn+1‖ ≤ ‖xn − xn+1‖. So, we get that
‖yn − xn+1‖ → 0. Using this, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖ → 0. (3.20)

From 0 ≤ lim infn→∞ αn < 1, we have a subsequence {αni
} of {αn} such that αni

→ γ
and 0 ≤ γ < 1. From

‖xn − yn‖ = ‖xn − αnxn − (1− αn)Tzn‖ = (1− αn)‖xn − Tzn‖,

we have that

‖Tzni
− xni

‖ → 0. (3.21)

Using (3.21), let us show ‖Tzni − zni‖ → 0. As in the proof of Theorem 3.1, we have
that for any z ∈ F (T ) ∩ (A+B)−1(0),

‖yn − z‖2 = ‖αnxn + (1− αn)Tzn − z‖2

≤ αn ‖xn − z‖2 + (1− αn) ‖zn − z‖2

≤ αn ‖xn − z‖2 + (1− αn){‖xn − z‖2 + λn(λn − 2α) ‖Axn −Az‖2}

= ‖xn − z‖2 + (1− αn)λn(λn − 2α) ‖Axn −Az‖2 .

Thus, we have

(1− αn)b(2α− c) ‖Axn −Az‖2 ≤ (1− αn)λn(2α− λn) ‖Axn −Az‖2

≤ ‖xn − z‖2 − ‖yn − z‖2

= (‖xn − z‖+ ‖yn − z‖)(‖xn − z‖ − ‖yn − z‖)
≤ (‖xn − z‖+ ‖yn − z‖) ‖xn − yn‖ .
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From ‖yn − xn‖ → 0 and αni → γ, we have that

lim
i→∞

‖Axni
−Az‖ = 0. (3.22)

Since Jλn
is firmly nonexpansive, we have that

‖zn − z‖2 = ‖Jλn
(I − λnA)xn − Jλn

(I − λnA)z‖2

≤ 〈zn − z, (I − λnA)xn − (I − λnA)z〉

=
1

2
{‖zn − z‖2 + ‖(I − λnA)xn − (I − λnA)z‖2

− ‖zn − z − (I − λnA)xn + (I − λnA)z‖2}

≤ 1

2
{‖zn − z‖2 + ‖xn − z‖2

− ‖zn − z − (I − λnA)xn + (I − λnA)z‖2}

=
1

2
{‖zn − z‖2 + ‖xn − z‖2

− ‖zn − xn + λn(Axn −Az)‖2}

=
1

2
{‖zn − z‖2 + ‖xn − z‖2 − ‖zn − xn‖2

− 2λn〈zn − xn, Axn −Az〉 − λ2n‖Axn −Az‖2}.
Therefore, we have

‖zn − z‖2 ≤ ‖xn − z‖2 − ‖zn − xn‖2

− 2λn〈zn − xn, Axn −Az〉 − λ2n‖Axn −Az‖2.
So, we have

‖yn − z‖2 ≤αn ‖xn − z‖2 + (1− αn) ‖Tzn − z‖2

≤αn ‖xn − z‖2 + (1− αn) ‖zn − z‖2

≤αn ‖xn − z‖2 + (1− αn){‖xn − z‖2 − ‖zn − xn‖2

− 2λn〈zn − xn, Axn −Az〉 − λn2 ‖Axn −Az‖2}

≤‖xn − z‖2 − (1− αn) ‖zn − xn‖2 − λn2(1− αn) ‖Axn −Az‖2

− 2λn(1− αn)〈zn − xn, Axn −Az〉.
This means that

(1− αn) ‖zn − xn‖2 ≤ ‖xn − z‖2 − ‖yn − z‖2

+ ‖Axn −Az‖ {2c ‖zn − xn‖+ c2 ‖Axn −Az‖}
≤ (‖xn − z‖+ ‖yn − z‖) ‖xn − yn‖

+ ‖Axn −Az‖ {2c ‖zn − xn‖+ c2 ‖Axn −Az‖}.
Since limi→∞ ‖Axni

−Az‖ = 0, limn→∞ ‖xn − yn‖ = 0, αni
→ γ < 1 and {yn}, {zn}

and {xn} are bounded, we have

lim
n→∞

‖zni
− xni

‖ = 0. (3.23)
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Since yn = αnxn + (1− αn)Tzn, we have yn − Tzn = αn(xn − Tzn). So, from (3.21)
we have

‖yni
− Tzni

‖ = αni
‖xni

− Tzni
‖ → 0. (3.24)

Since

‖zni − Tzni‖ ≤ ‖zni − xni‖+ ‖xni − yni‖+ ‖yni − Tzni‖,
from (3.20), (3.23) and (3.24) we have

‖zni − Tzni‖ → 0. (3.25)

Since xni
= PCni

x → x0, we have from (3.23) that zni
→ x0. So, zni

⇀ x0. From

(3.25) and Lemma 2.7 we have x0 ∈ F (T ). Let us show x0 ∈ (A+B)−1(0). As in the
proof of Theorem 3.1, we have for (u, v) ∈ B,

〈zn − u,
xn − zn
λn

− (Axn + v)〉 ≥ 0. (3.26)

Furthermore, since A is α-inverse strongly monotone and xni
= PCni

x→ x0, we have

that Axni
→ Ax0. So, we have from (3.26)

〈x0 − u,−(Ax0 + v)〉 ≥ 0. (3.27)

Since B is maximal monotone, we have −Ax0 ∈ Bx0 and hence x0 ∈ (A + B)−1(0).
So, we have x0 ∈ F (T ) ∩ (A + B)−1(0). Put z0 = PF (T )∩(A+B)−1(0)x. Since z0 =
PF (T )∩(A+B)−1(0)x ⊂ Cn+1 and xn+1 = PCn+1

x, we have that

‖x− xn+1‖2 ≤ ‖x− z0‖2. (3.28)

So, we have that

‖x− x0‖2 = lim
n→∞

‖x− xn‖2 ≤ ‖x− z0‖2.

So, we get z0 = x0. Hence, {xn} converges strongly to z0. This completes the
proof. �

4. Applications

In this section, we give some applications. Let H be a Hilbert space and let f
be a proper lower semicontinuous convex function of H into (−∞,∞]. Then, the
subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + 〈z, y − x〉 ≤ f(y), y ∈ H}

for all x ∈ H. From Rockafellar [22], we know that ∂f is maximal monotone. Let C
be a closed convex subset of H and let iC be the indicator function of C, i.e.,

iC(x) =

{
0, x ∈ C,
∞, x /∈ C.

Since iC is a proper lower semicontinuous convex function on H, the subdifferential
∂iC of iC is a maximal monotone operator. So, we can define the resolvent Jλ of ∂iC
for λ > 0, i.e.,

Jλx = (I + λ∂iC)−1x
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for all x ∈ H. We have that, for any x ∈ H and u ∈ C,

u = Jλx⇐⇒ x ∈ u+ λ∂iCu

⇐⇒ x ∈ u+ λNCu

⇐⇒ x− u ∈ λNCu

⇐⇒ 1

λ
〈x− u, v − u〉 ≤ 0, ∀v ∈ C

⇐⇒ 〈x− u, v − u〉 ≤ 0, ∀v ∈ C
⇐⇒ u = PCx,

where NCu is the normal cone to C at u, i.e.,

NCu = {z ∈ H : 〈z, v − u〉 ≤ 0, ∀v ∈ C}.

Similarly, if A : C → H is a nonlinear mapping, then we have that for x ∈ C,

x ∈ (A+ ∂iC)−1(0)⇔ 0 ∈ Ax+ ∂iCx

⇔ −Ax ∈ ∂NCx
⇔ 〈−Ax, y − x〉 ≤ 0, ∀y ∈ C
⇔ x ∈ V I(A,C),

where V I(A,C) = {x ∈ C : 〈Ax, y − x〉 ≥ 0, ∀y ∈ C}. This is called the set of
solutions of the variational inequality for A.

Now, using Theorem 3.1, we can obtain a strong convergence theorem for finding
a common element of the set of solutions of the variational inequality for an inverse
strongly-monotone mapping and the set of fixed points of a super hybrid mapping in
a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a closed convex subset of H.
Let α > 0 and let A be an α-inverse strongly-monotone mapping of C into H. Let α,
β and γ be real numbers with γ 6= −1 and let S : C → H be an (α, β, γ)-super hybrid
mapping such that F (S) ∩ (A+ ∂iC)−10 = F (S) ∩ V I(A,C) 6= ∅. Let {xn} ⊂ C be a
sequence generated by x1 = x ∈ C and

zn = PC(I − λnA)xn,

yn = αnxn + (1− αn)( 1
1+γSzn + γ

1+γ zn),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn
is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and

{λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn ≤ c < 2α

for some a, b, c ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩V I(A,C)x, where
PF (S)∩V I(A,C) is the metric projection of H onto F (S) ∩ V I(A,C).
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Proof. Setting B = ∂iC in Theorem 3.1, we know that Jλn = PC for all λn with
0 < a ≤ λn ≤ b < 2α. So we obtain the desired result by Theorem 3.1. �

Using Theorem 4.1, we get the following theorem for nonexpansive mappings and
strict pseudo-contractions in a Hilbert space.

Theorem 4.2. Let H be a Hilbert space and let C be a closed convex subset of H.
Let T be a nonexpansive mapping of C into itself and let S be a k-strict pseudo-
contraction with 0 ≤ k < 1 of C into itself such that F (S)∩F (T ) 6= ∅. Let {xn} ⊂ C
be a sequence generated by x1 = x ∈ C and

zn = (1− λn)xn + λnTxn,

yn = αnxn + (1− αn){(1− k)Szn + kzn},
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x, ∀n ∈ N,

where PCn∩Qn
is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and

{λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn ≤ c < 1

for some a, b, c ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩F (T )x, where
PF (S)∩F (T ) is the metric projection of H onto F (S) ∩ F (T ).

Proof. Put A = I−T in Theorem 4.1. Then, we know that A is a 1
2 -inverse strongly-

monotone operator. We also have that for all x ∈ C,

PC(x− λnAx) = PC(x− λn(I − T )x)

= PC((1− λn)x+ λnTx)

= (1− λn)x+ λnTx.

Furthermore, we have that

u ∈ (A+ ∂iC)−10⇐⇒ 0 ∈ Au+ ∂iCu

⇐⇒ 0 ∈ u− Tu+NCu

⇐⇒ Tu− u ∈ NCu
⇐⇒ 〈Tu− u, v − u〉 ≤ 0, ∀v ∈ C
⇐⇒ PCTu = u

⇐⇒ Tu = u.

So, we obtain (A+∂iC)−10 = F (T ). On the other hand, we know from Lemma 2.2 that
if S is a k-strict pseudo-contraction with 0 ≤ k < 1, then S is a (1, 0,−k)-extended
hybrid mapping and hence a (1, 0, k

1−k )-supper hybrid mapping. Furthermore, we

have if γ = k
1−k , then 1

1+γ = 1 − k and γ
1+γ = k. Thus, we get the desired result by

Theorem 4.1. �
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Next, using Theorem 3.1, we consider the problem for finding a common element
of the set of solutions of an equilibrium problem and the set of fixed points of a
nonexpansive mapping in a Hilbert space. Let C be a nonempty closed convex subset
of a Hilbert space and let f : C × C → R be a bifunction satisfying the following
conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

Then, the equilibrium problem (with respect to C) is to find x̂ ∈ C such that

f(x̂, y) ≥ 0 (4.1)

for all y ∈ C. The set of such solutions x̂ is denoted by EP (f). The following lemma
appears implicitly in Blum and Oettli [4].

Lemma 4.3 (Blum and Oettli). Let C be a nonempty closed convex subset of H and
let f be a bifunction of C × C into R satisfying (A1) − (A4). Let r > 0 and x ∈ H.
Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [7].

Lemma 4.4. Assume that f : C × C → R satisfies (A1) − (A4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 4.3 and 4.4, we know
the following theorem from Takahashi, Takahashi and Toyoda [24]. See [2] for a more
general result.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let f : C ×C → R satisfy (A1)− (A4). Let Af be a multivalued mapping of H
into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C,
∅, x /∈ C.
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Then, EP (f) = A−1f 0 and Af is a maximal monotone operator with D(Af ) ⊂ C.
Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af ; i.e.,

Trx = (I + rAf )−1x.

Using Theorem 4.5, we obtain the following result which was proved by Takahashi
and Takahashi [23, Theorem 4.1].

Theorem 4.6. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let f be a bifunction from C ×C to R satisfying (A1)− (A4) and let Tλ
be the resolvent of f for λ > 0. Let S be a k-strict pseudo-contraction with 0 ≤ k < 1
of C into itself such that F (S) ∩ EP (f) 6= ∅. Let {xn} ⊂ C be a sequence generated
by x1 = x ∈ C and

zn = Tλn
xn,

yn = αnxn + (1− αn){(1− k)Szn + kzn},
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x, ∀n ∈ N,

where PCn∩Qn
is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and

{λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn ≤ c
for some a, b, c ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩EP (f)x, where
PF (S)∩EP (f) is the metric projection of H onto F (S) ∩ EP (f).

Proof. Put A = 0 in Theorem 3.1. From Theorem 4.5 we also know that Jλn
= Tλn

for all n ∈ N. For a k-strict pseudo-contraction, we follow the proof of Theorem 4.2.
Thus, we obtain the desired result by Theorem 3.1. �

As in the proofs of Theorems 4.1, 4.2 and 4.6, we also get similar results from
Theorem 3.2.
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