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Abstract. We present an application of the common fixed point theorems, i.e., Markov-Kakutani
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f(sz) = F(s, f(z)), s€G,zecX.
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1. INTRODUCTION

The most popular approaches to prove Hyers-Ulam stability of functional equations
are: the direct method (see the paper [7] from which the theory originates and the
comments in [5]), the method of invariant means (see for example [25] or [26]) and
the fixed point method (see, for example, [3] where a recent survey on this topic is
provided). In the last method, various already known fixed point theorems are used,
as well as some new have been proven and used in a particular situation. However,
it seems that the usefulness of the common fixed point theorems to the theory of
stability of functional equations have not yet been appreciated. In the paper [21] a
new proof of the classical Hyers theorem is given, via the Markov-Kakutani common
fixed point theorem. Here we show another example of an application of common
fixed point theorems. The functional equation, which stability will be studied, is
quite general, it includes, for example, the homogenity equation widely examined in
literature, the equation of periodic and microperiodic function, exponential function
and others.

For the monographs and survey papers devoted to stability theory see [2, 6, 8, 9,
14, 15, 22, 23, 27] and more references therein.
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2. FUNCTIONAL EQUATION f(sx) = F(s, f(z)).

Let us start with reminding one of the first examined equations in the monograph
[1], i.e.,
fls+t)=F(s, f(t), s,teS, (2.1)

with unknown function f defined on a semigroup S with a neutral element. It has
been shown there that

e if (2.1) has a solution then F(s, F(t,xz)) = F(s + t,z) for every s,t € S and
z € f(95);

o if F(s,F(t,x0)) = F(s+t,xz0) for s,t € S and an xg, then f(s) := F(s,z¢) is a
solution of (2.1).

Moreover, a few particular examples of (2.1) have been given:

(i) f(s+1t) =a®f(t); here F(s,z) = a®x and S = (R, +),

(ii) f(st) = s2f(t); here F(s,x) = s and S = (R, ),

(iii) f(s+t) = f(t); here F(s,z) = x and (S, +) is a group,

(iv) f(s+1t) = s+ f(t); here F(s,z) =s+x, f: S — S, where (S,+) is a group.

In what follows assume that X is a set, G is an abelian group with neutral element
1, acting on X, i.e., there is a map S x X 3 (s,2) = soa € X given, such that

o(tox) = (st)ox and Loz = x, for s,t € G, z € X. Let Y be a set and

F:GxY — Y. Let us consider the following functional equation with unknown
function f: X —Y

flsox)=F(s, f(x)), se€GxeX, (2.2)

which is a generalization of (2.1). Below we list some other examples of (2.2):

(v) f(sz) = sPf(x), s € Ko < K*, € X; here X and Y are linear spaces over
K € {R,C};

(vi) f(z + kp) = f(z), v € X, k € Z; here X is a group, p € X

(vii) f(x +qp) = f(z), x € X, ¢ € Q; here X is a linear space, p € X;

(viil) £(a¥) = 4f(z), 2 € (0,00), y € R,

(ix) f(s+1t) =s+ f(t), s € Go, t € G, where Gy is a subgroup of a group G;

(x) f(2P) = f(x)P, z € (0,00), p € G; here G is a subgroup of R .

3. AN APPLICATION OF THE MARKOV-KAKUTANI FIXED POINT THEOREM

For convenience of a reader we remind the well-known Markov-Kakutani fixed point

theorem ([17, 20, 24]).
Theorem 3.1. Let Z be a linear topological space, F a commuting family of contin-
uwous, affine selfmappings of Z, C a nonempty compact convexr subset of Z which is
F-invariant. Then there is, in the set C, a common fixed point of all mappings from
F.

The first of the two main results of this paper is the following theorem which we
are going to prove via the Markov-Kakutani common fixed point theorem.
Theorem 3.2. Let G be an abelian group acting on a set X, Y a linear topological
space, K compact conver subset of Y containing 0. Let F': G XY — Y satisfy
assumptions (A):

e F(s,F(t,y)) = F(st,y), s,teG,yey,
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e F(t,:): Y =Y is continuous and affine, for every t € G. Suppose that fo: X —
Y satisfies
F(s, fo(z)) — fo(sex) e K, ze€X, se€q,
then there is f: X — Y such that
f(sox)=F(s,f(z)), 2€X,s€G (3.1)

and

f(z) = folz) e K, zeX. (3.2)

Proof. Let us consider Z := Y¥ with the Tychonoff topology. For any ¢t € G let us
define Gy: Z — Z by Gy f(z) = F(t, f(t 1 ox)). Put F = {G;: t € G}. It is easy to
verify that

GioGy = Gt57 t,s € G, (33)
in particular, the family F is commuting. Moreover, due to the second of assumptions
(A), every G is continuous and affine. Let us put

C={feZ: flx)— folzx) e K,z € X,

Gif(x) — folx) e K, z € X,t € G}.
The set C is nonempty, as fo € C. Moreover, it is convex, by convexity of K and
affinity of G;. Notice also that C is compact, as a closed subset of the compact set
{fe€Z: f(x) - fo(z) € K}. Moreover, due to (3.3), G¢(C) C C for every t € G. By
Markov-Kakutani theorem we infer that there is f in the set C such that G¢(f) = f,
t € G. This means that (3.2) and (3.1) hold. The proof is completed. O

4. AN APPLICATION OF DEMARR THEOREM

Let (C, <) be a partially ordered set. We say that C is complete, if every bounded
subset has infimum and supremum. A map g: C — C is isotone if x < y implies
g(z) < g(y), for every x,y € C. We remind the corollary from DeMarr theorem ([4],
see also [19]):

Theorem 4.1. If C is a nonempty complete partially ordered set which has a largest
element, and F is a commuting family of isotone mappings from C to C, then there
is a common fized point f of F.

Our second main result reads as follows.

Theorem 4.2. Let G be an abelian group acting on a set X, (Y, <) partially ordered
set such that every bounded subset of Y has infimum and supremum inY , F: GXY —
Y satisfy assumptions (B):

o [y1 < yo implies F(t,y1) < F(t,y2)], t € G,

o if Yy is a nonempty bounded subset of Y, t € G, then

[F(t,y) <z y€Yo]= F(t,supYp) < 2,
[z < F(t,y), y € Yo] = z < F(t,inf Yp).
Let fy,a,b: X —'Y satisfy
fo(z), F(t, fo(t L o)) € [a(x),b(x)], z€X,teq.
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Then there is f: X — Y such that

f(sox)=F(s, f(z)), s€G zecX (4.1)

and

Proof. Let Z = YX. We define partial order in Z by
[<g & flx) <g(x), reX.

Let F = {Gy: Z — Z; t € G}, where Gy f(x) = F(t, f(t 7L ox)). PutC={f e Z:
f(x),Gif(z) € [a(z),b(z)], x € X, t € G}. Then C is nonempty complete partially
ordered set which has a largest element, and F is a commuting family of isotone

mappings from C to C. From the theorem of DeMarr we infer that there is a common
fixed point f of F in C, hence (4.1) and (4.2) hold. O

5. REMARKS

Notice that, by Theorem 3.2, we have proven the stability of functional equations
from examples (i)-(ix) under suitable condition on domain and target space of f.
By Theorem 4.2, the functional equation from example (x) is stable in the sense of
Hyers-Ulam. In paper [16] the stability of functional equation from example (ix) has
been investigated, in paper [30]- from examples (v) and (viii). Moreover, stability of
homogenity (example (v)) has been widely examined in papers [10, 11, 12, 13, 18,
28, 29]. Actually, in the mentioned papers, it has been proven that the functional
equations from examples (v) and (viii) are superstable (i.e., every approximate solution
is an exact solution of the equation). Notice that for some of the investigated equations
from the proven stability we can easily derive superstability.

Corollary 5.1. (a) Lete > 0 and f: R - R, a > 0. Assume that

|f(s+t)—a’f(t)| <e, s,teR.
Then f(s+t) =a®f(t) for all s,t € R.

(b) Let e >0 and f: (0,00) = (0,00), a # 0. Assume that

|f(st) = sf(t)| <&, s,t€(0,00).
Then f(st) = s*f(t) for all s,t € (0,00).

(c) Let p#0 and f: X — Y, where X and Y are linear spaces over K € {R,C}.
Let Ko be a subgroup of (K\ {0},-), different from {1} and let K be a nonempty
convexr compact subset of Y containing 0. Assume that

sPf(z) — f(sx) e K, seKp,xeX.
Then f(sx) = sPf(x), for all s € Ko and v € X.
(d) Lete >0 and f: (0,00) = (0,00). Assume that
[f(@¥) —yf(z)| <&, x,y€(0,00).

Then f(x¥) =y f(z) for all x,y € (0, 00).
Proof. We will show only part (a), since the proofs of the other parts are analogous.
Let f be as in the assumptions. We already know (from Theorem 3.2 with G = X =
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Y =R and K = [~¢,¢], o = + and F(s,z) = a°r) that there is f: R — R such that
f(s+1t)=a’f(t) and |f(s) — f(s)] <e, s,t € R. We have

a*f(8) = a*f(O)] = |f(s +1) = f(s + O] + |f(s +1) —a’f(t) < 2, s, tER,
hence )
IF(t) — ()] < i s,teR.

Passing with a® to infinity gives f = f. ]
Next, we are going to discuss the assumption that F' satisfies the translation equa-

tion. As it has been proven in [1], satisfying the translation equation at least in a

single point zg (i.e., F'(s, F(t,x0)) = F(s +t,x0), s,t € G) is equivalent to the exis-

tence of solution of equation (2.1). However, assuming that the translation equation

is satisfied only in one point is not enough to obtain stability.

Example 5.2. Let ¢ > 0 and F: R x R — R be given by

st+x+e, x#0;
F(S’x):{O xiO.

Notice that the translation equation is satisfied only for z = 0. Hence the only
solution of (2.1) is f = 0. Let ¢: R — R be given by

t, t+#0;
W):{ t=0.

B
One can check directly that
But the difference between ¢ and the only solution of (2.1) is unbounded.
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