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1. Introduction

The necessity of studying differential equations in Banach spaces arises in many
applied problems. For example, it is known (see, e.g. [12]) that a partial differential
or integro-differential equations under some suitable conditions can be reduced to
differential equations in appropriate Banach spaces which, in turn, are equivalent to
certain operator equations. Furthermore, following this way, the corresponding topo-
logical degree theory can be applied to study the existence and qualitative behavior
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of solutions of differential equations in Banach spaces. However, from the practical
point of view it is important to study approximable solutions rather than usual so-
lutions since these solutions can be determined by using the approximation method.
For operator equations containing A−proper maps in Banach spaces with projectional
schemes (for example, in separable Hilbert spaces) F.E. Browder and W.V. Petryshyn
defined the generalized topological degree for studying the existence of approximable
solutions (see, [5, 18]). This approach was extended to operator inclusions in [15] and
was applied to study the global bifurcations of approximable solutions in [1, 19, 20, 21].
Notice that in many cases the A−properness seems to be not a very natural property.

In this paper, we consider the systems of differential equations in separable
Hilbert spaces which can be rewritten as operator inclusions without involving the
A−properness property. We define a notion of the A-bifurcation points for these
systems. It is shown that every bifurcation point of approximable solutions is an
A-bifurcation point. By using the method of guiding functions in Hilbert spaces
(see, [13, 14, 17]) we obtain sufficient conditions under which (0, 0) is the unique
A-bifurcation point of the considered problem, and hence, if this problem has a bi-
furcation of approximable solutions, then it may occur only at (0, 0). The result on
the existence of a global A-bifurcation (Theorem 3.5) is proved.

The paper is organized in the following way. In the next section we recall some
notions and notation from multivalued analysis and theory of Fredholm operators. In
Section 3, after the setting of the problem, by using the topological degree theory and
the guiding function of the form V (x, µ) = 1

2µ
〈
x, x

〉
H

, where x belongs to a Hilbert
space H, µ ∈ R, we prove the existence and uniqueness of an A-bifurcation point for
the considered problem. As an application of the abstract result, we consider, in the
last section, the bifurcation in a system of integro-differential equations which may
be treated as a feedback control system.

2. Preliminaries

2.1. Multimaps. Let X,Y be metric spaces. Denote by P (Y ) [K(Y )] the collection
of all nonempty [respectively, nonempty compact] subsets of Y .
Definition 2.1. (see, e.g. [3, 8, 11]). (i) A multivalued map (multimap) F : X →
P (Y ) is said to be upper semicontinuous (u.s.c.) if for every open subset V ⊂ Y the
set

F−1+ (V ) = {x ∈ X : F (x) ⊂ V }

is open in X; (ii) A u.s.c. multimap F is said to be completely u.s.c., if it maps
every bounded subset X1 ⊂ X into a relatively compact subset F (X1) of Y ; (iii) A

multimap F is said to be compact, if the set F (X) is compact in Y .
A set M ∈ K(Y ) is said to be aspheric (or UV∞, or∞-proximally connected) (see,

e.g. [16, 7, 8]), if for every ε > 0 there exists δ > 0 such that each continuous map
σ : Sn → Oδ(M), n = 0, 1, 2, · · · , can be extended to a continuous map σ̃ : Bn+1 →
Oε(M), where Sn = {x ∈ Rn+1 : ‖x‖ = 1}, Bn+1 = {x ∈ Rn+1 : ‖x‖ ≤ 1}, and
Oδ(M) [Oε(M)] denotes the δ-neighborhood [resp. ε-neighborhood] of the set M.
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Definition 2.2. (see [10]). A nonempty compact space A is said to be an Rδ-
set if it can be represented as the intersection of a decreasing sequence of compact,
contractible spaces.
Definition 2.3. (see [8]). A u.s.c. multimap Σ : X → K (Y ) is said to be a
J-multimap (Σ ∈ J (X,Y )) if every value Σ (x), x ∈ X, is an aspheric set.
Proposition 2.4. (see [8]). Let Z be an ANR-space. In each of the following cases
a u.s.c. multimap Σ : X → K (Z) is a J-multimap:
for each x ∈ X the value Σ (x) is
(a) a convex set;
(b) a contractible set;
(c) an Rδ-set;
(d) an AR-space.
In particular, every continuous map σ : X → Z is a J-multimap.
Definition 2.5. Let O ⊆ X. By CJ(O, X) we will denote the collection of all
multimaps F : O → K(X) that may be represented in the form of composition F =
f ◦ G, where G ∈ J(O, Y ) and f : Y → X is a continuous map. The composition
f ◦G will be called the decomposition of F . We will denote F = (f ◦G).

It is worth noting that a multimap can admit different decompositions (see [8]).
Now, let X be a Banach space and U ⊂ X be an open bounded subset and

F = (f ◦ G) ∈ CJ(U,X) be a compact CJ−multimap such that x /∈ F (x) for
x ∈ ∂U . Then the topological degree deg(i − F,U) of the corresponding compact
multivalued CJ−vector field (i− F )(x) = x− F (x) is well-defined and has all usual
properties of the Leray-Schauder topological degree (see, e.g. [8]).

Now let us recall (see, e.g. [4]) that a metric space X is called the absolute retract
(the AR-space) [resp., the absolute neighborhood retract (the ANR-space)] provided
for each homeomorphism h taking it onto a closed subset h(X) of a metric space X ′,
the set h(X) is the retract of X ′ [resp., of its open neighborhood in X ′]. Notice that
the class of ANR-spaces is broad enough: in particular, a finite-dimensional compact
set is the ANR-space if and only if it is locally contractible. In turn, it means that
compact polyhedrons and compact finite-dimensional manifolds are the ANR-spaces.
The union of a finite number of convex closed subsets in a normed space is also the
ANR-space.

2.2. Fredholm Operators. Now we recall some notions from the Fredholm opera-
tors theory.
Definition 2.6. (see, e.g. [6]). A linear bounded map ` : X → Y is said to be a
Fredholm operator of index zero, if

(i) Im` is closed in Y ;
(ii) Ker` and Coker` have the finite dimensions and

dim Ker` = dim Coker`.

Throughout this paper, symbol H denotes a separable Hilbert space with an or-
thonormal basis {en}∞n=1. For every n ∈ N, let Hn be an n−dimensional subspace
of H with the basis {ek}nk=1 and Pn be a projection of H onto Hn. By

〈
·, ·
〉
H

we

denote the inner product in H. The symbol I denotes the interval [0, T ]. By C(I,H)
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[L2(I,H)] we denote the spaces of all continuous [respectively, square summable]
functions u : I → H with usual norms

‖u‖C = max
t∈I
‖u(t)‖H and ‖u‖2 =

(∫ T

0

‖u(t)‖2Hdt

) 1
2

.

A closed ball of radius r centered at 0 in C(I,H) is denoted by BC(0, r). Consider the
space of all absolutely continuous functions u : I → H whose derivatives belong to
L2(I,H). It is known (see, e.g. [2]) that this space can be identified with the Sobolev
space W 1,2(I,H) endowed with the norm

‖u‖W =
(
‖u‖22 + ‖u′‖22

) 1
2

.

The embedding W 1,2(I,H) ↪→ C(I,H) is continuous, and for every n ≥ 1 the

space W 1,2(I,Hn) is compactly embedded in C(I,Hn). By W 1,2
T (I,H) we denote the

subspace of all functions x ∈ W 1,2(I,H) satisfying the boundary condition x(0) =
x(T ).

Let n ∈ N, and ` : W 1,2
T (I,Hn) → L2(I,Hn) be a linear Fredholm operator of

index zero. Then there exist the projections (see, e.g. [6]):

Cn : W 1,2
T (I,Hn)→W 1,2

T (I,Hn)

and

Qn : L2(I,Hn)→ L2(I,Hn)

such that Im Cn = Ker ` and Ker Qn = Im `. If the operator

`Cn : dom ` ∩Ker Cn → Im `

is defined as the restriction of ` on dom ` ∩ Ker Cn, then `Cn
is a linear isomorphism

and we can define the operator KCn
: Im `→ dom `, KCn

= `−1Cn
. Now, set Coker ` =

L2(I,Hn)/Im `; and let Πn : L2(I,Hn)→ Coker ` be the canonical projection

Πn(z) = z + Im `

and Λn : Coker `→ Ker ` be the linear continuous isomorphism. Then the equation

`x = y, y ∈ L2(I,Hn)

is equivalent to

(i− Cn)x = (ΛnΠn +KCn,Qn
)y,

where KCn,Qn : L2(I,Hn)→W 1,2
T (I,Hn) is given as

KCn,Qn
= KCn

(i−Qn).
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3. A-bifurcation theorem

3.1. The setting of the problem. Let a separable Hilbert space H be compactly
embedded in a Banach space Y and

‖z‖Y ≤ h‖z‖H , for all z ∈ H, (3.1)

for some h > 0.
By L(H) we denote the Banach space of all linear bounded operators on H with

the usual norm.
Consider the following family of differential equations x′(t) = µAx(t) + f

(
t, x(t), y(t), µ

)
, for a.e. t ∈ I,

y′(t) = g
(
t, x(t), y(t), µ

)
, for a.e. t ∈ I,

x(0) = x(T ), y(0) = 0,
(3.2)

where A ∈ L(H); f : I ×H × Y ×R→ H and g : I ×H × Y ×R→ H are continuous
maps.

We shall assume the following conditions:

(A) there exists a > 0 such that〈
w,Aw

〉
H
≥ a

〈
w,w

〉
H

for all w ∈ H;
(f) there exists 0 < c < a such that

‖f(t, w, z, µ)‖H ≤ c‖w‖H(|µ|+ ‖z‖Y )

for all (t, w, z, µ) ∈ I ×H × Y × R;
(g) there exists d > 0 such that a > c(1 + dhTedhT ) and

‖g(t, w, z, µ)‖H ≤ d
(
‖w‖H + ‖z‖Y + |µ|

)
for all (t, w, z, µ) ∈ I ×H × Y × R.

Let us denote Ŵ 1,2(I,H) = {y ∈ W 1,2(I,H) : y(0) = 0}. For each n ∈ N consider
the approximation problem x′(t) = µPnAx(t) + Pnf

(
t, x(t), y(t), µ

)
, for a.e. t ∈ I,

y′(t) = g
(
t, x(t), y(t), µ

)
, for a.e. t ∈ I,

x(0) = x(T ), y(0) = 0.
(3.3)

By a solution of (3.3) we mean a pair (x, µ) ∈ W 1,2
T (I,Hn) × R for which there is a

function y ∈ Ŵ 1,2(I,H) such that the triplet (x, y, µ) satisfies (3.3).
Definition 3.1. (cf. [5, 19]) By an approximable solution to problem (3.2) we mean

a pair (x, µ) ∈W 1,2
T (I,H)× R with the following property:

(i) there is a function y ∈ Ŵ 1,2(I,H) such that the triplet (x, y, µ) satisfies (3.2).

(ii) there are sequences {nk} and {(xnk
, µnk

)}, xnk
∈ W 1,2

T (I,Hnk
), such that

(xnk
, µnk

) are solutions to (3.3) for all nk and

xnk

W 1,2(I,H)−→ x and µnk
→ µ.
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From (f) it follows that f(t, 0, z, µ) = 0 for all (t, z, µ) ∈ I × Y × R. Therefore,
(0, µ) are approximable solutions to (3.2) for all µ ∈ R.
Definition 3.2. We will say that a point (0, µ0) is a bifurcation point of approximable

solutions to problem (3.2) if for every open subset U ⊂ W 1,2
T (I,H) × R containing

(0, µ0) there exists (x, µ) ∈ U , x 6= 0, such that (x, µ) is an approximable solution to
(3.2).

The search for a bifurcation point of approximable solutions of problem (3.2) can be
a difficult problem, especially, if we do not impose any compactness or condensivity
assumptions on its right hand side. At least, the following question seems to be
natural: are there any candidates for bifurcation points of approximable solutions?
To answer this question we introduce the following notion.
Definition 3.3. A point (0, µ0) is said to be an A-bifurcation point to problem (3.2)

if for every open subset U ⊂ W 1,2
T (I,H)× R containing (0, µ0) there exist sequences

{nk}∞k=1, {(xnk
, µnk

)}, (xnk
, µnk

) ∈ Unk
, xnk

6= 0, such that (xnk
, µnk

) is a solution

to (3.3), where Unk
= U ∩

(
W 1,2
T (I,Hnk

)× R
)
.

It is clear that if (0, µ0) is a bifurcation point of approximable solutions of (3.2),
then it is an A-bifurcation point of this problem. Moreover, an A−bifurcation
point will be a bifurcation point of approximable solutions if problem (3.2) has the
A−properness property, i.e., from the existence of a sequence of solutions {(xnk

, µnk
)}

to approximation problem (3.3) it follows that problem (3.2) has a solution (x, µ) such
that (xnk

, µnk
)→ (x, µ) (see, [5, 19] for more detail about A−properness property).

In the sequel, we need the following assertion which easily follows from Theorem
70.12 [8].
Lemma 3.4. Let E be a separable Banach space and ϕ : I × E → E be a map
satisfying the following conditions:

(ϕ1) ϕ is completely continuous, i.e. ϕ is continuous and maps every bounded
subset Ω ⊂ I × E into a relatively compact subset ϕ(Ω) of E;

(ϕ2) there is q > 0 such that

‖ϕ(t, y)‖E ≤ q(1 + ‖y‖E),

for all (t, y) ∈ I × E.

Then the set of all solutions of the Cauchy’s problem{
u′(t) = ϕ(t, u(t)) for a.e. t ∈ I,
u(0) = u0 ∈ E,

is an Rδ−set in C(I, E).

3.2. Main result. To formulate the main result let us denote by Sn (n ∈ N) the set
of all non-trivial solutions of (3.3).
Theorem 3.5. Let conditions (A), (f) and (g) hold. Then (0, 0) is a unique A-
bifurcation point of problem (3.2). Moreover, there exists a sequence of connected sets
C2n−1 ⊂ S2n−1, such that (0, 0) ∈ C2n−1 and C2n−1 are unbounded for all n = 1, 2, · · · .
Proof. For each (x, µ) ∈ C(I,H)× R consider the map

g(x,µ) : I × Y → Y, g(x,µ)(t, z) = g(t, x(t), z, µ).
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It is easy to verify that the map g(x,µ) satisfies all conditions of Lemma 3.4. Therefore,
for each (x, µ) ∈ C(I,H)× R the set Π(x,µ) of all solutions of the Cauchy problem{

y′(t) = g(t, x(t), y(t), µ), for a.e. t ∈ I,
y(0) = 0,

is an Rδ−set in C(I, Y ).
Define the multimap Π: C(I,H)× R→ K(C(I, Y )), Π(x, µ) = Π(x,µ). Applying the
known result (see, e.g., Theorem 5.2.5 [11]) on continuous dependence of solution sets
of differential inclusions (in particular, differential equations) we obtain that multimap
Π is upper semicontinuous, and hence, it is a J−multimap.

Define now the multimap

Π̃: C(I,H)× R→ K
(
C(I,H)× C(I, Y )× R

)
,

Π̃(x, µ) = {x} ×Π(x, µ)× {µ},

and the map f̃ : C(I,H)× C(I, Y )× R→ L2(I,H),

f̃(x, y, µ)(t) = µAx(t) + f(t, x(t), y(t), µ), t ∈ I.

Then we can replace problem (3.2) with the following operator inclusion

Lx ∈ Q(x, µ), (3.4)

where L : W 1,2
T (I,H)→ L2(I,H), Lx = x′ and

Q : C(I,H)× R→ K(L2(I,H)),

Q(x, µ) = f̃ ◦ Π̃(x, µ).

It is easy to see that Q is a CJ−multimap and for each n ∈ N the restriction

Ln = L|
W

1,2
T

(I,Hn)
: W 1,2

T (I,Hn)→ L2(I,Hn)

is the linear Fredholm operator of index zero and

Ker Ln ∼= Hn
∼= Coker Ln.

The space L2(I,Hn) can be decomposed as:

L2(I,Hn) = L(n)
0 ⊕ L(n)

1 ,

where L(n)
0 = Coker Ln, and L(n)

1 = ImLn.
For every u ∈ L2(I,Hn) we denote its corresponding decompositions by

u = u
(n)
0 + u

(n)
1 .

Notice that a pair (x, µ) ∈ W 1,2
T (I,Hn) × R is a solution of (3.3), or equivalently of

the inclusion

Lnx ∈ PnQ(x, µ),

if and only if it is a fixed point

x ∈ Gn(x, µ), (3.5)
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of the CJ−multimap

Gn : C(I,Hn)× R→ K(C(I,Hn)),

Gn(x, µ) = Cnx+ (ΛnΠn +KCn,Qn) ◦ PnQ(x, µ),

where projection Πn : L2(I,Hn)→ Hn is defined as

Πnu =
1

T

T∫
0

u(s) ds

and the homomorphism Λn : Hn → Hn is the identity operator and Pn : L2(I,H) →
L2(I,Hn) is a continuous map defined by

(Pnf)(t) = Pnf(t), t ∈ I.

Step 1. We will show that for every n ≥ 1 the multimap Gn is completely u.s.c.
Indeed, for every bounded subset U ⊂ C(I,Hn)× R and for every (x, µ) ∈ U choose
an arbitrarily q ∈ Q(x, µ). Then there exists y ∈ Π(x, µ) such that

q(t) = µAx(t) + f(t, x(t), y(t), µ), t ∈ I.

Since y ∈ Π(x, µ) and (g) we have

‖y(t)‖Y =

∥∥∥∥∫ t

0

g(s, x(s), y(s), µ)ds

∥∥∥∥
Y

≤ h
∫ t

0

‖g(s, x(s), y(s), µ)‖Hds

≤ h
∫ t

0

d
(
‖x(s)‖H + ‖y(s)‖Y + |µ|

)
ds

≤ dhT‖x‖C + dh|µ|T +

∫ t

0

dh‖y(s)‖Y ds.

Applying the Gronwall lemma (see, e.g. [9]) we obtain

‖y(t)‖Y ≤ dhT
(
‖x‖C + |µ|

)
edhT , t ∈ I. (3.6)

From the boundedness of the set U it follows that there is MU > 0 such that |µ| ≤MU

for all (x, µ) ∈ U . From the continuity of the map A it follows that there is M1 > 0
such that ‖µAw‖H ≤M1‖w‖H for all (t, w, µ) ∈ I ×H × [−MU ,MU ], and hence, for
every t ∈ I the following relation holds true:

‖q(t)‖H = ‖µAx(t) + f(t, x(t), y(t), µ)‖H
≤M1‖x(t)‖H + ‖f(t, x(t), y(t), µ)‖H
≤M1‖x‖C + c‖x(t)‖H

(
‖y(t)‖Y + |µ|

)
.

(3.7)

Consequently, the set Q(U) is bounded in L2(I,H). Then the set (ΛnΠn+KCn,Qn
)◦

PnQ(U) is bounded in W 1,2
T (I,Hn) and by the compact embedding property, it is

relatively compact in C(I,Hn). Finally, our assertion follows from the fact that the
operator Cn is continuous and takes values in a finite dimensional space.
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Step 2. Now, for each µ 6= 0 let us show that there exists δµ > 0 such that

inclusion (3.5) has no non-trivial solutions on B
(n)
C (0, δµ) × {µ} for all n ∈ N, where

B
(n)
C (0, δµ) = BC(0, δµ) ∩ C(I,Hn).

Toward this goal, assume that (x, µ) ∈W 1,2
T (I,Hn)× {µ} is a non-trivial solution of

(3.5). Then there is a function y ∈ Π(x, µ) such that

x′(t) = µPnAx(t) + Pnf(t, x(t), y(t), µ), for a.e. t ∈ I.

Therefore,∫ T

0

〈
µx(t), µPnAx(t) + Pnf(t, x(t), y(t), µ)

〉
H
dt =

∫ T

0

〈
µx(t), x′(t)

〉
H
dt = 0.

On the other hand, since x(t) ∈ Hn for all t ∈ I, conditions (A), (f), (g) and (3.6)
imply∫ T

0

〈
µx(t), µPnAx(t) + Pnf(t, x(t), y(t), µ)

〉
H
dt

=

∫ T

0

〈
µx(t), µAx(t) + f(t, x(t), y(t), µ)

〉
H
dt

≥ aµ2‖x‖22 − |µ|
∫ T

0

‖x(t)‖H ‖f(t, x(t), y(t), µ)‖Hdt

≥ aµ2‖x‖22 − |µ|c
∫ T

0

‖x(t)‖H‖x(t)‖H
(
|µ|+ ‖y(t)‖Y

)
dt

≥ aµ2‖x‖22 − c|µ|
∫ T

0

‖x(t)‖2H
(
|µ|+ dhT

(
‖x‖C + |µ|

)
edhT

)
dt

= |µ|‖x‖22
(
|µ|
(
a− c(1 + dhTedhT )

)
− cdhTedhT ‖x‖C

)
> 0

provided

0 < ‖x‖C <

(
a− c(1 + dhTedhT )

)
|µ|

cdhTedhT
. (3.8)

So, inclusion (3.5) has no solutions (x, µ) if the norm ‖x‖C satisfies estimate (3.8).
Step 3. For a fixed n ∈ N and r, ε > 0 define a multimap

Grn : B(n)
r,ε → K(C(I,Hn)× R),

Grn(x, µ) =
{
x−Gn(x, µ), ‖x‖2C − r

2
}
,

where

B(n)
r,ε =

{
(x, µ) ∈ C(I,Hn)× R : ‖x‖2C + µ2 ≤ r2 + ε2

}
.

It is easy to verify that Grn is a compact multivalued CJ−vector field. For every
numbers r, ε > 0 such that

r <
ε
(
a− c(1 + dhTedhT )

)
cdhTedhT

, (3.9)

let us show that 0 /∈ Grn(x, µ) for all (x, µ) ∈ ∂B(n)
r,ε .
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Indeed, to the contrary assume that there is (x, µ) ∈ ∂B(n)
r,ε such that 0 ∈ Grn(x, µ).

Then {
x ∈ Gn(x, µ),

‖x‖C = r.

Consequently, µ = ±ε. So, inclusion (3.5) has a non-trivial solution (x, µ) where
µ = ±ε and ‖x‖C satisfies (3.8). That is a contradiction.
Thus, the topological degree

ωn = deg(Grn, B
(n)
r,ε )

is well-defined and does not depend on the choice of r > 0 satisfying (3.9).
Step 4. Now, we will evaluate ωn. Toward this goal, consider the multimap

Σn : B(n)
r,ε × [0, 1]→ K

(
C(I,Hn)× R

)
,

Σn(x, µ, λ) =
{
x− Cnx+ (ΛnΠn +KCn,Qn

) ◦ αn
(
PnQ(x, µ), λ

)
, τ
}
,

τ = λ
(
‖x‖2C − r

2
)

+ (1− λ)
(
ε2 − µ2

)
,

where αn : L2(I,Hn)× [0, 1]→ L2(I,Hn) is defined as

αn
(
ψ
(n)
0 + ψ

(n)
1 , λ

)
= ψ

(n)
0 + λψ

(n)
1 ; ψ

(n)
0 ∈ L(n)

0 , ψ
(n)
1 ∈ L(n)

1

It is easy to see that Σn is a compact multivalued CJ−vector field. Let us show that

0 /∈ Σn(x, µ, λ)

for all (x, µ, λ) ∈ ∂B(n)
r,ε × [0, 1].

To the contrary, assume that there is (x̃, µ̃, λ̃) ∈ ∂B(n)
r,ε × [0, 1] such that

0 ∈ Σn(x̃, µ̃, λ̃).

Then, λ
(
‖x‖2C − r2

)
+ (1− λ)

(
ε2 − µ2

)
= 0, and there exists q̃ ∈ Q(x̃, µ̃) such that{

Lnx̃ = λ̃q̃
(n)
1

0 = q̃
(n)
0 ,

where q̃
(n)
0 + q̃

(n)
1 = q̃(n) = Pnq̃; q̃(n)0 ∈ L(n)

0 q̃
(n)
1 ∈ L(n)

1 .

From (x̃, µ̃) ∈ ∂B(n)
r,ε it follows that

‖x̃‖2C − r
2 = ε2 − µ2.

Therefore, ‖x‖C = r and µ = ±ε.
If λ̃ > 0, then from the choice of r and the fact that x̃ ∈ C(I,Hn) we have

0 <

∫ T

0

〈
µ̃x̃(s), q̃(s)

〉
H
ds =

∫ T

0

〈
µ̃x̃(s), Pnq̃(s)

〉
H
ds

=

∫ T

0

〈
µ̃x̃(s), q̃(n)(s)

〉
H
ds

=

∫ T

0

〈
µ̃x̃(s),

1

λ̃
x̃′(s)

〉
H
ds = 0,
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giving the contradiction.

If λ̃ = 0, then Lnx̃ = 0, i.e. x̃(t) = w ∈ Hn
∼= Rn for all t ∈ I. Since ‖w‖C =

‖w‖H = r and from the choice of r we have∫ T

0

〈
µ̃w, q(s)

〉
H
ds > 0,

for all q ∈ Q(w, µ̃).
On the other hand∫ T

0

〈
µ̃w, q(s)

〉
H
ds =

∫ T

0

〈
µ̃w, Pnq(s)

〉
H
ds

= T
〈
µ̃w,Πnq

(n)
〉
H
∼= T

〈
µ̃w,Πnq

(n)
〉
Rn ,

where q(n) = Pnq ∈ PnQ(w, µ̃) and
〈
·, ·
〉
Rn denotes the inner product in Rn.

Therefore, 〈
µ̃w,Πnq

(n)
〉
Rn > 0, (3.10)

and hence, Πnq
(n) 6= 0. In particular, Πnq̃

(n) 6= 0. But Πnq̃
(n) = Πnq̃

(n)
0 = 0, that is

the contradiction.
Thus, Σn is a homotopy connecting the vector fields Σn(x, µ, 1) = Grn(x, µ) and

Σn(x, µ, 0) = {x− Cnx−ΠnPnQ(x, µ), ε2 − µ2}.

By virtue of the homotopy invariance property of the topological degree we have

deg
(
Grn, B

(n)
r,ε

)
= deg

(
Σn(·, ·, 0), B(n)

r,ε

)
.

The operator Cn + ΠnPnQ takes values in Hn
∼= Rn, so

deg
(
Σn(·, ·, 0), B(n)

r,ε

)
= deg

(
Σn(·, ·, 0), U

(n)

r,ε

)
,

where U
(n)

r,ε = B
(n)
r,ε ∩ (Rn × R).

In the space Hn × R ∼= Rn × R the vector field Σ(·, ·, 0) has the form

Σn(x, µ, 0) =
{
−ΠnPnQ(x, µ), ε2 − µ2

}
,

Consider now the multimap: Γ: U
(n)

r,ε × [0, 1]→ K(Rn × R) defined by

Γ(z, µ, λ) =
{
−λΠnPnQ(z, µ) + (λ− 1)µz, ε2 − µ2

}
.

It is clear that Γ is a compact multivalued CJ−vector field. Assume that there exists

(z, µ, λ) ∈ ∂U (n)
r,ε × [0, 1] such that 0 ∈ Γ(z, µ, λ). Then there exists w ∈ Q(z, µ) such

that {
µ = ±ε
(λ− 1)µz = λΠnPnw,

and by virtue of (3.10) we get the contradiction. So, Γ is a homotopy connecting
Σn(·, ·, 0) and V ](z, µ) = {−µz, ε2 − µ2}. Therefore,

ωn = deg
(
Σn(·, ·, 0), U

(n)

r,ε

)
= deg

(
V ], U

(n)

r,ε

)
=

{
2 if n is an odd number

0 if n is an even number.
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Since ω2n−1 6= 0 for all n ∈ N there exists the corresponding sequence

{(x2n−1, µ2n−1)} ⊂ B(2n−1)
r,ε

such that {
x2n−1 ∈ G2n−1(x2n−1, µ2n−1)

‖x2n−1‖C = r.

Therefore, (0, 0) is an A-bifurcation point of problem (3.2). Moreover, relation (3.8)
holds true for all µ 6= 0. Thus, (0, 0) is a unique A-bifurcation point of problem (3.2).

Step 5. Now for each m ∈ N consider the global structure of solutions of problem
(3.3) with n = 2m − 1. From ωn 6= 0 and relation (3.8) it follows that (0, 0) is a
unique bifurcation point (of usual solutions) of (3.3) (or equivalently, of (3.5)).

Let On ⊂ C(I,Hn)× R be an open subset defined as

On =
(
C(I,Hn)× R

)
\
(
{0} × {R \ (−1, 1)}

)
.

Let us denote by Cn ⊂
(
Sn ∪{(0, 0)}

)
⊂ On the component of (0, 0). Assume that

Cn is compact. Then there exists an open bounded subset Un ⊂ On such that

Un ⊂ On, Cn ⊂ Un and ∂Un ∩ Sn = ∅.
Further, for every r,R > 0 consider the compact multivalued CJ−vector field

G
λr+(1−λ)R
n on Un × [0, 1].
Assume that there exists (xn, µn, λn) ∈ ∂Un × [0, 1] such that

0 ∈ Gλnr+(1−λn)R
n (xn, µn, λn).

Then, {
xn ∈ Gn(xn, µn)
‖xn‖C = λnr + (1− λn)R,

that is the contradiction since ∂Un ∩ Sn = ∅.
Therefore, the vector fields Grn and GRn are homotopic on ∂Un. For sufficiently large
R, GRn has no zeros on Un, so

deg(GRn , Un) = 0.

Consequently, deg(Grn, Un) = 0 for every r > 0.
Let Λ = {µ ∈ R : (0, µ) ∈ Un}. From Un ⊂ On it follows that

Λ ⊂ (−1, 1). (3.11)

Now choose sufficiently small r, ε > 0 such that B
(n)
r,ε ⊂ Un and

x /∈ Gn(x, µ) provided x ∈ B(n)
C (0, r) \ {0},

for all µ ∈ (−1, 1) \ (−ε, ε), where B
(n)
C (0, r) = BC(0, r) ∩C(I,Hn). From (3.11) and

the choice of r, ε we have that{
(x, µ) : (x, µ) ∈ Un and 0 ∈ Grn(x, µ)

}
⊂ B(n)

r,ε .

So, we obtain

deg(Grn, B
(n)
r,ε ) = deg(Grn, Un) = 0,
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that is the contradiction.
Thus, Cn is a non-compact component, i.e. either Cn is unbounded or Cn ∩ On 6= ∅.
Since (0, 0) is the unique bifurcation point of (3.3), there is only one possible case,
that is Cn is unbounded.
Remark 3.6. Theorem 3.5 gives us an important information about the bifurcation
of approximable solutions in problem (3.2). If there is a bifurcation point of approx-
imable solutions of this problem, then it should be (0, 0). For example, if problem
(3.2) has the A−properness property, then (0, 0) is the unique bifurcation point of
approximable solutions to (3.2) and there exists an unbounded connected subset of
non-trivial approximable solutions of (3.2) which bifurcates from (0, 0). Moreover,
an A-bifurcation point can be a bifurcation point of usual solutions. For example, if
Aw = aw,∀w ∈ H, and there is an odd number n such that f(t, w, z, µ) ∈ Hn for
all (t, w, z, µ) ∈ I × Hn × Y × R, then (0, 0) is a bifurcation point of (3.2) and the
unbounded branch Cn is a branch of non-trivial solutions of (3.2).

4. Application to a parameterized integro - differential system

Consider the following parameterized integro-differential system
∂u(t,s)
∂t = µau(t, s) +

∫ 1

0
K(t, s)u(t, σ)

(
µ+ v(t, σ)

)
dσ,

∂v(t,s)
∂t =

∫ 1

0
G(t, s)

(
u(t, σ) + v(t, σ) + µ

)
dσ,

u(0, s) = u(1, s); v(0, s) = 0,

(4.1)

where the first and the second equations hold for for a.e. t ∈ [0, 1] and all s ∈ [0, 1];
a > 0; and K,G : [0, 1]× [0, 1]→ R are continuous maps.

Let us denote by Y = C[0, 1] and H = W 1,2[0, 1]. It is clear that Y is a Banach
space, H is a separable Hilbert space, the embedding H ↪→ Y is compact and ‖z‖Y ≤
‖z‖H for all z ∈ H.

By a solution to problem (4.1) we mean a triplet (u, v, µ) consisting of continuous

functions u, v : [0, 1] × [0, 1] → R whose partial derivatives ∂u(t,s)
∂t and ∂v(t,s)

∂t exist
and satisfy (4.1). Moreover, we can consider relations (4.1) as the law of evolution
of a feedback control system with the state function u(t, s) and the control function
v(t, s). Our goal can be formulated as the finding of the state and control as continuous
functions u(t, s) and v(t, s) such that at every moment t the functions u(t, ·) and v(t, ·)
belong to the Sobolev space W 1,2[0, 1].

An equivalent approach to (4.1) is the following: by a solution to (4.1) we mean a
pair (u, µ) consisting of a continuous function u and a number µ, for which there is a
continuous function v such that the triplet (u, v, µ) satifies (4.1).

It is easy to see that (0, µ) are solutions to (4.1) for all µ ∈ R. Let us denote
by S the set of all non-trivial solutions of (4.1), i.e., the set of all solutions (u, µ) of
(4.1) such that u 6= 0. We will study the global structure of S under the following
hypotheses:

(A1) for every t ∈ [0, 1] the partial derivatives ∂K(t,s)
∂s and ∂G(t,s)

∂s exist for a.e.

s ∈ [0, 1] and belong to space L2[0, 1];
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(A2) a > K(1 +GeG), where

K = max
t,s∈[0,1]

K(t, s) and G = max
t,s∈[0,1]

G(t, s).

For each t ∈ [0, 1] let us denote by x(t) = u(t, ·) and y(t) = v(t, ·). Replace (4.1) with
the following problem

x′(t) = µAx(t) + f(t, x(t), y(t), µ), for a.e. t ∈ [0, 1],

y′(t) = g(t, x(t), y(t), µ), for a.e. t ∈ [0, 1],

x(0) = x(1), y(0) = 0,

(4.2)

where A : H → H, Aw = aw,

f : [0, 1]×H × Y × R→ H,

f(t, w, z, µ)(s) =

∫ 1

0

K(t, s)w(σ)
(
µ+ z(σ)

)
dσ,

and
g : [0, 1]×H × Y × R→ H,

g(t, w, z, µ) =

∫ 1

0

G(t, s)
(
w(σ) + z(σ) + µ

)
dσ.

Notice that if (x, y, µ) is a solution to (4.2), then the corresponding triplet (u, v, µ) is
a solution to (4.1).

It is easy to verify that the maps A, f and g satisfy conditions (A), (f) and (g),
respectively. Applying Theorem 3.5 and Remark 3.6 we obtain the following assertion.
Theorem 4.1. Let conditions (A1)−(A2) hold. Then (0, 0) is a unique A-bifurcation
point of problem (4.1). Moereover, if for all t ∈ [0, 1] the function K(t, ·) takes values
in Hn with n an odd number, then (0, 0) is a bifurcation point of usual solutions
of problem (4.1) and there exists a unbounded connected subset R ⊂ S such that
(0, 0) ∈ R.
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