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1. Introduction

It is well known that the Ky Fan minimax inequality plays a very important role
in many fields, such as variational inequality, game theory, control theory, and fixed
point theory. Yen [30] obtained two existence theorems of variational inequalities by
virtue of a generalized Ky Fan minimax inequality. Ha [15] established a fixed point
theorem by applying an extended Ky Fan minimax inequality. Park [26] obtained a
generalization of Nash equilibrium theorem by using the Ky Fan minimax inequal-
ity. Because of its wide applications, Ky Fan minimax inequalities relative to scalar
functions have been generalized in various ways; see [16, 5, 6, 7, 8, 33].

In recent years, based on the development of vector optimization, a great deal of
papers have devoted to the study of Ky Fan minimax inequalities for vector-valued
functions. Chen [3] obtained a Ky Fan minimax inequality for a vector-valued func-
tion on H-spaces by using a generalized Fan’s section theorem. Chang et al. [2] proved
a Ky Fan minimax inequality for a vector-valued function on W-spaces. Li and Wang
[22] established some Ky Fan minimax inequalities for vector-valued functions. Luo
[24] obtained some generalized Ky Fan minimax inequalities for vector-valued func-
tions by applying the Browder fixed point theorem and the Kakutani-Fan-Glicksberg
fixed point theorem. Yang et al. [29] established minimax theorems for vector-valued
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mappings in abstract convex spaces. There are also many papers studying other types
of minimax inequalities for vector-valued functions. Nieuwenhuis [25] obtained a min-
imax inequality when the vector-valued function is of the form f(x, y) = x+ y. Ferro
[10, 11] proved some minimax inequalities for general vector-valued functions. Tanaka
[28] obtained some minimax inequalities for vector-valued functions by using the ex-
istence results of cone saddle points for vector-valued functions. Gong [14] obtained
a strong minimax inequality and established an equivalent relationship between the
strong minimax inequality and a strong cone saddle point theorem for a vector-valued
function. Li et al. [19] investigated a minimax inequality and a saddle point theorem
for a vector-valued function in the sense of lexicographic order, respectively.

There are also articles that have investigated minimax theorems for set-valued
mappings. Li et al. [20] obtained some minimax inequalities for set-valued mappings
by using a section theorem and a separation theorem of convex sets. Li et al. [21]
studied some generalized minimax inequalities for set-valued mappings by using a
nonlinear scalarization function. Zhang et al. [31, 32] established some minimax
inequalities for set-valued mappings. Motivated by these earlier work, we establish
some generalized Ky Fan minimax inequalities for set-valued mappings by using some
fixed point theorems and two nonlinear scalarization functions.

The rest of the paper is organized as follows. In Section 2, we introduce notations
and preliminary results. In Section 3, we establish a Ky Fan minimax inequality for a
scalar set-valued mapping. In Section 4, we obtain some generalized Ky Fan minimax
inequalities for set-valued mappings.

2. Preliminaries

Throughout this paper, unless otherwise specified, let X and V be real Hausdorff
topological vector spaces. Assume that S is a pointed closed convex cone in V with
its interior intS 6= ∅. We define the binary relation:

x ≤S y ⇔ x ∈ y − S, ∀ x, y ∈ V.

Some fundamental terminologies are presented as follows.
Definition 2.1. [17] Let A ⊂ V be a nonempty subset. (i) A point z ∈ A is said
to be a minimal point of A iff A

⋂
(z − S) = {z}, and MinA denotes the set of all

minimal points of A.
(ii) A point z ∈ A is said to be a weakly minimal point of A iff A

⋂
(z− intS) = ∅,

and MinwA denotes the set of all weakly minimal points of A.
(iii) A point z ∈ A is said to be a maximal point of A iff A

⋂
(z + S) = {z}, and

MaxA denotes the set of all maximal points of A.
(iv) A point z ∈ A is said to be a weakly maximal point of A iff A

⋂
(z+ intS) = ∅,

and MaxwA denotes the set of all weakly maximal points of A.
It is easy to verity that MinA ⊂ MinwA and MaxA ⊂ MaxwA.

Definition 2.2. [1] Let F : X → 2V be a set-valued mapping.
(i) F is said to be upper semicontinuous(u.s.c.) at x0 ∈ X iff, for any neighborhood

N(F (x0)) of F (x0), there exists a neighborhood N(x0) of x0 such that

F (x) ⊂ N(F (x0)), ∀x ∈ N(x0).
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(ii) F is said to be lower semicontinuous(l.s.c.) at x0 ∈ X iff, for any net {xα} ⊂ X
such that xα → x0 and any y0 ∈ F (x0), there exists a net yα ∈ F (xα) such that
yα → y0.

(iii) F is said to be continuous at x0 ∈ X iff F is both u.s.c. and l.s.c. at x0.
Lemma 2.3. Let X0 be a compact subset of X. Suppose that F : X0×X0 → 2V is a
continuous set-valued mapping and for each (x, y) ∈ X0 ×X0, F (x, y) is a nonempty
compact set. Then Φ(x) = Maxw

⋃
y∈X0

F (x, y) is u.s.c. and compact-valued on X0.

Proof. It follows from Lemma 2.2 in [20] that Φ is u.s.c.. By the compactness of X0

and the closeness of the weakly maximal point set, Φ is also compact-valued. �
Lemma 2.4. [1] Let X0 be a compact subset of X, and let F : X0 → 2V be a
set-valued mapping. If X0 is compact and F is u.s.c. and compact-valued, then
F (X0) =

⋃
x∈X0

F (x) is compact.

Lemma 2.5. [10] Let A be a nonempty compact subset of V . Then
(i)MinA 6= ∅;
(ii)A ⊂ MinA+ S; (iii)MaxA 6= ∅; and (iv)A ⊂ MaxA− S.

Definition 2.6. [12] Given e ∈ intS and a ∈ V , the nonlinear scalarization functions
ξea and hea : V → R are, respectively, defined by

ξea(z) = min{t ∈ R : z ∈ a+ te− S},
and

hea(z) = max{t ∈ R : z ∈ a+ te+ S}.
Next, we give some useful properties of the above scalarization functions.

Lemma 2.7. [13, 4] Let e ∈ intS and a ∈ V . The following properties hold:
(i) ξea(z) < r ⇔ z ∈ a+ re− intS; hea(z) > r ⇔ z ∈ a+ re+ intS;
(ii) ξea(z) ≤ r ⇔ z ∈ a+ re− S; hea(z) ≥ r ⇔ z ∈ a+ re+ S;
(iii) ξea(·) and hea(·) are continuous functions;
(iv) ξea and hea are strictly monotonically increasing (monotonically increasing),

that is, if z1 − z2 ∈ intS ⇒ f(z1) > f(z2)(z1 − z2 ∈ S ⇒ f(z1) ≥ f(z2)), where f
denotes ξea or hea.
Definition 2.8. Let X0 be a nonempty convex subset of X, and let F : X0 → 2V be
a set-valued mapping.

(i) F is said to be properly S-quasiconcave [21] on X0 iff, for each x1, x2 ∈ X0

and l ∈ [0, 1], either

F (x1) ⊂ F (lx1 + (1− l)x2)− S or F (x2) ⊂ F (lx1 + (1− l)x2)− S.
(ii) F is said to be S-quasiconcave [23] on X0 iff, for any point z ∈ V , the level set

LevF (z) := {x ∈ X0 : ∃t ∈ F (x), s.t. t ∈ z + S}
is convex.
Lemma 2.9. Let X0 be a nonempty convex subset of X. Let F : X0 → 2V be a
set-valued mapping, e ∈ intS and a ∈ V :

(i) If F is properly S-quasiconcave on X0, then ξea ◦F is R+-quasiconcave on X0;
(ii) If F is S-quasiconcave on X0, then hea ◦ F is R+-quasiconcave on X0;

Proof. (i) For any w ∈ R, we only need to prove that

LevξeaF (w) = {x ∈ X0 : ∃t ∈ ξea(F (x)), s.t. t ≥ w}
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is a convex set. Let x1, x2 ∈ LevξeaF (w) and l ∈ [0, 1]. Then, there exist z1 ∈ F (x1)
and z2 ∈ F (x2) such that ξea(z1) ≥ w and ξea(z2) ≥ w. By Lemma 2.7 (i),

z1 6∈ a+ we− intS and z2 6∈ a+ we− intS.

Thus, we have

(z1 + S)
⋂

(a+ we− intS) = ∅ and (z2 + S)
⋂

(a+ we− intS) = ∅.

Since F is properly S-quasiconcave on X0, there exists z ∈ F (lx1+(1−l)x2) such that
z 6∈ a+we−intS. By Lemma 2.7 (i), ξea(z) ≥ w. Namely, lx1+(1−l)x2 ∈ LevξeaF (w).

(ii) Take any w ∈ R. We have to show that

LevheaF (w) = {x ∈ X0 : ∃t ∈ hea(F (x)), s.t. t ≥ w}.
is a convex set. Let x1, x2 ∈ LevheaF (w) and l ∈ [0, 1]. Then, there exist z1 ∈ F (x1)
and z2 ∈ F (x2) with hea(zi) ≥ w, i = 1, 2. By Lemma 2.7 (ii), we have

zi ∈ a+ we+ S, for i = 1, 2.

Since F is S-quasiconcave on X0, there exists z ∈ F (lx1 + (1− l)x2) such that

z ∈ a+ we+ S.

This shows that hea(z) ≥ w. Thus lx1 + (1− l)x2 ∈ LevheaF (w). �
Lemma 2.10. ([27], Lemma 3.2) Let F : X → 2R be a continuous set-valued mapping
with compact values. Then, the function h : X → R, defined by h(x) = maxF (x), is
continuous.
Theorem 2.11. [16, 7] Let X0 be a nonempty compact convex subset of X and let
A be a subset of X0 ×X0 such that
(a) for each y ∈ X0, the set {x ∈ X0 : (x, y) ∈ A} is closed in X0

(b) for each x ∈ X0, the set {y ∈ X0 : (x, y) 6∈ A} is convex or empty.
If (x, x) ∈ A for each x ∈ X0, then there exists a point x0 ∈ X0 such that {x0}×X0 ⊂
A.
Theorem 2.12. [9, 18] Let X be a real locally convex Hausdorff topological vector
space. Let X0 be a nonempty compact convex subset of X. If T : X0 → 2X0 is u.s.c.,
and for any x ∈ X0, T (x) is a nonempty, closed and convex set, then T has a fixed
point.

3. Ky Fan minimax inequalities of scalar set-valued mappings

Lemma 3.1. Let X0 be a nonempty convex subset of X, and let F : X0 → 2R be a
set-valued mapping. Then the following two statements are equivalent:

(i) for any r ∈ R, {x ∈ X0 : ∃w ∈ F (x), s.t. w ≥ r} is convex;
(ii) for any t ∈ R, {x ∈ X0 : ∃w ∈ F (x), s.t. w > t} is convex.

Proof. (i)⇒ (ii) For any t ∈ R, λ ∈ [0, 1], and x1, x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w >
t}. Then, ∃w1 ∈ F (x1) such that w1 > t and ∃w2 ∈ F (x2) such that w2 > t. So, we
have

r = min{w1, w2} > t and x1, x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w ≥ r}.
Since {x ∈ X0 : ∃w ∈ F (x), s.t. w ≥ r} is convex, we have

λx1 + (1− λ)x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w ≥ r > t}.
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Thus, λx1 + (1− λ)x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w > t}.
(ii)⇒ (i) For any r ∈ R, λ ∈ [0, 1], and x1, x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w ≥ r},

naturally we have that x1, x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w > r − ε}, for all ε > 0.
By (ii), we have {x ∈ X0 : ∃w ∈ F (x), s.t. w > r − ε} is convex, that is,

λx1 + (1− λ)x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w > r − ε}.

Since ε is arbitrary, then λx1 + (1− λ)x2 ∈ {x ∈ X0 : ∃w ∈ F (x), s.t. w ≥ r}. �
Now, we present a Ky Fan minimax inequality for a scalar set-valued mapping.

Theorem 3.2. Let X0 be a nonempty compact convex subset of X. Suppose that
the following conditions are satisfied:

(i) F : X0 ×X0 → 2R is a continuous set-valued mapping with compact values;
(ii) for any x ∈ X0, F (x, ·) is R+-quasiconcave on X0.
Then,

min
⋃
x∈X0

maxF (x,X0) ≤ max
⋃
x∈X0

F (x, x). (1)

Proof. By assumptions and Lemmas 2.3-2.5,

min
⋃
x∈X0

maxF (x,X0) 6= ∅ and max
⋃
x∈X0

F (x, x) 6= ∅.

Choose any real number t such that

t > max
⋃
x∈X0

F (x, x)

and let

A = {(x, y) ∈ X0 ×X0 : ∀z ∈ F (x, y), z ≤ t}.
We will prove that A satisfies all conditions of Theorem 2.11.

First, we show that for each y ∈ X0, the set {x ∈ X0 : (x, y) ∈ A} is a closed set.
Indeed, for each y ∈ X0, let xα ∈ {x ∈ X0 : (x, y) ∈ A} and xα → x0. By the l.s.c.
of F (·, y), for any z0 ∈ F (x0, y), there exists zα ∈ F (xα, y) such that zα → z0. Since
(xα, y) ∈ A for any α, we have that zα ≤ t. Thus,

x0 ∈ {x ∈ X0 : ∀z ∈ F (x, y), z ≤ t}

and hence {x ∈ X0 : (x, y) ∈ A} is closed.
Second, we show that for each x ∈ X0, the set {y ∈ X0 : (x, y) 6∈ A} is a convex

set. Indeed, by the assumption of A, we have that for each x ∈ X0,

{y ∈ X0 : (x, y) 6∈ A} = {y ∈ X0 : ∃z ∈ F (x, y), z > t}.

By the condition (ii) and Lemma 3.1, we see that {y ∈ X0 : (x, y) 6∈ A} is a convex
set.

Moreover, since maxF (x, x) ≤ max
⋃
x∈X0

F (x, x), it is clear that (x, x) ∈ A, for

each x ∈ X0. Then, by Theorem 2.11, there exists x0 ∈ X0 such that {x0}×X0 ⊂ A,
i.e.,

max
⋃
x∈X0

F (x0, x) ≤ t.
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By the assumption on t, we have

min
⋃
x∈X0

maxF (x,X0) ≤ max
⋃
x∈X0

F (x, x)

and hence (1) holds. This completes the proof. �

4. Ky Fan minimax inequalities for set-valued mappings

In this section, we present some Ky Fan minimax inequalities for set-valued map-
pings. Let F : X0 ×X0 → 2V and e ∈ intS, arbitrarily fixed.
Theorem 4.1. Let X0 be a nonempty compact convex subset of X. Suppose that
the following conditions are satisfied:

(i) F is continuous with compact values;
(ii) for any x ∈ X0, F (x, ·) is S-quasiconcave on X0.
Then,

Maxw

⋃
x∈X0

F (x, x) ⊂ Min
⋃
x∈X0

MaxwF (x,X0) + V \ (−intS). (2)

Proof. Since F is continuous and X0 is compact, it follows from Lemmas 2.4 and 2.5
that

Maxw

⋃
x∈X0

F (x, x) 6= ∅.

Let z ∈ Maxw

⋃
x∈X0

F (x, x). Then, we have

(z + intS)
⋂

(
⋃
x∈X0

F (x, x)) = ∅.

By Lemma 2.7 (i), we have

hez(u) ≤ 0, ∀u ∈
⋃
x∈X0

F (x, x). (3)

By the continuity of hez and F , and the compactness of X0, there exist x1 ∈ X0 and
z1 ∈ F (x1, x1) such that max

⋃
x∈X0

hez(F (x, x)) = hez(z1). Then, by Lemma 2.7

(iv), we have z1 ∈ Maxw

⋃
x∈X0

F (x, x) ⊂
⋃
x∈X0

F (x, x). By (3), we have

max
⋃
x∈X0

hez(F (x, x)) ≤ 0. (4)

Consider the set-valued mapping G = hez(F ) : X0 ×X0 → 2R. By Lemma 2.9, it is
clear that all conditions of Theorem 3.2 are satisfied for G, and hence we have

min
⋃
x∈X0

maxG(x,X0) ≤ max
⋃
x∈X0

G(x, x). (5)

By (4) and (5), min
⋃
x∈X0

maxhez(F (x,X0)) ≤ 0. Thus, there exists x′ ∈ X0 such

that max
⋃
y∈X0

hez(F (x′, y)) ≤ 0. Then, there exist y′ ∈ X0 and z′ ∈ F (x′, y′) such
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that hez(z
′) = max

⋃
y∈X0

hez(F (x′, y)) ≤ 0. Therefore, by Lemma 2.7 (i) and (iv),

we have z′ 6∈ z + intS and z′ ∈ Maxw

⋃
y∈X0

F (x′, y). We get

z ∈ z′ + V \ (−intS) ⊂ Maxw

⋃
y∈X0

F (x′, y) + V \ (−intS)

⊂ Min
⋃
x∈X0

MaxwF (x,X0) + S + V \ (−intS)

= Min
⋃
x∈X0

MaxwF (x,X0) + V \ (−intS).

Hence, (2) holds. This completes the proof. �
Remark 4.2. If F (x, ·) is S-concave for every x ∈ X0, then it is clear that F (x, ·) is
S-quasiconcave for every x ∈ X0. However, the converse is not valid. Thus, Theorem
4.1 of [32] is a special case of Theorem 4.1.
Example 4.3. Let X = R, V = R2, X0 = [0, 1], S = {(x, y)| x ≥ 0, y ≥ 0} and

M = {(u, 0) ∈ R2| − 1 ≤ u ≤ 1}. Let f : X0 ×X0 → R2 and F : X0 ×X0 → 2R
2

,

f(x, y) = (y, xy2)

and

F (x, y) = f(x, y) +M.

Obviously, F (x, ·) is S-quasiconcave on X0 for any x ∈ X0. Nevertheless, for any
x ∈ X0, F (x, ·) is not S-concave on X0. Therefore, Theorem 4.1 of [32] is not
applicable. However, all conditions of Theorem 4.1 hold. So, inclusion (2) holds.
Indeed, by simple computation,

Maxw

⋃
x∈X0

F (x, x) = {(u, 1)| 0 ≤ u ≤ 2}

and

Min
⋃
x∈X0

MaxwF (x,X0) = {(−1, 0)}.

Obviously,

Maxw

⋃
x∈X0

F (x, x) ⊂ Min
⋃
x∈X0

MaxwF (x,X0) + V \ (−intS).

Theorem 4.4. Let X0 be a nonempty compact convex subset of X. Suppose that
the following conditions are satisfied:

(i) F is continuous with compact values;
(ii) for any x ∈ X0, F (x, ·) is properly S-quasiconcave on X0.
Then,

Minw

⋃
x∈X0

MaxwF (x,X0) ⊂ Max
⋃
x∈X0

F (x, x) + V \ intS. (6)

Proof. Since F is continuous and X0 is compact, it follows from Lemmas 2.3-2.5 that

Minw

⋃
x∈X0

MaxwF (x,X0) 6= ∅.
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Let z ∈ Minw

⋃
x∈X0

MaxwF (x,X0). Then, we have

(z − intS)
⋂

(
⋃
x∈X0

MaxwF (x,X0)) = ∅.

By Lemma 2.7 (i), we have

ξez(u) ≥ 0, ∀u ∈
⋃
x∈X0

MaxwF (x,X0). (7)

By the continuity of ξez and F , and the compactness of X0, for each x ∈ X0, there
exist y1 ∈ X0 and z1 ∈ F (x, y1) such that max ξez(F (x,X0)) = ξez(z1). Then,
by Lemma 2.7 (iv), we have z1 ∈ MaxwF (x,X0) ⊂

⋃
x∈X0

MaxwF (x,X0). By (7),

max ξez(F (x,X0)) ≥ 0. It follows from the arbitrariness of x ∈ X0 that

min
⋃
x∈X0

max ξez(F (x,X0)) ≥ 0. (8)

Consider the set-valued mapping W = ξez(F ) : X0 ×X0 → 2R. By Lemma 2.9, it is
clear that all conditions of Theorem 3.2 are satisfied for W , and hence we have

min
⋃
x∈X0

maxW (x,X0) ≤ max
⋃
x∈X0

W (x, x). (9)

By (8) and (9), max
⋃
x∈X0

ξez(F (x, x)) ≥ 0. Thus, there exist x′ ∈ X0 and z′ ∈
F (x′, x′) such that ξez(z

′) ≥ 0. By Lemma 2.7 (i), z′ 6∈ z − intS. Thus, we have

z ∈ z′ + V \ intS ⊂
⋃
x∈X0

F (x′, x′) + V \ intS

⊂ Max
⋃
x∈X0

F (x, x)− S + V \ intS

= Max
⋃
x∈X0

F (x, x) + V \ intS.

Hence, (6) holds. This completes the proof. �
Theorem 4.5. Let X0 be a nonempty compact convex subset of X. Suppose that
the following conditions are satisfied:

(i) F is continuous with compact values;
(ii) for any x ∈ X0, F (x, ·) is properly S-quasiconcave on X0;
(iii) for each x ∈ X0,

Maxw

⋃
x∈X0

F (x, x)− F (x, x) ⊂ S.

Then,

Maxw

⋃
x∈X0

F (x, x) ⊂ Min
⋃
x∈X0

MaxwF (x,X0) + S. (10)

Proof. Since F is continuous and X0 is compact, it follows from Lemmas 2.3-2.5 that,

Min
⋃
x∈X0

MaxwF (x,X0) 6= ∅.



GENERALIZED KY FAN MINIMAX INEQUALITIES 617

Suppose that z ∈ V and z 6∈
⋃
x∈X0

MaxwF (x,X0) + S, i.e.,

(z − S)
⋂

(
⋃
x∈X0

MaxwF (x,X0)) = ∅.

By Lemma 2.7 (ii), we have

ξez(u) > 0, ∀u ∈
⋃
x∈X0

MaxwF (x,X0). (11)

By the continuity of ξez and F and the compactness of X0, for each x ∈ X0, there
exist y1 ∈ X0 and z1 ∈ F (x, y1) such that max

⋃
y∈X0

ξez(F (x, y)) = ξez(z1). By

Lemma 2.7 (iv), z1 ∈ Maxw

⋃
y∈X0

F (x, y) ⊂
⋃
x∈X0

MaxwF (x,X0). Therefore, by

(11), we have max
⋃
y∈X0

ξez(F (x, y)) > 0. Since x ∈ X0 is arbitrary, we have

min
⋃
x∈X0

max ξez(F (x,X0)) > 0. (12)

Consider the set-valued mapping W = ξez(F ) : X0 ×X0 → 2R. By Lemma 2.9, it is
clear that all conditions of Theorem 3.2 are satisfied for W , and hence we have

min
⋃
x∈X0

maxW (x,X0) ≤ max
⋃
x∈X0

W (x, x). (13)

By (12) and (13), max
⋃
x∈X0

ξez(F (x, x)) > 0. Then, there exist x′ ∈ X0 and

z′ ∈ F (x′, x′) such that ξez(z
′) > 0. By Lemma 2.7 (ii), we have

z′ 6∈ z − S. (14)

If z ∈ Maxw

⋃
x∈X0

F (x, x), then by the condition (iii) we have

F (x, x) ⊂ z − S, ∀x ∈ X0,

which contradicts (14). Thus, we have

z 6∈ Maxw

⋃
x∈X0

F (x, x).

Remembering that

Min
⋃
x∈X0

MaxwF (x,X0) + S ⊃
⋃
x∈X0

MaxwF (x,X0) + S.

Hence, (10) holds. This completes the proof. �
Remark 4.6. (i) Clearly, if V = R and S = R+, then condition (iii) of Theorem 4.5
always holds.

(ii) The following example is given to illustrate that condition (iii) in Theorem 4.5
is essential.
Example 4.7. Let X = R, V = R2, X0 = [0, 1] ⊂ X, S = {(x, y)|y ≥ |x|} and

M = {(u, 0)| − 1 ≤ u ≤ 1}. Let f : [0, 1]× [0, 1]→ R2 and F : [0, 1]× [0, 1]→ 2R
2

,

f(x, y) =

{
(x, 0), y ≤ x
(x, 2(y − x)), y ≥ x

and
F (x, y) = f(x, y) +M.
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Obviously, F is continuous with compact values and F (x, ·) is properly S-quasiconcave
for every x ∈ X0. For any x ∈ X0, we have

F (x, x) = f(x, x) +M = (x, 0) +M.

Then,

Maxw

⋃
x∈X0

F (x, x) = {(u, 0)| − 1 ≤ u ≤ 2}.

Take x0 = 0. Thus,

Maxw

⋃
x∈X0

F (x, x)− F (x0, x0) = {(u, 0)| − 2 ≤ u ≤ 3} 6⊂ S.

Obviously, all assumptions of Theorem 4.5 except for (iii) are satisfied. Moreover,

Min
⋃
x∈X0

MaxwF (x,X0) = {(u, 0)|0 ≤ u ≤ 2}.

Clearly,

Max
⋃
x∈X0

F (x, x) 6⊂ Min
⋃
x∈X0

MaxwF (x,X0) + S.

Hence, the condition (iii) in Theorem 4.5 is essential.
Theorem 4.8. Let X0 be a nonempty compact convex subset of X. Suppose that
the following conditions are satisfied:

(i) F is continuous with compact values;
(ii) for any x ∈ X0, F (x, ·) is S-quasiconcave on X0;
(iii) for each x ∈ X0,

Minw

⋃
x∈X0

MaxwF (x,X0) ⊂ MaxF (x,X0)− S.

Then,

Minw

⋃
x∈X0

MaxwF (x,X0) ⊂ Maxw

⋃
x∈X0

F (x, x)− S. (15)

Proof. Since F is continuous and X0 is compact, it follows from Lemmas 2.4 and 2.5
that,

Maxw

⋃
x∈X0

F (x, x) 6= ∅.

Suppose that z ∈ V and z 6∈ Maxw

⋃
x∈X0

F (x, x)− S, i.e.,

(z + S)
⋂

(Maxw

⋃
x∈X0

F (x, x)) = ∅.

By Lemma 2.7 (ii), we have

hez(u) < 0, ∀u ∈ Maxw

⋃
x∈X0

F (x, x). (16)
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By the continuity of hez and F and the compactness of X0, there exist x1 ∈ X0 and
z1 ∈ F (x1, x1) such that max

⋃
x∈X0

hez(F (x, x)) = hez(z1). By Lemma 2.7 (iv),

z1 ∈ Maxw

⋃
x∈X0

F (x, x). Therefore, by (16), we have

max
⋃
x∈X0

hez(F (x, x)) < 0. (17)

Consider the set-valued mapping G = hez(F ) : X0 ×X0 → 2R. By Lemma 2.9, it is
clear that all conditions of Theorem 3.2 are satisfied for G, and hence we have

min
⋃
x∈X0

maxG(x,X0) ≤ max
⋃
x∈X0

G(x, x). (18)

By (17) and (18), min
⋃
x∈X0

maxhez(F (x,X0)) < 0. There exists x1 ∈ X0 such that

maxhez(F (x1, X0)) < 0. By Lemma 2.7 (ii),

z 6∈ z1 − S, ∀z1 ∈ F (x1, X0).

Hence, we have
z 6∈ MaxF (x1, X0)− S. (19)

If z ∈ Minw

⋃
x∈X0

MaxwF (x,X0), then by the condition (iii) we have

z ∈ MaxF (x,X0)− S, ∀x ∈ X0,

which contradicts (19). Thus, we have

z 6∈ Minw

⋃
x∈X0

MaxwF (x,X0).

Hence, (15) holds. This completes the proof. �
Remark 4.9. Clearly, if V = R and S = R+, then condition (iii) of Theorem 4.8
always holds.
Remark 4.10. In [31, 32], some similar Ky Fan minimax inequalities for set-valued
mappings are also obtained. However, our proof methods are different from their
ones.
Theorem 4.11. Let X be a real locally convex Hausdorff topological vector space.
Let X0 be a nonempty compact convex subset of X. Suppose that the following
conditions are satisfied:

(i) F is continuous with compact values;
(ii) for any x ∈ X0, F (x, ·) is S-quasiconcave on X0.
Then,

∃ z1 ∈ Max
⋃
x∈X0

F (x, x) and ∃ z2 ∈ Min
⋃
x∈X0

MaxwF (x,X0)

such that
z1 ∈ z2 + S. (20)

Proof. Let a ∈ V . We define a multifunction T : X0 → 2X0 by the formula

T (x) = {y ∈ X0 : maxhea(F (x,X0)) ∈ hea(F (x, y))}, for x ∈ X0.

First, by the continuity of hea and F and the compactness of X0, it is clear that
T (x) 6= ∅, for each x ∈ X0.
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Second, we show that T (x) is a closed set, for each x ∈ X0. Indeed, for each x ∈ X0,
let a net {yα : α ∈ I} ⊂ T (x) and yα → y0. Since hea(F (x, yα)) ⊂ hea(F (x,X0))
∀α, maxhea(F (x,X0)) = maxhea(F (x, yα)). By Lemma 2.10, maxhea(F (x, ·)) is
a continuous real-valued function. Then, maxhea(F (x,X0)) = maxhea(F (x, y0)).
Thus, maxhea(F (x,X0)) ∈ hea(F (x, y0)). We have

y0 ∈ T (x) = {y ∈ X0 : maxhea(F (x,X0)) ∈ hea(F (x, y))}
and hence for each x ∈ X0, T (x) is a closed set.

Next, we show that T (x) is a convex set, for each x ∈ X0. Indeed, for each x ∈ X0,
let y1, y2 ∈ T (x) and λ ∈ [0, 1]. By the condition (ii) and Lemma 2.9, there exists
z0 ∈ hea(F (x, λy1+(1−λ)y2)) such that z0 ≥ maxhea(F (x,X0)). Since hea(F (x, λy1+
(1 − λ)y2)) ⊂ hea(F (x,X0)), z0 ≤ maxhea(F (x,X0)). Thus, maxhea(F (x,X0)) =
z0 ∈ hea(F (x, λy1 + (1− λ)y2)), i.e.,

λy1 + (1− λ)y2 ∈ T (x) = {y ∈ X0 : maxhea(F (x,X0)) ∈ hea(F (x, y))}
and hence for each x ∈ X0, T (x) is a convex set.

Now, we prove that T is u.s.c. on X0. Since X0 is compact, we only need to show
that T is a closed map (see [1]). Let a net

{(xα, yα)} ⊂ GraphT := {(x, y) ∈ X0 ×X0 : maxhea(F (x,X0)) ∈ hea(F (x, y))}
and (xα, yα)→ (x0.y0).

Since hea(F (xα, yα)) ⊂ hea(F (xα, X0)) ∀α,

maxhea(F (xα, X0)) = maxhea(F (xα, yα)).

By Lemmas 2.3 and 2.10, maxhea(F (·, X0)) and maxhea(F (·, ·)) are two contin-
uous real-valued functions. Then, maxhea(F (x0, X0)) = maxhea(F (x0, y0)). Thus,
maxhea(F (x0, X0)) ∈ hea(F (x0, y0)), i.e., (x0, y0) ∈ GraphT . Hence, T is u.s.c..

Then, by Theorem 2.12, there exists x0 ∈ X0 such that x0 ∈ T (x0), i.e.,

maxhea(F (x0, X0)) ∈ hea(F (x0, x0)).

Let z ∈ F (x0, x0) be such that

hea(z) = maxhea(F (x0, X0)).

By Lemma 2.7 (iv), z ∈ MaxwF (x0, X0), i.e.,

F (x0, x0)
⋂

MaxwF (x0, X0) 6= ∅.

Then, by assumptions and Lemma 2.5, we have that

F (x0, x0) ⊂ Max
⋃
x∈X0

F (x, x)− S

and

MaxwF (x0, X0) ⊂ Min
⋃
x∈X0

MaxwF (x,X0) + S.

Namely, for every u ∈ F (x̄, x̄) and v ∈ Maxw
⋃
y∈X0

F (x̄, y), there exist z1 ∈
Max

⋃
x∈X0

F (x, x) and z2 ∈ Min
⋃
x∈X0

MaxwF (x,X0) such that

u ∈ z1 − S and v ∈ z2 + S.
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Particularly, taking u = v, we have z1 ∈ z2 + S. This completes the proof. �
Remark 4.12. If F (x, ·) is properly S-quasiconcave for every x ∈ X0, then it is clear
that F (x, ·) is S-quasiconcave for every x ∈ X0. However, the converse is not valid.
Thus, Theorem 3.1 of [31] is a special case of Theorem 4.11.
Example 4.13. Let X = R, V = R2, X0 = [−1, 1], S = R2

+ and M = {(u, 0)| − 1 ≤
u ≤ 1}. Let f : X0 ×X0 → R2 and F : X0 ×X0 → 2R

2

,

f(x, y) = {(x(y, z))|z =
√

1− y2}
and

F (x, y) = f(x, y) +M.

Obviously, f(x, ·) is S-quasiconcave on X0 for any x ∈ X0. Nevertheless, for any
x ∈ X0, f(x, ·) is not properly S-quasiconcave on X0. Therefore, Theorem 3.1 of [31]
is not applicable. However, by simple computation,

Min
⋃
x∈X0

MaxwF (x,X0) = {(u, 0)| − 1 ≤ u ≤ 2}

and

Max
⋃
x∈X0

F (x, x) = {(u, 1

2
)| − 1

2
≤ u ≤ 3

2
}

Thus, taking (−1, 0) ∈ Min
⋃
x∈X0

MaxwF (x,X0) and (0, 12 ) ∈ Max
⋃
x∈X0

F (x, x),

(0,
1

2
) ∈ (−1, 0) + S.

Remark 4.14. When F is a real-valued function and S = R+, the minimax in-
equalities (1),(2),(6),(10) (15) and (20) reduce to the well-known Ky Fan minimax
inequality, respectively.
Acknowledgement. The authors are grateful to the anonymous referees for their
valuable comments and suggestions, which improved the paper.

References

[1] J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York 1984.
[2] S.S. Chang, G.M. Lee, B.S. Lee, Minimax inequalities for vector-valued mappings on W-spaces,

J. Math. Anal. Appl., 198(1996), 371-380.

[3] G.Y. Chen, A generalized section theorem and a minimax inequality for a vector-valued map-
ping, Optimization, 22(1991), 745-754.

[4] G.Y. Chen, X.X. Huang, X.Q. Yang, Vector Optimization, Set-Valued and Variational Analal-

ysis, Springer, Berlin, Heidelberg 2005.
[5] Y.J. Cho, S.S. Chang, J.S. Jung, S.M. Kang, X. Wu, Minimax theorems in probabilistic metric

spaces, Bull. Austral. Math. Soc., 51(1995), 103-119.

[6] Y.J. Cho, M.R. Delavar, S.A. Mohammadzadeh, M. Roohi, Coincidence theorems and minimax
inequalities in abstract convex spaces, J. Inequal. Appl., 2011(2011), 1-14.

[7] K. Fan, A generalization of Tychondff’s fixed point theorem, Math. Ann., 142(1961), 305-310.

[8] K. Fan, A minimax inequality and applications, In: Sisha (ed.) Inequalities, vol. 3, Academic
Publ., New York 1972, 103-113.

[9] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc.
Nat. Acad. Sci. U.S.A., 38(1952), 121-126.

[10] F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl., 60(1989),

19-31.



622 Y. ZHANG AND S.J. LI

[11] F. Ferro, A minimax theorem for vector-valued functions, Part 2, J. Optim. Theory Appl.,
68(1991), 35-48.

[12] C. Gerstewitz, Nichtkonvexe trennungssätze und deren anwendung in der theorie der vek-

toroptimierung, Seminarberichte der Secktion Mathematik der Humboldt-Universität zu Berlin,
80(1986), 19-31.

[13] C. Gerth, P. Weidner, Nonconvex separation theorems and some applications in vector opti-

mization, J. Optim. Theory Appl., 67(1990), 297-320.
[14] X.H. Gong, The strong minimax theorem and strong saddle points of vector-valued functions,

Nonlinear Anal., 68(2008), 2228-2241.
[15] C.W. Ha, On a minimax inequality of Ky Fan, Proc. Amer. Math. Soc., 99(1987), 680-682.

[16] C.W. Ha, Minimax and fixed point theorems, Math. Ann., 248(1980), 73-77.

[17] J. Jahn, Vector Optimization: Theory, Applications and Extensions, Springer, Berlin, Germany
2004.

[18] S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J., 8(1941), 457-

459.
[19] X.B. Li, S.J. Li, Z.M. Fang, A minimax theorem for vector valued functions in lexicographic

order, Nonlinear Anal., 73(2010), 1101-1108.

[20] S.J. Li, G.Y. Chen, G.M. Lee, Minimax theorems for set-valued mappings, J. Optim. Theory
Appl. 106(2000), 183-200.

[21] S.J. Li, G.Y. Chen, K.L. Teo, X.Q. Yang, Generalized minimax inequalities for set-valued map-

pings, J. Math. Anal. Appl., 281(2003), 707-723.
[22] Z.F. Li, S.Y. Wang, A type of minimax inequality for vector-valued mappings, J. Math. Anal.

Appl. 227(1998), 68-80.

[23] D.T. Luc, C. Vargas, A saddle point theorem for set-valued maps, Nonlinear Anal., 18(1992),
1-7.

[24] X.Q. Luo, On some generalized Ky Fan minimax inequalities, Fixed Point Theory Appl.,
2009(2009), 1-9.

[25] J.W. Nieuwenhuis, Some minimax theorems in vector-valued functions, J. Optim. Theory Appl.,

40(1983), 463-475.
[26] S. Park, The Fan minimax inequality implies the Nash equilibrium theorem, Appl. Math. Lett.,

24(2011), 2206-2210.

[27] K.K. Tan, J. Yu, X.Z. Yuan, Existence theorems for saddle points of vector-valued maps, J.
Optim. Theory Appl., 89(1996), 731-747.

[28] T. Tanaka, Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-

valued functions, J. Optim. Theory Appl., 81(1994), 355-377.
[29] M.G. Yang, J.P. Xu, N.J. Huang, S.J. Yu, Minimax theorems for vector-valued mappings in

abstract convex spaces, Taiwanese J. Math., 14(2010), 719-732.

[30] C.L, Yen, A minimax inequality and its applications to variational inequalities, Pacific J. Math.,
97(1981), 477-481.

[31] Y. Zhang, S.J. Li, Ky Fan minimax inequalities for set-valued mappings, Fixed Point Theory
Appl., 2012(2012) 1-12.

[32] Y. Zhang, S.J. Li, M.H. Li, Minimax inequalities for set-valued mappings, Positivity, 16(2012),

751-770.
[33] J.H. Zhang, R. Ma, Minimax inequalities of Ky Fan, Appl. Math. Lett., 6(1998), 37-41.

Received: October 26, 2012; Accepted: February 18, 2013


