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1. Introduction

A metric space (X, d) is said to be of hyperbolic type if there exists a family L
of metric segments, that is, isometric images of real line segments, such that the
following conditions hold:

• for each x, y ∈ X there exists exactly one member S[x, y] ∈ L, we also let
S[x, y] := {αx⊕(1−α)y ∈ X : α ∈ [0, 1]} where d(αx⊕(1−α)y, y) = αd(x, y);
• for x, y, z ∈ X and α ∈ [0, 1]

d(αx⊕ (1− α)z, αy ⊕ (1− α)z) ≤ αd(x, y).

Clearly, every normed space is a metric space of hyperbolic type. Moreover, CAT(0)
spaces (the precise definition will be given below) is of hyperbolic type.

To prove some strong convergence theorems of the modified Halpern iterations,
Panyanak and Cuntavepanit [9] proved the following generalization of Suzuki’s lemma:

Lemma 1.1. Let {zn}, {wn} and {vn} be bounded sequences in a metric space (X, d)
of hyperbolic type and let {αn} be a sequence in [0, 1] with 0 < lim infn→∞ αn ≤
lim supn→∞ αn < 1. If limn→∞ d(zn, vn) = 0, zn+1 = αnwn ⊕ (1 − αn)vn for all
n ∈ N and lim sup→∞(d(wn+1, wn)− d(zn+1, zn)) ≤ 0, then limn→∞ d(wn, zn) = 0.

It is obvious that Lemma 1.1 =⇒ Suzuki’s lemma (see [12]).
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Lemma 1.2 (Suzuki’s lemma). Let {xn} and {yn} be bounded sequences in a
metric space (X, d) of hyperbolic type and let {αn} be a sequence in [0, 1] with
0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. If xn+1 = αnyn ⊕ (1 − αn)xn for all
n ∈ N and lim supn→∞(d(yn+1, yn)− d(xn+1, xn)) ≤ 0, then limn→∞ d(yn, xn) = 0.

Panyanak and Cuntavepanit gave the proof of Lemma 1.1 by following the idea of
Suzuki’s lemma and their proof is very long (it occupies more than 4 pages). Here we
present a simple and short proof. In fact, we have Suzuki’s lemma =⇒ Lemma 1.1.

Our proof needs the following lemma, known as Xu’s lemma for sequences of real
numbers (see [13]):

Lemma 1.3 (Xu’s lemma). If {sn}, {tn} and {αn} are sequences of real numbers
such that the following hold:

• sn ≥ 0 and sn+1 = (1− αn)sn + αntn for all n ∈ N;
• αn ∈ [0, 1] for all n ∈ N and

∑∞
n=1 αn =∞;

• lim supn→∞ tn ≤ 0,

then limn→∞ sn = 0.

A short and simple proof of Lemma 1.1. Let {zn}, {wn} and {vn} be bounded se-
quences satisfying the conditions in Lemma 1.1. Define {xn} by x1 = z1 and
xn+1 := αnwn ⊕ (1− αn)xn for all n ≥ 1. It follows then that

d(zn+1, xn+1) = d(αnwn ⊕ (1− αn)vn, αnwn ⊕ (1− αn)xn)

≤ (1− αn)d(vn, xn)

≤ (1− αn)d(zn, xn) + (1− αn)d(vn, zn)

= (1− αn)d(zn, xn) + αn
(1− αn)d(vn, zn)

αn
.

Set sn ≡ d(zn, xn) and tn ≡ (1−αn)d(vn,zn)
αn

and apply Xu’s lemma to get that

limn→∞ d(zn, xn) = 0. On the other hand, we apply Suzuki’s lemma for the se-
quences {xn} and {wn}. Since lim sup→∞(d(wn+1, wn) − d(zn+1, zn)) ≤ 0 and
limn→∞ d(zn, xn) = 0, we have

lim sup
n→∞

(d(wn+1, wn)− d(xn+1, xn))

≤ lim sup
n→∞

(d(wn+1, wn)− d(zn+1, zn))

+ lim sup
n→∞

(d(zn+1, zn)− d(xn+1, xn))

≤ lim sup
n→∞

(d(zn+1, xn+1) + d(zn, xn)) = 0.

We then conclude that limn→∞ d(wn, xn) = 0. Consequently,

lim
n→∞

d(wn, zn) ≤ lim
n→∞

(d(wn, xn) + d(xn, zn)) = 0.

This completes the proof. �

CAT(0) spaces are an example of metric spaces of hyperbolic type. Let us recall
the precise definition of CAT(0) spaces.
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Let (X, d) be a metric space and x, y ∈ X with l = d(x, y). A geodesic path from
x to y is an isometry c : [0, l] → X such that c(0) = x and c(l) = y. The image of a
geodesic path is called a geodesic segment. A metric space X is a (uniquely) geodesic
space if every two points of X are joined by only one geodesic segment. A geodesic
triangle 4(x1, x2, x3) in a geodesic space X consists of three points x1, x2, x3 of X
and three geodesic segments joining each pair of vertices. A comparison triangle of
a geodesic triangle 4(x1, x2, x3) is the triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the
Euclidean space R2 such that d(xi, xj) = dR2(xi, xj) for all i, j = 1, 2, 3.

A geodesic space X is a CAT(0) space if for each geodesic triangle 4 :=
4(x1, x2, x3) in X and its comparison triangle 4 := 4(x1, x2, x3) in R2, the CAT(0)
inequality

d(x, y) ≤ dR2(x, y)

is satisfied by all x, y ∈ 4 and x, y ∈ 4. The meaning of the CAT(0) inequality
is that a geodesic triangle in X is at least thin as its comparison triangle in the
Euclidean plane. A thorough discussion of these spaces and their important role in
various branches of mathematics are given in [2] and [3]. The complex Hilbert ball
with the hyperbolic metric is an example of a CAT(0) space (see [5]).

Lemma 1.4. For elements x, y and z in a CAT(0) space and t ∈ [0, 1], the following
inequality holds:

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y).

2. Main results

We next give two remarks on the strong convergence theorem of modified Halpern
iterations in CAT(0) spaces. Recall that a subset C of a CAT(0) space is convex
if it contains all geodesic segments joining any two points in C; and T : C → C
is nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C. For more detail on fixed
point theory for nonexpansive mappings in CAT(0) spaces, we refer the reader to two
interesting surveys by Kirk [6, 7]. The following result was proved by Cuntavepanit
and Panyanak (see [4, Theorem 3.1]).

Theorem 2.1. Let C be a closed and convex subset of a complete CAT(0) space and
let T : C → C be a nonexpansive mapping with F (T ) := {x ∈ C : x = Tx} 6= ∅.
Suppose that {αn} and {λn} are sequences on [0, 1] such that

(A1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(A2)
∑∞
n=1 |αn+1 − αn| <∞;

(A3) limn→∞ λn = 0 and
∑∞
n=1 |λn+1 − λn| <∞.

If u ∈ C and {xn} is iteratively defined by x1 ∈ C and

xn+1 = αnu⊕ (1− αn)(λnxn ⊕ (1− λn)Txn),

then the sequence {xn} converges to z ∈ F (T ) which is the nearest point of F (T ) to
u.

First, we show that Theorem 2.1 can regarded as a consequence of the recent result
proved by the author (see [10, Theorem 3.2]). Let us recall the following concept
introduced by Aoyama et al. [1]. For a subset C of a complete CAT(0) space, let
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{Tn}∞n=1 be a countable family of mappings from C into itself. We say that a family
{Tn} satisfies AKTT-condition if

∞∑
n=1

sup{d(Tn+1z, Tnz) : z ∈ B} <∞

for each bounded subset of B of C. In this case, for each x ∈ C, it follows that {Tnx}
is a Cauchy sequence in C. In particular, if C is a closed subset and {Tn} satisfies
AKTT-condition, then we can define T : C → C such that

Tx = lim
n→∞

Tnx (x ∈ C).

In this case, we also say that ({Tn}, T ) satisfies AKTT-condition.

Theorem 2.2. Let X be a complete CAT(0) space and C a closed convex subset
of X. Let {Tn} : C → C be a countable family of nonexpansive mappings with
∩∞n=1F (Tn) 6= ∅. Suppose that u, x1 ∈ C are arbitrarily chosen and {xn} is defined
by

xn+1 = αnu⊕ (1− αn)Tnxn for all n ≥ 1,

where {αn} is a sequence in (0, 1) satisfying

(A1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(A2’)
∑∞
n=1 |αn − αn+1| <∞ or limn→∞

αn

αn+1
= 1.

Suppose, in addition, that

(M1) ({Tn}, T ) satisfies AKTT-condition;
(M2) F (T ) = ∩∞n=1F (Tn).

Then {xn} converges to z ∈ ∩∞n=1F (Tn) which is nearest u.

Remark 2.3. Theorem 2.1 with an even weaker assumption can be proved as a corol-
lary of Theorem 2.2. In fact, Theorem 2.1 holds under the following assumption:

(A1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(A2’)
∑∞
n=1 |αn − αn+1| <∞ or limn→∞

αn

αn+1
= 1;

(A3’) limn→∞ λn < 1 and
∑∞
n=1 |λn+1 − λn| <∞.

To see this, let us define each mapping Tn : C → C by

Tnx := λnx⊕ (1− λn)Tx (x ∈ C).

In the presence of (A3’), let λ = limn→∞ λn ∈ [0, 1) and define T̃ : C → C by

T̃ x := λx⊕ (1− λ)Tx (x ∈ C).

Note that

• d(Tn+1x, Tnx) = |λn+1 − λn|d(x, Tx) for all x ∈ C and n ∈ N;

• F (Tn) = F (T ) = F (T̃ ) for all n ∈ N.

It follows then that

(M1) ({Tn}, T̃ ) satisfies AKTT-condition;

(M2) F (T̃ ) = ∩∞n=1F (Tn).

Note that (A3) =⇒ (A3’) and if λn ≡ 1/2, then this lies beyond the scope of
Theorem 2.1.
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Secondly, we prove the following result which supplements Theorem 2.1. Note that
if λ2n−1 ≡ 1/3 and λ2n ≡ 2/3, then the condition (A3’) (and hence (A3)) is not
satisfied, that is, our result cannot be obtained from Theorem 2.1.

Theorem 2.4. The conclusion of Theorem 2.1 holds under the following assumptions:

(A1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(A3”) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1.

To prove Theorem 2.4, we need the following two lemmas. The first is proved
by the author in [10] and the second by Maingé in [8]. It should be noted that the
original proof of Lemma 2.5 makes use of Banach limits. However, following the same
proof, we can use the superior limit as well.

Lemma 2.5. Let C be a closed convex subset of a complete CAT(0) space X and
T : C → C be a nonexpansive mapping. Let u ∈ C be fixed. For each t ∈ (0, 1), the
mapping St : C → C defined by

Stx = tu⊕ (1− t)Tx for x ∈ C
has a unique fixed point xt ∈ C, that is,

xt = Stxt = tu⊕ (1− t)Txt. (2.1)

Then F (T ) 6= ∅ if and only if {xt} given by the formula (2.1) remains bounded as
t→ 0. In this case, the following statements hold:

(1) {xt} converges to z ∈ F (T ) which is nearest u;
(2) lim supn→∞(d2(u, z) − d2(u, xn)) ≤ 0 for all bounded sequences {xn} with

d(xn, Txn)→ 0.

Lemma 2.6. If {sn} is a sequence of real numbers and there exists a subsequence
{snk
} such that snk

< snk+1 for all k ∈ N, then there exists a nondecreasing sequence
{mk} of natural numbers such that limk→∞mk =∞ and the following two inequalities

smk
≤ smk+1 and sk ≤ smk+1

hold for all k ∈ N.

Proof of Theorem 2.4. The proof given here is adapted from the the recent result of
the author [11]. Let z be the nearest point of F (T ) to u. We consider the following
inequalities:

d2(xn+1, z) ≤ αnd2(u, z) + (1− αn)d2(λnxn ⊕ (1− λn)Txn, z)

− αn(1− αn)d2(λnxn ⊕ (1− λn)Txn, u)

≤ αnd2(u, z) + (1− αn)[λnd
2(xn, z) + (1− λn)d2(Txn, z)

− λn(1− λn)d2(Txn, xn)]

− αn(1− αn)d2(λnxn ⊕ (1− λn)Txn, u)

≤ αnd2(u, z) + (1− αn)d2(xn, z)

− λn(1− λn)(1− αn)d2(Txn, xn)

− αn(1− αn)d2(λnxn ⊕ (1− λn)Txn, u).
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First, we observe that

d2(xn+1, z) ≤ αnd2(u, z) + (1− αn)d2(xn, z)

≤ max{d2(u, z), d2(xn, z)}.
By induction, we conclude that {xn} is a bounded sequence.

Next, we consider the following two cases:
Case 1: There exists an integer N such that d2(xn+1, z) ≤ d2(xn, z) for all n ≥ N .

In particular, limn→∞ d2(xn, z) exists and hence

lim
n→∞

(d2(xn, z)− d2(xn+1, z)) = 0.

Note that

λn(1− λn)(1− αn)d2(Txn, xn)

≤ αnd2(u, z) + (1− αn)d2(xn, z)− d2(xn+1, z).

It follows from limn→∞ αn = 0 that

lim
n→∞

λn(1− λn)d2(Txn, xn) = 0.

In the light of (A3”), we have

lim
n→∞

d2(Txn, xn) = 0.

Consequently, by Lemma 2.5, we have

lim sup
n→∞

(d2(u, z)− d2(u, xn)) ≤ 0. (2.2)

Note that

d2(xn+1, z) ≤ (1− αn)d2(xn, z)

+ αn(d2(u, z)− (1− αn)d2(λnxn ⊕ (1− λn)Txn, u))

and, by (2.2),

lim sup
n→∞

(d2(u, z)− (1− αn)d2(λnxn ⊕ (1− λn)Txn, u))

= lim sup
n→∞

(d2(u, z)− d2(u, xn)) ≤ 0.

It follows then from Xu’s lemma that limn→∞ d2(xn, z) = 0.
Case 2: There exists a subsequence {nk} ⊂ {n} such that d2(xnk+1, z) > d2(xnk

, z)
for all k ∈ N. Using Lemma 2.6, we can find a nondecreasing sequence {mk} of natural
numbers such that limk→∞mk =∞ and the following two inequalities hold:

d2(xmk
, z) ≤ d2(xmk+1, z) for all k ∈ N, (2.3)

d2(xk, z) ≤ d2(xmk+1, z) for all k ∈ N. (2.4)

It follows from (2.3) that

d2(xmk
, z) ≤ d2(xmk+1, z)

≤ αmk
d2(u, z) + (1− αmk

)d2(xmk
, z)

− λmk
(1− λmk

)(1− αmk
)d2(Txmk

, xmk
).
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As limn→∞ αn = 0 and (A3”), we can conclude that

lim
k→∞

d2(Txmk
, xmk

) = 0.

Consequently, by Lemma 2.5, we have

lim sup
k→∞

(d2(u, z)− d2(u, xmk
)) ≤ 0. (2.5)

Again, in the presence of (2.3), we also have

d2(xmk+1, z) ≤ αmk
d2(u, z) + (1− αmk

)d2(xmk
, z)

− αmk
(1− αmk

)d2(λmk
xmk
⊕ (1− λmk

)Txmk
, u)

≤ αmk
d2(u, z) + (1− αmk

)d2(xmk+1, z)

− αmk
(1− αmk

)d2(λmk
xmk
⊕ (1− λmk

)Txmk
, u).

In particular, since αmk
> 0,

d2(xmk+1, z) ≤ d2(u, z)− (1− αmk
)d2(λmk

xmk
⊕ (1− λmk

)Txmk
, u).

It follows then from (2.4) and (2.5) that

lim sup
k→∞

d2(xk, z)

≤ lim sup
k→∞

d2(xmk+1, z)

≤ lim sup
k→∞

(d2(u, z)− (1− αmk
)d2(λmk

xmk
⊕ (1− λmk

)Txmk
, u))

= lim sup
k→∞

(d2(u, z)− d2(λmk
xmk
⊕ (1− λmk

)Txmk
, u))

= lim sup
k→∞

(d2(u, z)− d2(u, xmk
)) ≤ 0.

This completes the proof. �
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