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Abstract. In this paper, we first prove weak and strong convergence theorems for Ishikawa and
Halpern iterations of 2-generalized hybrid mappings in uniformly convex Banach spaces and we ap-

ply our method to provide an affirmative answer to an open problem raised by Hojo, Takahashi and

Termwuttipong [Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces,
Nonlinear Analysis, 75 (2012) 2166-2176]. We then extend the results to CAT(0) spaces, which

include especially simply connected complete Riemannian manifolds with nonpositive sectional cur-

vature. Our results improve and generalize some known results in the current literature.
Key Words and Phrases: 2-generalized hybrid mapping, fixed point, uniformly convex Banach

space, CAT(0) spaces, Riemannian manifolds, weak convergence, strong convergence.

2010 Mathematics Subject Classification: 47H10, 37C25.

1. Introduction

Throughout this paper, we denote the set of real numbers, the set of nonnegative
real numbers, the set of negative real numbers and the set of positive integers by
R, R+, R− and N, respectively. Let E be a (real) Banach space and let C be a
nonempty subset of E. Let T : C → E be a mapping. We denote by F (T ) the set of
fixed points of T , i.e., F (T ) = {x ∈ C : Tx = x}. A mapping T : C → E is said to
be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A mapping T : C → E is
said to be quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ C and
y ∈ F (T ).

The concept of nonexpansivity plays an important role in the study of Mann-type
iteration for finding fixed points of a mapping T : C → C. Recall that the Mann-type
iteration is given by the following formula

xn+1 = γnTxn + (1− γn)xn, x1 ∈ C. (1.1)
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Here, {γn}n∈N is a real sequence in [0, 1] satisfying some appropriate conditions. A
more general iteration scheme is the Ishikawa iteration, given by x1 ∈ C chosen arbitrarily,

yn = λnTxn + (1− λn)xn,
xn+1 = γnTyn + (1− γn)xn,

(1.2)

where the sequences {λn}n∈N and {γn}n∈N satisfy some appropriate conditions. In
particular, when all λn = 0, the Ishikawa iteration (1.2) becomes the standard Mann
iteration (1.1). Recall that the one-step Halpern iteration is given by the following
formula

xn+1 = αnu+ (1− αn)Txn, u ∈ C, x1 ∈ C. (1.3)

Here, {αn}n∈N is a real sequence in [0, 1] satisfying some appropriate conditions. A
more general iteration scheme of one-step Halpern iteration is the two-step Halpern
iteration given by  u ∈ C, x1 ∈ C chosen arbitrarily,

yn = (1− βn)xn + βnTxn,
xn+1 = αnu+ (1− αn)yn,

(1.4)

where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. In
particular, when all βn = 1, the Halpern iteration (1.4) becomes the standard Halpern
iteration (1.3). When all αn = 0, the Halpern iteration (1.4) becomes the standard
Mann iteration (1.1).

The construction of fixed points of nonexpansive mappings via Mann’s algorithm
[22] has been extensively investigated recently in the current literature (see, for ex-
ample, [26] and the references therein). Numerous results have been proved on Mann
and Halpern’s iterations for nonexpansive mappings in Hilbert and Banach spaces
(see, e.g., [16, 33, 28]).

In 1998, Takahashi and Kim [30] proved the following interesting result.

Theorem 1.1. Let C be a nonempty, closed and convex subset of a uniformly con-
vex Banach space E which satisfies the Opial property, and let T be a nonexpansive
mapping of C into itself. Let, for any initial data x1 in C, the iterates {xn}n∈N be
defined by (1.2) such that λn ∈ [0, b] and γn ∈ [a, b], or λn ∈ [a, b] and γn ∈ [a, 1], for
some a, b with 0 < a ≤ b < 1. Then the sequence {xn}n∈N converges weakly to a fixed
point of T .

Let C be a nonempty subset of a real Banach space E. Following Hojo, Takahashi
and Termwuttipong [17], a mapping T : C → E is said to be
(1) generalized hybrid if there exist α, β ∈ R such that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2, ∀x, y ∈ C.

(2) 2-generalized hybrid or (α1, α2, β1, β2)-generalized hybrid if there exist α1, α2, β1,
β2 ∈ R such that

α1‖T 2x− Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2
≤ β1‖T 2x− y‖2 + β2‖Tx− y‖2 + (1− β1 − β2)‖x− y‖2, ∀x, y ∈ C.

Clearly, (0, 1, 1, 1)-generalized hybrid maps are exactly nonexpansive maps.
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Let C be a nonempty, closed and convex subset of a Hilbert space H and x ∈ H.
Then there exists a unique nearest point z ∈ C such that ‖x−z‖ = infy∈C ‖x−y‖. We
denote such correspondence by z = PCx. The mapping PC is called metric projection
of H onto C.
Recently, Hojo, Takahashi and Termwuttipong [17] proved the following fixed point
theorem for 2-generalized hybrid mappings in a Hilbert space.

Theorem 1.2. ([17]) Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let T : C → C be a 2-generalized hybrid mapping with F (T ) 6= ∅. Suppose
that {xn}n∈N is a sequence generated by x1 = x ∈ C, u ∈ C and

xn+1 = γnu+ (1− γn)
1

n

n−1∑
k=0

T kxn, ∀n ∈ N, (1.4)

where 0 ≤ γn ≤ 1, limn→∞ γn = 0 and
∑∞
n=1 γn = ∞. Then {xn}n∈N converges

strongly to PF (T )u, where PF (T ) is metric projection of H onto F (T ).
Hojo, Takahashi and Termwuttipong investigated strong convergence theorems for

2-generalized hybrid mappings and posed the following open question in their final
remark of [17, Section 3].

Question 1.1. Is there any strong convergence theorem of Halpern’s type for 2-
generalized hybrid mappings in a real Hilbert space H?

We know that the assumption γn → 0 as n→∞ in iterations (1.1) and (1.2) will
weaken the action of operator T . So, we are interested in imposing other assumptions
on the parameter γn so that the sequence {xn}n∈N converges strongly to a fixed
point of T . This is the main motivation of this paper to study fixed point theorems
of 2-generalized hybrid mappings in the framework of Banach spaces. In the present
paper, we first prove weak and strong convergence theorems for Ishikawa and Halpern
iterations of 2-generalized hybrid mappings in uniformly convex Banach spaces and we
apply our method to provide an affirmative answer to question 1.1. We then extend
the results to CAT(0) spaces, which include as an important special case the simply
connected complete Riemannian manifolds with nonpositive sectional curvature. Our
results improve and generalize some known results in the current literature, see for
example [17, 30].

2. Preliminaries

Let E be a Banach space with the norm ‖.‖ and the dual space E∗. The modulus
δ of convexity of E is denoted by

δ(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. Let SE = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ SE , the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)
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exists. In this case, E is called smooth. If the limit (2.1) is attained uniformly in
x, y ∈ SE , then E is called uniformly smooth. The Banach space E is said to be
strictly convex if ‖x+y2 ‖ < 1 whenever x, y ∈ SE and x 6= y. It is well known that E
is uniformly convex if and only if E∗ is uniformly smooth. It is also known that if
E is reflexive, then E is strictly convex if and only if E∗ is smooth; for more details,
see [29]. Let E be a Banach space with the norm ‖.‖ and the dual space E∗. When
{xn}n∈N is a sequence in E, we denote the strong convergence of {xn}n∈N to x ∈ E
by xn → x and the weak convergence by xn ⇀ x. For any sequence {x∗n}n∈N in
E∗, we denote the strong convergence of {x∗n}n∈N to x∗ ∈ E∗ by x∗n → x∗, the weak
convergence by x∗n ⇀ x∗ and the weak-star convergence by x∗n ⇀

∗ x∗. The normalized
duality mapping J : E → 2E

∗
is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖}, ∀x ∈ E.

Now, we define a mapping ρ : [0,∞) → [0,∞), the modulus of smoothness of E, as
follows:

ρ(t) = sup
{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = t

}
.

It is well known that E is uniformly smooth if and only if limt→0
ρ(t)
t = 0. Let q ∈ R

be such that 1 < q ≤ 2. Then a Banach space E is said to be q-uniformly smooth
if there exists a constant cq > 0 such that ρ(t) ≤ cqt

q for all t > 0. If a Banach
space E admits a sequentially continuous duality mapping J from weak topology to
weak-star topology, then J is single-valued and also E is smooth; see for more details
[14]. In this case, the normalized duality mapping J is said to be weakly sequentially
continuous, i.e., if {xn}n∈N ⊂ E is a sequence with xn ⇀ x ∈ E, then J(xn) ⇀∗ J(x)
[14]. If E = H is a Hilbert space, then J = I the identity mapping on H. A Banach
space E is said to satisfy the Opial property [12] if for any weakly convergent sequence
{xn}n∈N in E with weak limit x,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x. It is well known that all Hilbert spaces, all finite dimensional
Banach spaces and the Banach spaces lp (1 ≤ p <∞) satisfy the Opial property; see,
for example [14, 12, 13]. It is also known that if E admits a weakly sequentially
continuous duality mapping, then E is smooth and enjoys the Opial property; see for
more details [11, 14].

Let C be a nonempty, closed and convex subset of a Banach space E and {xn}n∈N
be a bounded sequence in E. For any x ∈ E, we set

r(x, {xn}) = lim sup
n→∞

‖x− xn‖.

The asymptotic radius of {xn}n∈N relative to C is defined by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.

The asymptotic center of {xn}n∈N relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.
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It is well known that, in a uniformly convex Banach space E, A(C, {xn}) consists of
exactly one point; see [12, 13].

Let l∞ denote the Banach space of bounded real sequences with the supremum
norm. It is well known that there exists a bounded linear functional µ on l∞ such
that the following three conditions hold:
(1) If {tn}n∈N ∈ l∞ and tn ≥ 0 for every n ∈ N, then µ(tn) ≥ 0;
(2) If tn = 1 for every n ∈ N, then µ(tn) = 1;
(3) µ({tn+1}) = µ({tn}) for all {tn}n∈N ∈ l∞.
Such a functional µ is called a Banach limit and the value of µ at {tn} ∈ l∞ is denoted
by µntn (see, for example [29]).

Lemma 2.1. ([1]) Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space E and let T : C → E be a mapping. Suppose that there exist
x ∈ C and a Banach limit µ such that {Tnx}n∈N is bounded and

µn‖Tnx− Ty‖2 ≤ µn‖Tnx− y‖2

for all y ∈ C. Then T has a fixed point.

Lemma 2.2. Let E be a Banach space and C be a subset of E. Let T : C → E be an
(α1, α2, β1, β2)-generalized hybrid mapping for some α1, α2, β1, β2 ∈ R. Suppose that
{Tnx}n∈N is bounded for some x ∈ C. Then µn‖Tnx− Ty‖2 ≤ µn‖Tnx− y‖2 for all
Banach limit µ and for all y ∈ C.

Proof. Let µ be a Banach limit and take y ∈ C arbitrarily chosen. Since T is an
(α1, α2, β1, β2)-generalized hybrid mapping, we conclude that

α1‖Tn+2x− Ty‖2 + α2‖Tn+1x− Ty‖2 + (1− α1 − α2)‖Tnx− Ty‖2
≤ β1‖Tn+2x− y‖2 + β2‖Tn+1x− y‖2 + (1− β1 − β2)‖Tnx− y‖2

for all n ∈ N. Since µ is a Banach limit, we obtain

α1µn‖Tnx− Ty‖2 + α2µn‖Tnx− Ty‖2 + (1− α1 − α2)µn‖Tnx− Ty‖2
≤ β1µn‖Tnx− y‖2 + β2µn‖Tnx− y‖2 + (1− β1 − β2)µn‖Tnx− y‖2

for all n ∈ N. This implies that

µn‖Tnx− Ty‖2 ≤ µn‖Tnx− y‖2

for all y ∈ C, which completes the proof. �
The following result is an immediate consequence of Lemmas 2.1 and 2.2.

Corollary 2.1. Let E be a uniformly convex Banach space and C be a subset of E. Let
T : C → E be an (α1, α2, β1, β2)-generalized hybrid mapping for some α1, α2, β1, β2 ∈
R. Then F (T ) 6= ∅ if and only if there exists x ∈ C such that {Tnx}n∈N is bounded.

Lemma 2.3. Let E be a Banach space and let C be a nonempty, closed and convex
subset of E. Let T : C → E be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R such that F (T ) 6= ∅. Then T is quasi-nonexpansive.

Proof. Let x ∈ C and z ∈ F (T ). Then we have

‖Tx− z‖2 = α1‖T 2z − Tx‖2 + α2‖Tz − Tx‖2 + (1− α1 − α2)‖z − Tx‖2
≤ β1‖T 2z − x‖2 + β2‖Tz − x‖2 + (1− β1 − β2)‖z − x‖2
= ‖x− z‖2.
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This implies that

‖Tx− z‖ ≤ ‖x− z‖,

which completes that proof. �

Lemma 2.4. Let C be a nonempty subset of a Banach space E. Let T : C → E be
an (α1, α2, β1, β2)-generalized hybrid mapping for some α1, α2, β1, β2 ∈ R. Then for
any x, y ∈ C,

‖x− Ty‖2 ≤ ‖x− y‖2 + |α1|θx,y + |α2|ηx,y + |β1|δx,y + |β2|σx,y,

where

θx,y = ‖x− T 2x‖2 + 2‖x− T 2x‖‖T 2x− Ty‖+ 2‖x− T 2x‖‖x− Ty‖,
ηx,y = ‖x− Tx‖2 + 2‖x− Tx‖‖Tx− Ty‖+ 2‖x− Tx‖‖x− Ty‖,
δx,y = ‖T 2x− x‖2 + 2‖T 2x− x‖‖x− y‖+ 2‖T 2x− x‖‖T 2x− y‖,
σx,y = ‖Tx− x‖2 + 2‖Tx− x‖‖x− y‖+ 2‖Tx− x‖‖Tx− y‖.

Proof. We divide the proof into several cases.
Case 1. If α1, α2, β1, β2 ∈ R+, then

‖x− Ty‖2

= α1‖x− Ty‖2 + α2‖x− Ty‖2 + (1− α1 − α2)‖x− Ty‖2

≤ α1[‖x− T 2x‖+ ‖T 2x− Ty‖]2

+ α2[‖x− Tx‖+ ‖Tx− Ty‖]2 + (1− α1 − α2)‖x− Ty‖2

≤ α1[‖x− T 2x‖2 + ‖T 2x− Ty‖2 + 2‖x− T 2x‖‖T 2x− Ty‖+ 2‖x− T 2x‖‖x− Ty‖]
+ α2[‖x− Tx‖2 + ‖Tx− Ty‖2 + 2‖x− Tx‖‖Tx− Ty‖+ 2‖x− Tx‖‖x− Ty‖]
+ (1− α1 − α2)‖x− Ty‖2

= α1‖T 2x− Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2 + α1θx,y + α2ηx,y

≤ β1‖T 2x− y‖2 + β2‖Tx− y‖2 + (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y

≤ β1[‖T 2x− x‖+ ‖x− y‖]2 + β2[‖Tx− x‖+ ‖x− y‖]2

+ (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y

≤ β1[‖T 2x− x‖2 + ‖x− y‖2 + 2‖T 2x− x‖‖x− y‖+ 2‖T 2x− x‖‖T 2x− y‖]
+ β2[‖Tx− x‖2 + ‖x− y‖2 + ‖Tx− x‖‖x− y‖+ ‖Tx− x‖‖Tx− y‖]
+ (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y

= β1‖x− y‖2 + β2‖x− y‖2 + (1− β1 − β2)‖x− y‖2

+ α1θx,y + α2ηx,y + β1δx,y + β2σx,y

= ‖x− y‖2 + α1θx,y + α2ηx,y + β1δx,y + β2σx,y.

Thus we have

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + α2ηx,y + β1δx,y + β2σx,y.
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Case 2. If α1, α2, β1 ∈ R+ and β2 ∈ R−, then

‖x− y‖2 + α1θx,y + α2ηx,y + β1δx,y

= β1‖x− y‖2 + β2‖x− y‖2 + (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y + β1δx,y

≥ β1[‖x− y‖2 + ‖T 2x− x‖2 + 2‖T 2x− x‖‖x− y‖+ 2‖T 2x− x‖‖T 2x− y‖]
+ β2[‖Tx− y‖+ ‖Tx− x‖]2 + (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y

≥ β1[‖x− y‖2 + ‖T 2x− x‖2 + 2‖T 2x− x‖‖x− y‖+ 2‖T 2x− x‖‖T 2x− y‖]
+ β2[‖Tx− y‖2 + ‖Tx− x‖2 + 2‖Tx− x‖‖x− y‖+ 2‖Tx− x‖‖Tx− y‖]
+ (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y

≥ β1‖T 2x− y‖2β2‖Tx− y‖2

+ β2[‖x− Tx‖2 + 2‖x− Tx‖‖Tx− y‖+ 2‖x− Tx‖‖x− Ty‖]
+ (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y

= β1‖T 2x− y‖2 + β2‖Tx− y‖2 + (1− β1 − β2)‖x− y‖2 + α1θx,y + α2ηx,y + β2σx,y

≥ α1‖T 2x− Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2

+ α1θx,y + α2ηx,y + β2σx,y

≥ α1‖x− Ty‖2 + α2‖x− Ty‖2 + (1− α1 − α2)‖x− Ty‖2 + β2σx,y

= ‖x− Ty‖2 + β2σx,y.

Thus we have

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + α2ηx,y + β1δx,y + (−β2)σx,y.

Similarly, we can prove the following possible cases and we omit the details.
Case 3. If α1, α2, β2 ∈ R+ and β1 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + α2ηx,y + (−β1)δx,y + β2σx,y.

Case 4. If α1, β1, β2 ∈ R+ and α2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + (−α2)ηx,y + β1δx,y + β2σx,y.

Case 5. If α1, α2 ∈ R+ and β1, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + α2ηx,y + (−β1)δx,y + (−β2)σx,y.

Case 6. If α1, β2 ∈ R+ and α2, β1 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + (−α2)ηx,y + (−β1)δx,y + β2σx,y.

Case 7. If α1, β1 ∈ R+ and α2, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + (−α2)ηx,y + β1δx,y + (−β2)σx,y.

Case 8. If α1 ∈ R+ and β1, α2, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + α1θx,y + (−α2)ηx,y + (−β1)δx,y + (−β2)σx,y.

Case 9. If α1 ∈ R− and α2, , β1, β2 ∈ R+, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + α2ηx,y + β1δx,y + β2σx,y.
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Case 10. If α2, β1 ∈ R+ and α1, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + α2ηx,y + β1δx,y + (−β2)σx,y.

Case 11. If α2, β2 ∈ R+ and α1, β1 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + α2ηx,y + (−β1)δx,y + β2σx,y.

Case 12. If β1, β2 ∈ R+ and α1, α2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + (−α2)ηx,y + β1δx,y + β2σx,y.

Case 13. If α2 ∈ R+ and α1, β1, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + α2ηx,y + β1δx,y + (−β2)σx,y.

Case 14. If β2 ∈ R+ and α1, α2, β1 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + (−α2)ηx,y + (−β1)δx,y + β2σx,y.

Case 15. If β1 ∈ R+ and α1, α2, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + (−α2)ηx,y + β1δx,y + (−β2)σx,y.

Case 16. If α1, α2, β1, β2 ∈ R−, then

‖x− Ty‖2 ≤ ‖x− y‖2 + (−α1)θx,y + (−α2)ηx,y + (−β1)δx,y + (−β2)σx,y.

This completes that proof. �

Proposition 2.1. (Demiclosedness Principle) Let E be a Banach space with the
Opial property and C be a subset of E. Let T : C → E be an (α1, α2, β1, β2)-
generalized hybrid mapping for some α1, α2, β1, β2 ∈ R. If {xn}n∈N converges weakly
to z, limn→∞ ‖Txn − xn‖ = 0 and limn→∞ ‖T 2xn − xn‖ = 0, then Tz = z. That is,
I − T is demiclosed at zero, where I is the identity mapping on E.

Proof. Since {xn}n∈N converges weakly to z, limn→∞ ‖Txn − xn‖ = 0 and
limn→∞ ‖T 2xn − xn‖ = 0, we have that {xn}n∈N, {Txn}n∈N and {T 2xn}n∈N are
bounded. Let M1 = sup{‖xn‖, ‖Txn‖, ‖T 2xn‖, ‖z‖, ‖Tz‖ : n ∈ N} <∞. It is obvious
that

lim
n→∞

‖T 2xn − Txn‖ = 0. (2.2)

By the definition of 2-generalized hybrid mapping and in view of Lemma 2.2, for all
n ∈ N, we get that

‖xn − Tz‖2 ≤ ‖xn − z‖2 + |α1|θn + |α2|ηn + |β1|δn + |β2|σn,

where

θn = ‖xn − T 2xn‖2 + 2‖xn − T 2xn‖‖T 2xn − Tz‖+ 2‖xn − T 2xn‖‖xn − Tz‖,
ηn = ‖xn − Txn‖2 + 2‖xn − Txn‖‖Txn − Tz‖+ 2‖xn − Txn‖‖xn − Tz‖,
δn = ‖T 2xn − xn‖2 + 2‖T 2xn − xn‖‖xn − z‖+ 2‖T 2xn − xn‖‖T 2xn − z‖,
σn = ‖Txn − xn‖2 + 2‖Txn − xn‖‖xn − z‖+ 2‖Txn − xn‖‖Txn − z‖.

In view of (2.2), we conclude that

lim
n→∞

θn = lim
n→∞

ηn = lim
n→∞

δn = lim
n→∞

σn = 0.
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This implies
lim sup
n→∞

‖xn − Tz‖ ≤ lim sup
n→∞

‖xn − z‖.

From the Opial property, we obtain Tz = z. �

Corollary 2.2. Let E be a Banach space with the Opial property and C be a subset
of E. Let T : C → E be an (α, β)-generalized hybrid mapping for some α, β ∈ R. If
{xn}n∈N converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, then Tz = z. That is,
I − T is demiclosed at zero, where I is the identity mapping on E.

Proof. Since {xn}n∈N converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, we have
that {xn}n∈N and {Txn}n∈N are bounded. Let M2 = sup{‖xn‖, ‖Txn‖, ‖z‖, ‖Tz‖ :
n ∈ N} < ∞. A similar argument as in the proof of Proposition 2.1 shows that for
all n ∈ N

‖xn − Tz‖2 ≤ ‖xn − z‖2 + αηn + βσn,

where

ηn = ‖xn − Txn‖2 + 2‖xn − Txn‖‖Txn − Tz‖+ 2‖xn − Txn‖‖xn − Tz‖,
σn = ‖Txn − xn‖2 + 2‖Txn − xn‖‖xn − z‖+ 2‖Txn − xn‖‖Txn − z‖.

Since limn→∞ ‖Txn − xn‖ = 0, we see that

lim
n→∞

ηn = lim
n→∞

σn = 0.

This implies
lim sup
n→∞

‖xn − Tz‖ ≤ lim sup
n→∞

‖xn − z‖.

From the Opial property, we obtain Tz = z.

Lemma 2.5. ([31]) Let r > 0 be a fixed real number. If E is a uniformly convex
Banach space, then there exists a continuous strictly increasing convex function g :
[0,+∞)→ [0,+∞) with g(0) = 0 such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖),

for all x, y ∈ Br(0) = {u ∈ E : ‖u‖ ≤ r} and λ ∈ [0, 1].

Lemma 2.6. ([27]) Let E be a uniformly convex Banach space, let {tn}n∈N be a
sequence of real numbers such that 0 < a ≤ tn ≤ b < 1 for all n ∈ N, and let {xn}n∈N
and {yn}n∈N be sequences of E such that lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r
and

lim
n→∞

‖tnxn + (1− tn)yn‖ = r for some r ≥ 0.

Then limn→∞ ‖xn − yn‖ = 0.
Let C and D be nonempty subsets of real Banach space E with D ⊂ C. A mapping

QD : C → D is said to be sunny if

QD(QDx+ t(x−QDx)) = QDx

for each x ∈ E and t ≥ 0. A mapping QD : C → D is said to be a retraction if
QDx = x for each x ∈ C. If E = H is a real Hilbert space, then QD = PD the metric
projection of C onto D.
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Lemma 2.7. ([26, 29]) Let C and D be nonempty subsets of a real Banach space E
with D ⊂ C and let QD : C → D be a retraction from C into D. Then QD is sunny
and nonexpansive if and only if

〈z −QD(z), J(y −QD(z))〉 ≤ 0

for all z ∈ C and y ∈ D, where J is the normalized duality mapping of E.

Lemma 2.8. ([26]) Let E be a real Banach space and J be the normalized duality
mapping of E. Then,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉,
for all x, y ∈ E.

Lemma 2.9. ([32]) Let {sn}n∈N be a sequence of nonnegative real numbers satisfying
the inequality:

sn+1 ≤ (1− γn)sn + γnδn, ∀n ≥ 1,

where {γn}n∈N and {δn}n∈N satisfy the conditions:
(i) {γn}n∈N ⊂ [0, 1] and

∑∞
n=1 γn =∞, or equivalently, Π∞n=1(1− γn) = 0;

(ii) lim supn→∞ δn ≤ 0, or
(ii)′

∑∞
n=1 γnδn <∞.

Then, limn→∞ sn = 0.

Lemma 2.10. ([21]) Let {an}n∈N be a sequence of real numbers such that there exists
a subsequence {ni}i∈N of {n}n∈N such that ani < ani+1 for all i ∈ N. Then there
exists a subsequence {mk}k∈N ⊂ N such that mk → ∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
The following result which is a generalization of Lemma 2.5 has been proved in [7].

Lemma 2.11. Let E be a uniformly convex Banach space and Br := {x ∈ E :
‖x‖ ≤ r}, r > 0. Then there exists a continuous strictly increasing convex function
g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2 − λβg(‖x− y‖)
for all x, y, z ∈ Br and all λ, β, γ ∈ [0, 1] with λ+ β + γ = 1.

3. Fixed Point and Convergence Theorems in Banach Spaces

In this section, we prove weak and strong convergence theorems for Ishikawa and
Halpern iterations of 2-generalized hybrid mappings in a Banach space.

Lemma 3.1. Let E be a Banach space and let C be a nonempty, closed and convex
subset of E. Let T : C → E be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R such that the fixed point set F (T ) is nonempty. Let {xn}n∈N
and {yn}n∈N be two sequences defined by (1.2) such that {λn}n∈N and {γn}n∈N are
arbitrary sequences in [0, 1]. Then the following assertions hold:
(1) max{‖xn+1 − z‖, ‖yn − z‖} ≤ ‖xn − z‖ for any z ∈ F (T ) and for all n = 1, 2, . . ..
(2) limn→∞ ‖xn − z‖ exists for any z ∈ F (T ).
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(3) limn→∞ d(xn, F (T )) exists, where d(x, F (T )) denotes the distance of x to the
fixed-point set F (T ).

Proof. Let z ∈ F (T ). In view of Lemma 2.3, we conclude that

‖yn − z‖ = ‖λnTxn + (1− λn)xn − z‖
≤ λn‖Txn − z‖+ (1− λn)‖xn − z‖
≤ λn‖xn − z‖+ (1− λn)‖xn − z‖
= ‖xn − z‖.

Consequently,

‖xn+1 − z‖ = ‖γnTyn + (1− γn)xn − z‖
≤ γn‖Tyn − z‖+ (1− γn)‖xn − z‖
≤ γn‖yn − z‖+ (1− γn)‖xn − z‖
≤ γn‖xn − z‖+ (1− γn)‖xn − z‖
= ‖xn − z‖.

This implies that {‖xn − z‖}n∈N is a bounded and nonincreasing sequence for all
z ∈ F (T ). Thus we have limn→∞ ‖xn − z‖ exists for any z ∈ F (T ). In the same
manner, we see that {d(xn, F (T ))}n∈N is also a bounded nonincreasing real sequence,
and thus converges. �

The proof of the following corollary is similar to that of Lemma 3.1 and we omit
it.

Corollary 3.1. Let E be a Banach space and C be a nonempty, closed and convex
subset of E. Let T : C → E be an (α1, α2, β1, β2)-generalized hybrid mapping for some
α1, α2, β1, β2 ∈ R such that the fixed point set F (T ) is nonempty. Let a sequence
{xn}n∈N with x1 in C be defined by (1.1) such that {γn}n∈mathbbN is an arbitrary
sequence in [0, 1]. Then the following assertions hold:
(1) ‖xn+1 − z‖ ≤ ‖xn − z‖ for any z ∈ F (T ) and for all n = 1, 2, . . ..
(2) limn→∞ ‖xn − z‖ exists for any z ∈ F (T ).
(3) limn→∞ d(xn, F (T )) exists, where d(x, F (T )) denotes the distance of x to the
fixed-point set F (T ).

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C → E be an (α1, α2, β1, β2)-
generalized hybrid mapping for some α1, α2, β1, β2 ∈ R. Let a sequence {xn}n∈N with
x1 ∈ C be defined by (1.1) and the sequence {γn}n∈N be chosen so that γn ∈ [0, 1].

(i) If {xn}n∈N is bounded, lim inf
n→∞

‖Txn − xn‖ = 0 and lim inf
n→∞

‖T 2xn − xn‖ = 0,

then the fixed point set F (T ) 6= ∅.
(ii) Suppose that F (T ) 6= ∅ and lim inf

n→∞
γn(1 − γn) > 0. Then {xn}n∈N is bounded

and lim inf
n→∞

‖Txn − xn‖ = 0.

Proof. (i) Assume that {xn}n∈N is bounded, lim inf
n→∞

‖Txn − xn‖ = 0 and

lim inf
n→∞

‖T 2xn − xn‖ = 0. Consequently, there is a bounded subsequence {Txnk
}k∈N
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of {Txn}n∈N such that

lim
k→∞

‖Txnk
− xnk

‖ = lim
k→∞

‖T 2xnk
− xnk

‖ = 0.

Suppose A(C, {xnk
}) = {z}. Let M3 = sup{‖xnk

‖, ‖Txnk
‖, ‖z‖, ‖Tz‖ : k ∈ N} < ∞.

In view of Lemma 2.4, for all k ∈ N,

‖xnk
− Tz‖2 ≤ ‖xnk

− z‖2 + α1θnk
+ α2ηnk

+ β1δnk
+ β2σnk

,

where

θnk
= ‖xnk

− T 2xnk
‖2 + 2‖xnk

− T 2xnk
‖‖T 2xnk

− Tz‖
+2‖xnk

− T 2xnk
‖‖xnk

− Tz‖,
η
nk

= ‖xnk
− Txnk

‖2 + 2‖xnk
− Txnk

‖‖Txnk
− Tz‖

+2‖xnk
− Txnk

‖‖xnk
− Tz‖,

δ
nk

= ‖T 2xnk
− xnk

‖2 + 2‖T 2xnk
− xnk

‖‖xnk
− z‖

+2‖T 2xnk
− xnk

‖‖T 2xnk
− z‖,

σ
nk

= ‖Txnk
− xnk

‖2 + 2‖Txnk
− xnk

‖‖xnk
− z‖+ 2‖Txnk

− xnk
‖‖Txnk

− z‖.
It is obvious that

lim
k→∞

θnk
= lim
k→∞

ηnk
= lim
k→∞

δnk
= lim
k→∞

σnk
= 0.

This implies
lim sup
k→∞

‖xnk
− Tz‖ ≤ lim sup

n→∞
‖xnk

− z‖.

From the Opial property, we obtain Tz = z.
(ii) Let F (T ) 6= ∅ and let z ∈ F (T ). It follows from Corollary 3.1 that limn→∞ ‖xn−z‖
exists and hence {xn}n∈N is bounded. In view of Lemma 2.3 and Lemma 2.5, we obtain

‖xn+1 − z‖2 = ‖γnTxn + (1− γn)xn − z‖2
≤ γn‖Txn − z‖2 + (1− γn)‖xn − z‖2 − γn(1− γn)g(‖Txn − xn‖)
≤ γn‖xn − z‖2 + (1− γn)‖xn − z‖2 − γn(1− γn)g(‖Txn − xn‖)
= ‖xn − z‖2 − γn(1− γn)g(‖Txn − xn‖).

(3.1)
In view of (3.1), we conclude that

γn(1− γn)g(‖Txn − xn‖) ≤ ‖xn − z‖2 − ‖xn+1 − z‖2
→ 0

as n→∞. From the assumption lim infn→∞ γn(1− γn) > 0, we have

lim inf
n→∞

g(‖Txn − xn‖) = 0.

Therefore, from the property of g we deduce that

lim inf
n→∞

‖Txn − xn‖ = 0.

This completes the proof. �

Theorem 3.2. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C → E be an (α1, α2, β1, β2)-
generalized hybrid mapping for some α1, α2, β1, β2 ∈ R. Let {λn}n∈N and {γn}n∈N be
sequences such that λn ∈ [a, b] and γn ∈ [a, 1] for some a, b with 0 < a ≤ b < 1 and
let {xn}n∈N be a sequence with x1 in C defined by (1.2).
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(i) If {xn}n∈N is bounded, lim inf
n→∞

‖Txn − xn‖ = 0 and lim inf
n→∞

‖T 2xn − xn‖ = 0,

then the fixed point set F (T ) 6= ∅.
(ii) Assume F (T ) 6= ∅. Then {xn}n∈N is bounded and lim inf

n→∞
‖Txn − xn‖ = 0.

Proof. (i) Assume that {xn}n∈N is bounded, lim inf
n→∞

‖Txn − xn‖ = 0 and

lim inf
n→∞

‖T 2xn − xn‖ = 0. Consequently, there is a bounded subsequence {Txnk
}k∈N

of {Txn}n∈N such that

lim
k→∞

‖Txnk
− xnk

‖ = lim
k→∞

‖T 2xnk
− xnk

‖ = 0.

Suppose A(C, {xnk
}) = {z}. Let M4 = sup{‖xnk

‖, ‖Txnk
‖, ‖z‖, ‖Tz‖ : n ∈ N} < ∞.

In view of Lemma 2.4, for all k ∈ N,

‖xnk
− Tz‖2 ≤ ‖xnk

− z‖2 + α1θnk
+ α2ηnk

+ β1δnk
+ β2σnk

,

where

θnk
= ‖xnk

− T 2xnk
‖2 + 2‖xnk

− T 2xnk
‖‖T 2xnk

− Tz‖
+2‖xnk

− T 2xnk
‖‖xnk

− Tz‖,
ηnk

= ‖xnk
− Txnk

‖2 + 2‖xnk
− Txnk

‖‖Txnk
− Tz‖

+2‖xnk
− Txnk

‖‖xnk
− Tz‖,

δnk
= ‖T 2xnk

− xnk
‖2 + 2‖T 2xnk

− xnk
‖‖xnk

− z‖
+2‖T 2xnk

− xnk
‖‖T 2xnk

− z‖,
σnk

= ‖Txnk
− xnk

‖2 + 2‖Txnk
− xnk

‖‖xnk
− z‖+ 2‖Txnk

− xnk
‖‖Txnk

− z‖.

It is easy to see that

lim
k→∞

θnk
= lim
k→∞

ηnk
= lim
k→∞

δnk
= lim
k→∞

σnk
= 0.

This implies

lim sup
k→∞

‖xnk
− Tz‖ ≤ lim sup

n→∞
‖xnk

− z‖.

From the Opial property, we obtain Tz = z.
(ii) Let F (T ) 6= ∅ and take z ∈ F (T ) arbitrarily chosen. Then, in view of Lemma

3.1, limn→∞ ‖xn − z‖ exists and hence {xn}n∈N is bounded. By Lemma 2.3, we have
that

‖Txn − z‖ ≤ ‖xn − z‖, ∀n ∈ N.
Set

lim
n→∞

‖xn − z‖ = d.

This implies that

lim sup
n→∞

‖Txn − z‖ ≤ d. (3.2)

On the other hand, we have

‖xn+1 − z‖ = ‖γnTyn + (1− γn)xn − z‖
≤ γn‖Tyn − z‖+ (1− γn)‖xn − z‖
≤ γn‖yn − z‖+ (1− γn)‖xn − z‖
= γn‖yn − z‖+ ‖xn − z‖ − γn‖xn − z‖.
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This implies that

‖xn+1 − z‖ − ‖xn − z‖ ≤
‖xn+1 − z‖ − ‖xn − z‖

γn
≤ ‖yn − z‖ − ‖xn − z‖.

Thus, we have
d ≤ lim inf

n→∞
‖yn − z‖. (3.3)

In view of (3.3), we conclude that

d ≤ lim inf
n→∞

‖yn − z‖ ≤ lim sup
n→∞

‖yn − z‖ ≤ d.

This means that
lim
n→∞

‖yn − z‖ = d.

Therefore

lim
n→∞

‖λn(Txn − z) + (1− λn)(xn − z)‖ = lim
n→∞

‖yn − z‖ = d. (3.4)

In view of (3.4) and Lemma 2.6, we obtain

lim
n→∞

‖Txn − xn‖ = 0.

This completes the proof. �

Corollary 3.2. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C → E be an an (α, β)-generalized
hybrid mapping for some α, β ∈ R. Let {λn}n∈N and {γn}n∈N be sequences such that
λn ∈ [a, b] and γn ∈ [a, 1] for some a, b with 0 < a ≤ b < 1, and let {xn}n∈N be a
sequence with x1 in C defined by (1.2).
(i) If {xn}n∈N is bounded and lim inf

n→∞
‖Txn−xn‖ = 0, then the fixed point set F (T ) 6=

∅.
(ii) Conversely, assume F (T ) 6= ∅. Then {xn}n∈N is bounded and lim inf

n→∞
‖Txn−xn‖ =

0.

Proof. (i) Assume that {xn}n∈N is bounded and lim inf
n→∞

‖Txn−xn‖ = 0. Consequently,

there is a bounded subsequence {Txnk
}k∈N of {Txn}n∈N such that limk→∞ ‖Txnk

−
xnk
‖ = 0. Suppose A(C, {xnk

}) = {z}. Let M5 = sup{‖xnk
‖, ‖Txnk

‖, ‖z‖, ‖Tz‖ : k ∈
N} <∞. In view of Lemma 2.4, for all k ∈ N,

‖xnk
− Tz‖2 ≤ ‖xnk

− z‖2 + αηnk
+ βσnk

,

where
ηnk

= ‖xnk
− Txnk

‖2 + 2‖xnk
− Txnk

‖‖Txnk
− Tz‖

+2‖xnk
− Txnk

‖‖xnk
− Tz‖,

σnk
= ‖Txnk

− xnk
‖2 + 2‖Txnk

− xnk
‖‖xnk

− z‖
+2‖Txnk

− xnk
‖‖Txnk

− z‖.
Since limk→∞ ‖Txnk

− xnk
‖ = 0, we conclude that

lim
k→∞

ηnk
= lim
k→∞

σnk
= 0.

This implies
lim sup
k→∞

‖xnk
− Tz‖ ≤ lim sup

n→∞
‖xnk

− z‖.
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From the Opial property, we obtain Tz = z.
A similar argument as in the proof of Theorem 3.2 proves (ii), which completes the
proof. �

Theorem 3.3. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C → E be an (α, β)-generalized
hybrid mapping for some α, β ∈ R such that the fixed point set F (T ) is nonempty.
Let {λn}n∈N and {γn}n∈N be sequences in [0, 1], and let {xn}n∈N be a sequence with
x1 in C defined by (1.2). Assume that lim inf

n→∞
γn(1−γn) > 0, and assume, in addition,

lim sup
n→∞

λn < 1. Then {xn}n∈N converges weakly to a fixed point of T .

Proof. It follows from Theorem 3.2 that {xn}n∈N is bounded and limn→∞ ‖Txn −
xn‖ = 0. The uniform convexity of E implies that E is reflexive; see, for example,
[29]. Then, there exists a subsequence {xni

}i∈N of {xn}n∈N such that xni
⇀ p ∈ C as

i→∞. In view of Corollary 2.2, we conclude that p ∈ F (T ). We claim that xn ⇀ p
as n → ∞. If not, then there exists a subsequence {xnj}j∈N of {xn}n∈N such that
{xnj
}j∈N converges weakly to some q ∈ C with p 6= q. In view of Corollary 2.2, we

conclude that q ∈ F (T ). By Lemma 3.1 we conclude that limn→∞ ‖xn− z‖ exists for
all z in F (T ). Thus we obtain by the Opial property that

limn→∞ ‖xn − p‖ = limi→∞ ‖xni
− p‖ < limi→∞ ‖xni

− q‖
= limn→∞ ‖xn − q‖ = limj→∞ ‖xnj

− q‖
< limj→∞ ‖xnj

− p‖ = limn→∞ ‖xn − p‖.

This is a contradiction. Thus we have p = q, and the desired assertion follows. �

Theorem 3.4. Let C be a nonempty, compact and convex subset of a uniformly
convex Banach space E. Let T : C → E be an (α, β)-generalized hybrid mapping for
some α, β ∈ R. Let {λn}n∈N and {γn}n∈N be sequences in [0, 1]. We assume either{

lim inf
n→∞

γn(1− γn) > 0,

lim inf
n→∞

λn < 1,
or

 lim sup
n→∞

γn(1− γn) > 0,

lim sup
n→∞

λn < 1.

Let {xn}n∈N be a sequence with x1 in C defined by (1.2). Then {xn}n∈N converges
strongly to a fixed point z of T .

Proof. By Corollary 2.1, we see that the fixed point set F (T ) of T is nonempty.
In view of Theorem 3.2, we obtain that {xn}n∈N is bounded and lim inf

n→∞
‖Txn −

xn‖ = 0. By the compactness of C, there exists a subsequence {xnk
}k∈N of {xn}n∈N

such that {xnk
}k∈N converges strongly to some z in C. We can even assume that

limk→∞ ‖Txnk
− xnk

‖ = 0, and in particular, {Txnk
}k∈N is bounded. Let M6 =

sup{‖xnk
‖, ‖Txnk

‖, ‖z‖, ‖Tz‖ : k ∈ N} <∞. In view of Lemma 2.4, we obtain

‖xnk
− Tz‖2 ≤ ‖xnk

− z‖2 + αηnk
+ βσnk

,
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where
ηnk

= ‖xnk
− Txnk

‖2 + 2‖xnk
− Txnk

‖‖Txnk
− Tz‖

+2‖xnk
− Txnk

‖‖xnk
− Tz‖,

σnk
= ‖Txnk

− xnk
‖2 + 2‖Txnk

− xnk
‖‖xnk

− z‖
+2‖Txnk

− xnk
‖‖Txnk

− z‖.
Since limk→∞ ‖Txnk

− xnk
‖ = 0, we conclude that

lim
k→∞

ηnk
= lim
k→∞

σnk
= 0.

This implies
lim sup
k→∞

‖xnk
− Tz‖ ≤ lim sup

n→∞
‖xnk

− z‖.

From the Opial property, we obtain Tz = z. �
Let C be a nonempty, closed and convex subset of a Banach space E. A mapping

T : C → C is said to satisfy condition (I) [27] if

there exists a nondecreasing function f : [0,∞)→ [0,∞) with f(0) =
0 and f(r) > 0 for all r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))),
where d(x, F (T )) = infz∈F (T ) d(x, z).

Theorem 3.5. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E. Let T : C → E be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R such that the fixed point set F (T ) is nonempty. Let {λn}n∈N
and {γn}n∈N be sequences in [0, 1]. We assume either{

lim inf
n→∞

γn(1− γn) > 0,

lim inf
n→∞

λn < 1,
or

 lim sup
n→∞

γn(1− γn) > 0,

lim sup
n→∞

λn < 1.

Let {xn}n∈N be a sequence with x1 in C defined by (1.2). If T satisfies condition (I),
then {xn}n∈N converges strongly to a fixed point z of T .

Proof. It follows from Theorem 3.2 that

lim inf
n→∞

‖Txn − xn‖ = 0.

Therefore, there is a subsequence {xnk
}k∈N of {xn}n∈N such that

lim
k→∞

‖Txnk
− xnk

‖ = 0.

Since T satisfies condition (I), with respect to the sequence {xnk
}k∈N, we obtain

lim
k→∞

d(xnk
, F (T )) = 0.

This implies that, there exists a subsequence of {xn}n∈N, denoted also by {xnk
}k∈N,

and a sequence {zk}k∈N in F (T ) such that

d(xnk
, zk) <

1

2k
, ∀k ∈ N. (3.5)

In view of Lemma 3.1, we have that

‖xnk+1
− zk‖ ≤ ‖xnk

− zk‖ <
1

2k
, ∀k ∈ N.
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This implies that

‖zk+1 − zk‖ ≤ ‖zk+1 − xnk+1
‖+ ‖xnk+1

− zk‖
≤ 1

2(k+1) + 1
2k

< 1
2(k−1) , ∀k = 1, 2, . . . .

Therefore, {zk}k∈N is a Cauchy sequence in F (T ). By Proposition 2.1, we know that
F (T ) is closed in E. This implies that limk→∞ zk = z for some z in F (T ). It follows
from (3.5) that limk→∞ xnk

= z. By Lemma 3.1, we have that limn→∞ ‖xn − z‖
exists. This forces limn→∞ ‖xn − z‖ = 0. �

Theorem 3.6. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E. Let T : C → E be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R such that the fixed point set F (T ) is nonempty. Let {γn}n∈N
be a sequence in [0, 1] such that lim inf

n→∞
γn(1 − γn) > 0. Let {xn}n∈N be a sequence

with x1 in C defined by (1.1). If T satisfies condition (I), then {xn}n∈N converges
strongly to a fixed point z of T .

Example 3.1. (i) Let T : [−1, 1] → [−1, 1] be defined by Tx = −x. Then T is
a (0, 1, 0, 0)-generalized hybrid mapping. Setting all λn = 1, the Ishikawa iteration
(1.2) provides a sequence

xn+1 = γnT
2xn + (1− γn)xn = xn, ∀n = 1, 2, . . . ,

no matter how we choose {γn}n∈N. Unless x1 = 0, we can never reach the unique
fixed point 0 of T via xn.
(ii) Let T : [0, 2]→ [0, 2] be defined by

Tx =

{
0 if x 6= 2,
1 if x = 2.

Then T is ( 1
2 ,

3
4 ,

1
3 ,

2
3 )-generalized hybrid mapping with F (T ) = {0}. Indeed, for any

x ∈ [0, 2) and y = 2, we have that Tx = 0, T 2x = 0 and Ty = 1. Thus we have

1
2 |T

2x− Ty|2 + 3
4 |T

2x− Ty|2 + (1− 1
2 −

3
4 )|x− Ty|2

= 1
2 |0− 1|2 + 3

4 |0− 1|2 + (− 1
4 )|x− 1|2

= 5
4 −

1
4 |x− 1|2

≤ 5
4

≤ 1
3 |0− 2|2 + 2

3 |0− 2|2 + (1− 1
3 −

2
3 )|x− 2|2

= 4.

The other cases can be verified similarly. It is worth mentioning that T is neither
nonexpansive nor continuous. Now, we define the function f : [0,∞)→ [0,∞) by

f(x) =
x

2
, x ∈ [0,∞).

It is easy to see that T satisfies the condition (I) with respect to f .
Setting all λn = 1, the Ishikawa iteration (1.2) provides a sequence

xn+1 = γnT
2xn + (1− γn)xn, ∀n = 1, 2, ....
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If γn 6= 0, ∀n = 1, 2, ..., then for any starting point x1 ∈ [0, 4], we have that T 2xn = 0
and

xn+1 = γnT
2xn + (1− γn)xn

= (1− γn)xn
= (1− γ1)(1− γ2)...(1− γn)x1
=
∏n
k=1(1− γk)x1, ∀n = 1, 2, ....

Consider two possible choices of the values of γn:
Case 1. If we set γn = 1

2 , ∀n = 1, 2, ..., then lim infn→∞ γn(1 − γn) = 1
4 > 0, and

xn → 0, the unique fixed point of T .
Case 2. If we set γn = 1

(n+1)2
, ∀n = 1, 2, ..., then lim infn→∞ γn(1 − γn) = 0 and

xn = n+2
2n+2x1 →

x1

2 . Unless x1 = 0, we can never reach the unique fixed point 0 of T
via xn.

This explains why we need to impose some conditions on the parameters in previous
theorems.

Theorem 3.7. Let E be a real uniformly convex Banach space which admits the
weakly sequentially continuous duality mapping J and C be a nonempty, closed and
convex subset of E. Let T : C → C be a 2-generalized hybrid mapping such that
F := F (T ) 6= ∅. Let {αn}n∈N, {βn,1}n∈N, {βn,2}n∈N, {βn,3}n∈N be sequences in [0, 1]
satisfying the following control conditions:
(a) limn→∞ αn = 0;
(b)

∑∞
n=1 αn =∞;

(c) βn,1 + βn,2 + βn,3 = 1, ∀n ∈ N;
(d) lim infn→∞ βn,jβn,3 > 0, j = 1, 2.
Let {xn}n∈N be a sequence generated by u ∈ C, x1 ∈ C chosen arbitrarily,

yn = βn,1Txn + βn,2T
2xn + βn,3xn,

xn+1 = αnu+ (1− αn)yn.
(3.6)

Then, the sequence {xn}n∈N defined in (3.6) converges strongly to QFu, where QF is
a sunny nonexpansive retraction from E onto F .

Proof. We divide the proof into several steps.
Since T is a quasi-nonexpansive mapping, we know that F is closed and convex. Set

z = QFu.

Step 1. We prove that the sequences {xn}n∈N, {yn}n∈N, {Txn}n∈N and {T 2xn}n∈N
are bounded.
We first show that {xn}n∈N is bounded.
Let p ∈ F be fixed. In view of Lemma 2.11, there exists a continuous strictly increasing
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convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖yn − p‖2 = ‖βn,1Txn + βn,2T
2xn + βn,3xn − p‖2

≤ βn,1‖Txn − p‖2 + βn,2‖T 2xn − p‖2 + βn,3‖xn − p‖2
−βn,jβn,3g(‖xn − T jxn‖)
≤ βn,1‖xn − p‖2 + βn,2‖xn − p‖2 + βn,3‖xn − p‖2
−βn,jβn,3‖xn − T jxn‖2

= ‖xn − p‖2 − βn,jβn,3g(‖xn − T jxn‖)
≤ ‖xn − p‖2, j = 1, 2.

(3.7)

This implies that

‖xn+1 − p‖ = ‖αnu+ (1− αn)yn − p‖ ≤ αn‖u− p‖+ (1− αn)‖yn − p‖
≤ αn‖u− p‖+ (1− αn)‖xn − p‖ ≤ max{‖u− p‖, ‖xn − p‖}.

By induction, we obtain

‖xn+1 − p‖ ≤ max{‖u− p‖, ‖x1 − p‖}

for all n ∈ N. This implies that the sequence {‖xn−p‖}n∈N is bounded and hence the
sequence {xn}n∈N is bounded. This, together with (3.6), implies that the sequences
{yn}n∈N, {Txn}n∈N and {T 2xn}n∈N are bounded too.
Step 2. We prove that for any n ∈ N

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉. (3.8)

Let us show (3.8). For each n ∈ N and j = 1, 2, in view of (3.7), we obtain

‖yn − z‖2 ≤ ‖xn − z‖2 − βn,jβn,3g(‖xn − T jxn‖).

This implies that

‖xn+1 − z‖2 = ‖αnu+ (1− αn)yn − z‖2
≤ αn‖u− z‖2 + (1− αn)‖yn − z‖2
≤ αn‖u− z‖2 + (1− αn)[‖xn − z‖2 − βn,jβn,3g(‖xn − T jxn‖)].

(3.9)
Let M7 := sup{|‖u − z‖2 − ‖xn − z‖2| + βn,jβn,3g(‖xn − T jxn‖) : n ∈ N, j = 1, 2}.
It follows from (3.9) that

βn,jβn,3g(‖xn − T jxn‖) ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αnM7. (3.10)

In view of Lemma 2.8 and (3.6), we obtain

‖xn+1 − z‖2 = ‖αnu+ (1− αn)yn − z‖2
≤ ‖αnu+ (1− αn)yn − z − αn(u− z)‖2
+2〈αn(u− z), J(xn+1 − z)〉

= ‖(1− αn)(yn − z)‖2 + 2αn〈u− z, J(xn+1 − z)〉
= (1− αn)‖yn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉
≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉.

Step 3. We prove that xn → z as n→∞.
We discuss the following two possible cases:
Case 1. Suppose that there exists n0 ∈ N such that {‖xn− z‖}∞n=n0

is nonincreasing.
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Then, the sequence {‖xn − z‖}n∈N is convergent. Thus we have ‖xn − z‖2 −‖xn+1 −
z‖2 → 0 as n→∞. This, together with condition (c) and (3.10), implies that

lim
n→∞

g(‖xn − T jxn‖) = 0, j = 1, 2.

From the properties of g, it follows that

lim
n→∞

‖xn − T jxn‖ = 0, = 1, 2. (3.11)

On the other hand, we have

yn − xn = βn,1(xn − Txn) + βn,2(xn − T 2xn), and xn+1 − yn = αn(u− yn).

This implies that

lim
n→∞

‖yn − xn‖ = 0, and lim
n→∞

‖xn+1 − yn‖ = 0. (3.12)

By the triangle inequality, we conclude that

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖.

It follows from (3.12) that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.13)

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that
xni+1 ⇀ y ∈ F (T ). This, together with Lemma 2.7, implies that

lim supn→∞〈u− z, J(xn+1 − z)〉 = limi→∞〈u− z, J(xni+1 − z)〉
= 〈u− z, J(y − z)〉
≤ 0.

(3.14)

Thus we have the desired result by Lemma 2.9.
Case 2. Suppose that there exists a subsequence {ni}i∈N of {n}n∈N such that

‖xni − z‖ < ‖xni+1 − z‖

for all i ∈ N. Then, by Lemma 2.10, there exists a nondecreasing sequence {mk}k∈N ⊂
N such that mk →∞,

‖z − xmk
‖ < ‖z − xmk+1‖ and ‖z − xk‖ ≤ ‖xmk+1 − z‖

for all k ∈ N. This, together with (3.9), implies that

βmk
(1− βmk

)g(‖xmk
− Txmk

‖) ≤ ‖xmk
− z‖2 − ‖xmk+1 − z‖2 + αmk

M7 ≤ αmk
M7

for all k ∈ N. Then, by conditions (a) and (c), we get

lim
k→∞

‖xmk
− Txmk

‖ = 0.

By the same argument as Case 1, we arrive at

lim sup
k→∞

〈u− z, J(xmk
− z)〉 = lim sup

k→∞
〈u− z, J(xmk+1 − z)〉 ≤ 0.

It follows from (3.8) that

‖xmk+1 − z‖2 ≤ (1− αmk
)‖xmk

− z‖2 + αmk
〈u− z, J(xmk

− z)〉. (3.15)
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Since ‖xmk
− z‖ ≤ ‖xmk+1 − z‖, we have that

αmk
‖xmk

− z‖2 ≤ ‖xmk
− z‖2 − ‖xmk+1 − z‖2 + αmk

〈u− z, J(xmk
− z)〉

≤ 2αmk
〈u− z, J(xmk

− z)〉.
(3.16)

In particular, since αmk
> 0, we obtain

‖xmk
− z‖2 ≤ 〈u− z, J(xmk

− z)〉.

In view of (3.16), we deduce that

lim
k→∞

‖xmk
− z‖ = 0.

This, together with (3.14), implies that

lim
k→∞

‖xmk+1 − z‖ = 0.

On the other hand, we have ‖xk − z‖ ≤ ‖xmk+1 − z‖ for all k ∈ N which implies that
xmk

→ z as k →∞. Thus, we have xn → z as n→∞, which completes the proof. �
Let C be a nonempty, closed and convex subset of a Banach space E and T : C →

C be a 2-generalized hybrid mapping such that F (T ) 6= ∅. For any real numbers
β, γ, δ ∈ (0, 1) with β + γ + δ = 1, we define a mapping Tβ,γ,δ : C → C by

Tβ,γ,δx = βIx+ γTx+ δT 2x, (x ∈ C), (3.17)

where I is the identity mapping on E. It is easy to see that F (Tβ,γ,δ) = F (T ). The
following strong convergence result provides an affirmative answer to open question
1.1 in the case where the mapping T is a 2-generalized hybrid mapping.

Theorem 3.8. Let E be a real uniformly convex Banach which admits the weakly
sequentially continuous duality mapping J and C be a nonempty, closed and convex
subset of E. Let T : C → C be a 2-generalized hybrid mapping such that F := F (T ) 6=
∅. Let {αn}n∈N be a sequence in [0, 1] and let β, γ, δ ∈ (0, 1) be real numbers satisfying
the following control conditions:
(a) limn→∞ αn = 0;
(b)

∑∞
n=1 αn =∞;

(c) β + γ + δ = 1.
Let {xn}n∈N be a sequence generated by{

u ∈ C, x1 ∈ C chosen arbitrarily,
xn+1 = αnu+ (1− αn)Tβ,γ,δxn,

where Tβ,γ,δ is defined by (3.17). Then, the sequence {xn}n∈N converges strongly to
QFu, where QF is a sunny nonexpansive retraction from E onto F .

Remark 3.1. The introduction of condition (I) for the mapping T in theorem 3.5
and the auxiliary mapping Tβ,γ,δ in theorem 3.8 yields strong convergence theorems
of Ishikawa’s and Halpern’s type iterations for 2-generalized hybrid mappings and
hence resolves in the affirmative the open problem raised by Hojo, Takahashi and
Termwuttipong in [17].
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4. Preliminaries on CAT(0) Spaces

A metric space X is a CAT(0) space if it is geodesically connected, and if every
geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane. The precise definition is given below. It is well known that any complete,
simply connected Riemannian manifold having nonpositive sectional curvature is a
CAT(0) space. Other examples include pre-Hilbert spaces, CAT(0)-trees (see, for
example [2]), Euclidean building (see, for example [3]), and the complex Hilbert ball
with a hyperbolic metric (see, for example [13]). For a thorough discussion of other
spaces and of the fundamental role they play in geometry, see, for example, [3]. Burago
et al. [5] contains a somewhat more elementary treatment, and Gromov [15] is a deeper
study.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such
that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular,
c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric)
segment joining x and y. When it is unique, this geodesic is denoted by [x, y]. The
space (X, d) is said to be a geodesic space if every two points of X are joined by a
geodesic, and X is said to be a uniquely geodesic if there exists exactly one geodesic
joining x and y for each x, y ∈ X. A subset Y of X is said to be convex if Y includes
every geodesic segment joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic space (X, d) consists of three points
x1, x2, x3 in X (the vertices of ∆), together with a geodesic segment between each pair
of vertices (the edges of ∆). A comparison triangle for a geodesic triangle ∆(x1, x2, x3)
in a geodesic space (X, d) is a triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) in the Euclidean
plane E2 such that dE2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom CAT(0). Let ∆ be a geodesic triangle in X, and let ∆̄
be a comparison triangle for ∆. Then ∆ is said to satisfy the CAT(0) inequality if,
for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆, d(x, y) ≤ dE2(x̄, ȳ). It is easy to
see that a CAT(0) space is uniquely geodesic.

If x, y1, y2 are points in a CAT(0) space, and if y0 is the midpoint of the segment
[y1, y2], then the CAT(0) inequality implies that

d(x, y0) ≤ 1

2
d(x, y1)2 +

1

2
d(x, y2)2 − 1

4
d(y1, y2)2. (CN)

This is the (CN) inequality of Bruhat and Tits [4]. By using the (CN) inequality, it is
easy to see that the CAT(0) Banach spaces are uniformly convex. In fact, a geodesic
space is a CAT(0) space if and only if it satisfies the (CN) inequality [2].

We now collect some properties in CAT(0) spaces. For more details on CAT(0)
spaces, we refer the readers to [6, 10, 23].

Lemma 4.1. ([10]) Let (X, d) be a CAT(0) space. Then the following assertions
hold:
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (4.1)
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We use the notation (1− t)x⊕ ty for the unique point z satisfying (4.1).
(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

The notion of asymptotic centers in a Banach space can be extended to a CAT(0)
space as well, by simply replacing the distance defined by ‖ ·− · ‖ with the one by the
metric d(·, ·). In particular, in a CAT(0) space, A(C, {xn}) consists of exactly one
point where C is a closed and convex set and {xn}n∈N is a bounded sequence; see [9,
Proposition 7].

Definition 4.2. ([18, 20]) A sequence {xn}n∈N in a CAT(0) space X is said to
∆-converge to x ∈ X if x is the unique asymptotic center of {un}n∈N for every
subsequence {un}n∈N of {xn}n∈N. In this case, we write ∆− limn→∞ xn = x, and we
call x the ∆− lim of {xn}n∈N.

Lemma 4.3. ([18]) Every bounded sequence in a complete CAT(0) space X always
has a ∆-convergent subsequence.

Lemma 4.4. ([8]) If C is a closed and convex subset of a complete CAT(0) space X,
and if {xn}n∈N is a bounded sequence in C, then the asymptotic center of {xn}n∈N is
in C.

Lemma 4.5. ([19]) Let X be a complete CAT(0) space and let x ∈ X. Suppose that
0 < b ≤ tn ≤ c < 1, and xn, yn in X such that lim sup

n→∞
d(xn, x) ≤ r, lim sup

n→∞
d(yn, x) ≤

r and limn→∞ d(tnxn ⊕ (1 − tn)yn, x) = r for some r ≥ 0 and n = 1, 2, . . .. Then
limn→∞ d(xn, yn) = 0.

Recall that the Ishikawa iteration in CAT(0) spaces is described as follows: for any
initial point x1 in C, we define the iterates {xn}n∈N by{

yn = λnTxn ⊕ (1− λn)xn,
xn+1 = γnTyn ⊕ (1− γn)xn,

(4.2)

where the sequences {λn}n∈N and {γn}n∈N satisfy some appropriate conditions.
We introduce the notion of 2-generalized hybrid mappings in CAT(0) spaces.

Definition 4.6. Let C be a nonempty subset of a CAT(0) space X. A mapping
T : C → X is said to be
(1) generalized hybrid if there exist α, β ∈ R such that

αd(Tx, Ty)2 + (1− α)d(x, Ty)2 ≤ β(Tx, y)2 + (1− β)d(x, y)2, ∀x, y ∈ C.

(2) 2-generalized hybrid or (α1, α2, β1, β2)-generalized hybrid if there exist α1, α2, β1,
β2 ∈ R such that

α1d(T 2x, Ty)2 + α2d(Tx, Ty)2 + (1− α1 − α2)d(x, Ty)2

≤ β1d(T 2x, y)2 + β2d(Tx, y)2 + (1− β1 − β2)d(x, y)2, ∀x, y ∈ C.

Clearly, (0, 1, 1, 1)-generalized hybrid maps are exactly nonexpansive maps.
The proofs of the following results are similar to those in Sections 2 and 3.
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Lemma 4.7. Let C be a nonempty subset of a CAT(0) space X, and let T : C → X
be be an (α1, α2, β1, β2)-generalized hybrid mapping for some α1, α2, β1, β2 ∈ R such
that F (T ) 6= ∅. Then T is quasi-nonexpansive.

Lemma 4.8. Let C be a nonempty subset of a CAT(0) space X. Let T : C → X be
an (α1, α2, β1, β2)-generalized hybrid mapping for some α1, α2, β1, β2 ∈ R. Then for
any x, y ∈ C,

d(x, Ty)2 ≤ d(x, y)2 + |α1|θx,y + |α2|ηx,y + |β1|δx,y + |β2|σx,y, (4.3)

where

θx,y = d(x, T 2x)2 + 2d(x, T 2x)d(T 2x, Ty) + 2d(x, T 2x)d(x, Ty),
ηx,y = d(x, Tx)2 + 2d(x, Tx)d(Tx, Ty) + 2d(x, Tx)d(x, Ty),
δx,y = d(T 2x, x)2 + 2d(T 2x, x)d(x, y) + 2d(T 2x, x)d(T 2x, y),
σx,y = d(Tx, x)2 + 2d(Tx, x)d(x, y) + 2d(Tx, x)d(Tx, y).

(4.4)

Lemma 4.9. Let C be a nonempty, closed and convex subset of a CAT(0) space
X. Let T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping for some
α1, α2, β1, β2 ∈ R with a nonempty fixed point set F (T ). Let {xn}n∈N and {yn}n∈N be
two sequences defined by (4.2) such that {λn}n∈N and {γn}n∈N are arbitrary sequences
in [0, 1].
Then the following assertions hold:
(1) max{d(xn+1, z), d(yn, z)} ≤ d(xn, z) for any z ∈ F (T ) and for n = 1, 2, . . ..
(2) limn→∞ d(xn, z) exists for any z ∈ F (T ).
(3) limn→∞ d(xn, F (T )) exists.

Lemma 4.10. ([6]) Let C be a nonempty and convex subset of a CAT(0) space X,
and let T : C → C be a quasi-nonexpansive map whose fixed point set is nonempty.
Then F (T ) is closed, convex and hence contractible.

The following result is deduced from Lemmas 4.7 and 4.10.

Lemma 4.11. Let C be a nonempty and convex subset of a CAT(0) space X, and let
T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping for some α1, α2, β1, β2 ∈
R. Then F (T ) is closed, convex, and hence contractible.

Lemma 4.12. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X. Let T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping for some
α1, α2, β1, β2 ∈ R. If {xn}n∈N is a sequence in C such that d(Txn, xn) → 0 and
∆− limn→∞ xn = z for some z ∈ X, then z ∈ C and Tz = z.

Proof. In view of Lemma 4.4, it follows that z ∈ C. By Lemma 4.8, we deduce that
for any x, y ∈ C,

d(x, Ty)2 ≤ d(x, y)2 + |α1|θx,y + |α2|ηx,y + |β1|δx,y + |β2|σx,y, (4.3)

where

θx,y = d(x, T 2x)2 + 2d(x, T 2x)d(T 2x, Ty) + 2d(x, T 2x)d(x, Ty),
ηx,y = d(x, Tx)2 + 2d(x, Tx)d(Tx, Ty) + 2d(x, Tx)d(x, Ty),
δx,y = d(T 2x, x)2 + 2d(T 2x, x)d(x, y) + 2d(T 2x, x)d(T 2x, y),
σx,y = d(Tx, x)2 + 2d(Tx, x)d(x, y) + 2d(Tx, x)d(Tx, y).

(4.4)
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for all n ∈ N. Thus we have

lim sup
n→∞

d(xn, T z) ≤ lim sup
n→∞

d(xn, z).

By the uniqueness of asymptotic centers, we obtain that Tz = z.

5. Fixed point and convergence theorems in CAT(0) spaces

In this section, we extend our results in Section 3 to CAT(0) spaces.

Theorem 5.1. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X and let T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R. Let {λn}n∈N and {γn}n∈N be sequences in [0, 1] such that
0 < lim inf

k→∞
γnk
≤ lim sup

k→∞
γnk

< 1 for a subsequence {γnk
}k∈N of {γn}n∈N. We assume

also that lim sup
k→∞

λnk
< 1. Let {xn}n∈N be a sequence with x1 in C defined by (4.2).

(i) If {xn}n∈N is bounded, lim inf
n→∞

d(Txn, xn) = 0 and lim inf
n→∞

d(T 2xn, xn) = 0, then

the fixed point set F (T ) 6= ∅.
(ii) Assume F (T ) 6= ∅. Then {xn}n∈N is bounded and lim inf

n→∞
d(Txn, xn) = 0.

Proof. (i) By simply replacing ‖ · − · ‖ with d(·, ·) in the proof of Theorem 3.2, we
have the desired result F (T ) 6= ∅.
(ii) Suppose that F (T ) 6= ∅ and z ∈ F (T ) is arbitrarily chosen. By Lemma 4.9,
limn→∞ d(xn, z) exists and {xn}n∈N is bounded. Let

lim
n→∞

d(xn, z) = l. (5.1)

It follows from Lemmas 4.7 and 4.1(ii) that

d(Tyn, z) ≤ d(yn, z)
= d(λnTxn ⊕ (1− λn)xn, z)
≤ λnd(Txn, z) + (1− λn)d(xn, z)
≤ λnd(xn, z) + (1− λn)d(xn, z)
= d(xn, z).

Thus, we have

lim sup
n→∞

d(Tyn, z) ≤ lim sup
n→∞

d(yn, z) ≤ lim sup
n→∞

d(xn, z) = l. (5.2)

On the other hand, it follows from (4.2) and (5.1) that

lim
n→∞

d(γnTyn ⊕ (1− γn)xn, z) = lim
n→∞

d(xn+1, z) = l. (5.3)

In view of (5.1)-(5.3) and Lemma 4.5, we conclude that

lim
k→∞

d(Tynk
, xnk

) = 0.

By simply replacing ‖ · − · ‖ with d(·, ·) in the proof of Theorem 3.2, we have the
desired result limk→∞ d(Txnk

, xnk
) = 0. �

Theorem 5.2. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X and let T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R. Let {λn}n∈N and {γn}n∈N be sequences in [0, 1] such that
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0 < lim inf
k→∞

γnk
≤ lim sup

k→∞
γnk

< 1 for a subsequence {γnk
}k∈N of {γn}n∈N. We assume

also that lim sup
k→∞

λnk
< 1. Let {xn}n∈N be a sequence with x1 in C defined by (4.2).

If F (T ) 6= ∅, then {xnk
}k∈N ∆-converges to a fixed point of T .

Proof. It follows from Theorem 5.1 that {xn}n∈N is bounded and

lim
k→∞

d(Txnk
, xnk

) = 0.

Denote by ωw(xnk
) := ∪A(C, {un}), where the union is taken over all subsequences

{un}n∈N of {xnk
}k∈N. We prove that ωw(xnk

) ⊂ F (T ). Let u ∈ ωw(xnk
). Then

there exists a subsequence {un}n∈N of {xnk
}k∈N such that A(C, {un}) = {u}. In view

of Lemmas 4.3 and 4.4, there exists a subsequence {vn}n∈N of {un}n∈N such that
∆ − limn→∞ vn = v for some v in C. Since limn→∞ d(Tvn, vn) = 0, Lemma 4.12
implies that v ∈ F (T ). By Lemma 4.9, the limit limn→∞ d(xn, v) exists. We claim
that u = v. For else, the uniqueness of asymptotic centers implies that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u) ≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v) = lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v),

which is a contradiction. Thus, we have u = v ∈ F (T ) and hence ωw(xnk
) ⊂ F (T ).

Now, we prove that {xnk
}k∈N ∆-converges to a fixed point of T . It suffices to

show that ωw(xnk
) consists of exactly one point. Let {un}n∈N be a subsequence of

{xnk
}k∈N. In view of Lemmas 4.3 and 4.4, there exists a subsequence {vn}n∈N of

{un}n∈N such that ∆ − limn→∞ vn = v for some v in C. Let A(C, {un}) = {u} and
A(C, {xnk

}) = {x}. By the argument mentioned above we have u = v and v ∈ F (T ).
We show that x = v. If it is not the case, then the uniqueness of asymptotic centers
implies that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

which is a contradiction. Thus we have the desired result. �

Theorem 5.3. Let C be a nonempty, compact and convex subset of a complete
CAT(0) space X and let T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping
for some α1, α2, β1, β2 ∈ R such that the fixed point set F (T ) is nonempty. Let
{λn}n∈N and {γn}n∈N be sequences in [0, 1] such that 0 < lim inf

k→∞
γnk
≤ lim sup

k→∞
γnk

< 1

for a subsequence {γnk
}k∈N of {γn}n∈N. We assume also that lim sup

k→∞
λnk

< 1. Let

{xn}n∈N be a sequence with x1 in C defined by (4.2). Then {xn}n∈N converges in
metric to a fixed point of T .

Proof. Using Lemma 4.8 and simply replacing ‖ · − · ‖ with d(·, ·) in the proof of
Theorem 3.4, we conclude the desired result. �

As in the proof of Theorem 3.5, we can verify the following result.
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Theorem 5.4. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X and let T : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping for
some α1, α2, β1, β2 ∈ R such that the fixed point set F (T ) is nonempty. Let {λn}n∈N
and {γn}n∈N be sequences in [0, 1] such that 0 < lim inf

k→∞
γnk
≤ lim sup

k→∞
γnk

< 1 for a

subsequence {γnk
}k∈N of {γn}n∈N. We assume also that lim sup

k→∞
λnk

< 1. Let {xn}n∈N
be a sequence with x1 in C defined by (4.2). If T satisfies condition (I), then {xn}n∈N
converges in metric to a fixed point of T .

Acknowledgement. The author would like to thank the referees for sincere evalu-
ation and constructive comments which improved the paper considerably.

References

[1] K. Aoyama, F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces,
Nonlinear Anal., 74(2011), 4387-4391.

[2] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin,

Heidelberg, 1999.
[3] K.S. Brown, Buildings, Springer-Verlag, New York, 1989.
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[21] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and non-

strictly convex minimization, Set-Valued Anal., 16(2008), 899-912.



528 ESKANDAR NARAGHIRAD

[22] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.
[23] B. Nanjaras, B. Panyanak, W. Phuengrattana, Fixed point theorems and convergence theorems

for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal., Hybrid Sys-

tems, 4(2010), 25-31.
[24] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive

mappings, Bull. Amer. Math. Soc., 73(1967), 595-597.

[25] W. Phuengrattana, Approximating fixed points of Suzuki-generalized nonexpansive mappings,
Nonlinear Anal., Hybrid Systems, 5(2011), 583-590.

[26] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.
Anal. Appl., 67(1979), 274-276.

[27] H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer.

Math. Soc., 44(1974), 375-380.
[28] N. Shoiji, W. Takahashi, Strong convergence of approxiamted sequences for nonexpansive map-

pings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.

[29] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications, Yoka-
hama Publishers, Yokahama, 2000.

[30] W. Takahashi, G.E. Kim, Approximating fixed points of nonexpansive mappings in Banach

spaces, Math. Japon., 48(1998), 1-9.
[31] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138.

[32] H.K. Xu, T.K. Kim, Convergence of hybrid steepest-descent methods for variational inequalities,

J. Optim. Th. Appl., 119(1)(2003), 185-201.
[33] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992),

486-491.

Received: July 7, 2012; Accepted: June 13, 2013


