Fized Point Theory, 15(2014), No. 2, 501-528
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

APPROXIMATING FIXED POINTS OF 2-GENERALIZED
HYBRID MAPPINGS IN BANACH SPACES AND CAT(0)
SPACES

ESKANDAR NARAGHIRAD

Department of Mathematics, Yasouj University,
Yasouj 75918, Iran.
Email: eskandarrad@gmail.com; esnaraghirad@mail.yu.ac.ir.

Abstract. In this paper, we first prove weak and strong convergence theorems for Ishikawa and
Halpern iterations of 2-generalized hybrid mappings in uniformly convex Banach spaces and we ap-
ply our method to provide an affirmative answer to an open problem raised by Hojo, Takahashi and
Termwuttipong [Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces,
Nonlinear Analysis, 75 (2012) 2166-2176]. We then extend the results to CAT(0) spaces, which
include especially simply connected complete Riemannian manifolds with nonpositive sectional cur-
vature. Our results improve and generalize some known results in the current literature.
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1. INTRODUCTION

Throughout this paper, we denote the set of real numbers, the set of nonnegative
real numbers, the set of negative real numbers and the set of positive integers by
R, R, R~ and N, respectively. Let E be a (real) Banach space and let C be a
nonempty subset of E. Let T : C — FE be a mapping. We denote by F(T') the set of
fixed points of T, i.e., F(T) = {x € C : Tx = 2}. A mapping T : C — E is said to
be nonexpansive if |Tax — Ty|| < ||z — y|| for all z,y € C. A mapping T : C — FE is
said to be quasi-nonexzpansive if F(T) # () and | Tz — y|| < ||z — y|| for all 2 € C and
y € F(T).

The concept of nonexpansivity plays an important role in the study of Mann-type
iteration for finding fixed points of a mapping T : C' — C. Recall that the Mann-type
iteration is given by the following formula

Tl = YT Tn + (1 — Yn)2n, 1 €C. (1.1)
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Here, {¥n}nen is a real sequence in [0, 1] satisfying some appropriate conditions. A
more general iteration scheme is the Ishikawa iteration, given by

x1 € C' chosen arbitrarily,
Yn = T2y + (1 - )\n)xna (12)
Tn+l = ’YnTyn + (1 - 'Yn)xna

where the sequences {\, }nen and {7, }nen satisfy some appropriate conditions. In
particular, when all \,, = 0, the Ishikawa iteration (1.2) becomes the standard Mann
iteration (1.1). Recall that the one-step Halpern iteration is given by the following
formula

Tpt1 = apu+ (1 — )Tz, uweCl, x1€C. (1.3)
Here, {a, nen is a real sequence in [0, 1] satisfying some appropriate conditions. A
more general iteration scheme of one-step Halpern iteration is the two-step Halpern
iteration given by

uw € C, x1 € C chosen arbitrarily,
Yn = (1= Bu)an + BTy, (1.4)
Tp41 = QpU + (1 - an)ﬂm

where the sequences {8, }nen and {ay, }nen satisfy some appropriate conditions. In
particular, when all 3, = 1, the Halpern iteration (1.4) becomes the standard Halpern
iteration (1.3). When all o, = 0, the Halpern iteration (1.4) becomes the standard
Mann iteration (1.1).

The construction of fixed points of nonexpansive mappings via Mann’s algorithm
[22] has been extensively investigated recently in the current literature (see, for ex-
ample, [26] and the references therein). Numerous results have been proved on Mann
and Halpern’s iterations for nonexpansive mappings in Hilbert and Banach spaces
(see, e.g., [16, 33, 28]).

In 1998, Takahashi and Kim [30] proved the following interesting result.

Theorem 1.1. Let C' be a nonempty, closed and convex subset of a uniformly con-
ver Banach space E which satisfies the Opial property, and let T be a nonexpansive
mapping of C into itself. Let, for any initial data x1 in C, the iterates {xy}nen be
defined by (1.2) such that A\, € [0,b] and vy, € [a,b], or A, € [a,b] and 7y, € [a,1], for
some a,b with 0 < a < b < 1. Then the sequence {x, }nen converges weakly to a fized
point of T.

Let C be a nonempty subset of a real Banach space E. Following Hojo, Takahashi
and Termwuttipong [17], a mapping T : C — F is said to be
(1) generalized hybrid if there exist o, 8 € R such that

allTe = Ty|]2 + (1 - a)llz — Tyl|? < BTz — y|]2 + (1 B)llz — |2, Va,y e C.

(2) 2-generalized hybrid or (a1, ag, B1, B2)-generalized hybrid if there exist aq, s, B,
B2 € R such that

a||T?z = Ty|* + o[ Tz — Ty|* + (1 — a1 — ag)llz — Ty|*
< BTz —yll? + Bl T2 — yl* + (1 = B = Bo)llz —yll*, Vz,yeC.

Clearly, (0,1,1, 1)-generalized hybrid maps are exactly nonexpansive maps.
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Let C be a nonempty, closed and convex subset of a Hilbert space H and = € H.
Then there exists a unique nearest point z € C such that ||z —z|| = infycc ||z —y||. We
denote such correspondence by z = Pox. The mapping Pc¢ is called metric projection
of H onto C.

Recently, Hojo, Takahashi and Termwuttipong [17] proved the following fixed point
theorem for 2-generalized hybrid mappings in a Hilbert space.

Theorem 1.2. ([17]) Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let T : C — C be a 2-generalized hybrid mapping with F(T) # (. Suppose
that {xy, }nen 18 a sequence generated by x1 = x € C, u € C' and

n—1
1
Tpt1 = You+ (1 — *yn)ﬁ E T*z,, VneN, (1.4)
k=0

where 0 < v, < 1, limy oo v = 0 and > 07, v, = oo. Then {x,}nen converges
strongly to Pp(ryu, where Pp(py is metric projection of H onto F(T).

Hojo, Takahashi and Termwuttipong investigated strong convergence theorems for
2-generalized hybrid mappings and posed the following open question in their final
remark of [17, Section 3].

Question 1.1. Is there any strong convergence theorem of Halpern’s type for 2-
generalized hybrid mappings in a real Hilbert space H?

We know that the assumption vy, — 0 as n — oo in iterations (1.1) and (1.2) will
weaken the action of operator T'. So, we are interested in imposing other assumptions
on the parameter 7, so that the sequence {z,},en converges strongly to a fixed
point of T'. This is the main motivation of this paper to study fixed point theorems
of 2-generalized hybrid mappings in the framework of Banach spaces. In the present
paper, we first prove weak and strong convergence theorems for Ishikawa and Halpern
iterations of 2-generalized hybrid mappings in uniformly convex Banach spaces and we
apply our method to provide an affirmative answer to question 1.1. We then extend
the results to CAT(0) spaces, which include as an important special case the simply
connected complete Riemannian manifolds with nonpositive sectional curvature. Our
results improve and generalize some known results in the current literature, see for
example [17, 30].

2. PRELIMINARIES
Let E be a Banach space with the norm ||.|| and the dual space E*. The modulus
0 of convexity of E is denoted by

. rz+y
o0 =int {1- XM o < 1y < 10 - ) 2

for every e with 0 < ¢ < 2. A Banach space F is said to be uniformly convez if
d(e) > 0 for every € > 0. Let Sp = {z € E : ||z|| = 1}. The norm of E is said to be
Gateaux differentiable if for each x,y € Sg, the limit

ol tyll = ]

lim 7 (2.1)
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exists. In this case, F is called smooth. If the limit (2.1) is attained uniformly in
x,y € Sg, then E is called uniformly smooth. The Banach space F is said to be
strictly convez if || £52|| < 1 whenever z,y € Sg and z # y. It is well known that E
is uniformly convex if and only if E* is uniformly smooth. It is also known that if
FE is reflexive, then FE is strictly convex if and only if E* is smooth; for more details,
see [29]. Let E be a Banach space with the norm ||.| and the dual space E*. When
{z,}nen is a sequence in F, we denote the strong convergence of {z,}nen to z € E
by x, — x and the weak convergence by z, — z. For any sequence {z},en in
E*, we denote the strong convergence of {z%},en to 2* € E* by xf — x*, the weak
convergence by z; — x* and the weak-star convergence by z; —* 2*. The normalized
duality mapping J : E — 2F" is defined by

J@)={f € E": (w, f) = |l=l”, |zl = fI}, VzeE.

Now, we define a mapping p : [0,00) — [0,00), the modulus of smoothness of F, as
follows:
p(t) = sup { (e +yll +la —yl) 12y € B, ol = 1, ull = £}
It is well known that F is uniformly smooth if and only if lim;_.q @ =0. Let geR
be such that 1 < ¢ < 2. Then a Banach space E is said to be g-uniformly smooth
if there exists a constant ¢, > 0 such that p(t) < ¢4t? for all t > 0. If a Banach
space E admits a sequentially continuous duality mapping J from weak topology to
weak-star topology, then J is single-valued and also E is smooth; see for more details
[14]. In this case, the normalized duality mapping J is said to be weakly sequentially
continuous, i.e., if {zy tneny C E is a sequence with z, — x € E, then J(z,,) =* J(x)
[14]. If E = H is a Hilbert space, then J = I the identity mapping on H. A Banach
space E is said to satisfy the Opial property [12] if for any weakly convergent sequence
{Zn}nen in E with weak limit x,
limsup ||z, — z|| < limsup ||z, — y/|
n—oo n—oo

for all y € F with y # z. It is well known that all Hilbert spaces, all finite dimensional
Banach spaces and the Banach spaces [P (1 < p < 00) satisfy the Opial property; see,
for example [14, 12, 13]. It is also known that if E admits a weakly sequentially
continuous duality mapping, then F is smooth and enjoys the Opial property; see for
more details [11, 14].

Let C be a nonempty, closed and convex subset of a Banach space F and {z, }nen
be a bounded sequence in E. For any x € E, we set

r(z,{z,}) = limsup ||z — x,]|.
n—o0
The asymptotic radius of {x, }nen relative to C is defined by
r(C{zn}) = inf{r(z,{z,}) : z € C}.
The asymptotic center of {x,},en relative to C' is the set

A(C{xn}) ={z € C:r(z,{xn}) = r(C,{z,})}.
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It is well known that, in a uniformly convex Banach space F, A(C,{z,}) consists of
exactly one point; see [12, 13].

Let [°° denote the Banach space of bounded real sequences with the supremum
norm. It is well known that there exists a bounded linear functional g on [*° such
that the following three conditions hold:

(1) If {tn}nen € 1°° and t,, > 0 for every n € N, then p(t,) > 0;

(2) If t,, = 1 for every n € N, then u(t,) = 1;

(3) p({tnt1}) = p({tn}) for all {t,}nen € 1°°.

Such a functional p is called a Banach limit and the value of u at {t,,} € I*° is denoted
by pnt, (see, for example [29]).

Lemma 2.1. ([1]) Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space E and let T : C — E be a mapping. Suppose that there exist
x € C and a Banach limit p such that {T"x}nen is bounded and

pal T = Ty||* < | T2 — yl|?
forally € C. Then T has a fixed point.
Lemma 2.2. Let E be a Banach space and C be a subset of E. Let T : C'— E be an
(a1, g, B1, B2)-generalized hybrid mapping for some a1, aq, b1, B2 € R. Suppose that

{T"z}pen is bounded for some x € C. Then p,||T"x — Tyl||? < pn|| Tz — y||? for all
Banach limit p and for oll y € C.

Proof. Let u be a Banach limit and take y € C arbitrarily chosen. Since T is an
(a1, g, B, Ba)-generalized hybrid mapping, we conclude that
ar|T" 22 — Ty| + aol| T2 = Ty|? + (1 — a1 — a)|| T2 — Ty||?
< BT 2z —yl? + Bol| T o — yl? + (1 = B = Bo) [Tz — 2
for all n € N. Since p is a Banach limit, we obtain
arpin|[ T = Ty||* + azpin|| T2 — Ty|? + (1 — a1 — az)un|| T 2 — Ty|?
< Biunl T = ylI? + Bopin| T2 = yl|* + (1 = B1 = Bo)pn [ T2 — yl|?
for all n € N. This implies that
| T = Ty||* < | T2 — yl|?
for all y € C, which completes the proof. O

The following result is an immediate consequence of Lemmas 2.1 and 2.2.

Corollary 2.1. Let E be a uniformly convex Banach space and C' be a subset of E. Let
T:C — E be an (a1, as, 1, B2)-generalized hybrid mapping for some aq, aa, 1, P2 €
R. Then F(T) # 0 if and only if there exists x € C such that {T"x}nen is bounded.

Lemma 2.3. Let E be a Banach space and let C be a nonempty, closed and convez
subset of E. Let T : C — E be an (a1, s, f1, f2)-generalized hybrid mapping for
some ay, s, 1, P2 € R such that F(T) # 0. Then T is quasi-nonexpansive.

Proof. Let x € C and z € F(T). Then we have
Tz — 2| = aa||T?2 — Tz||?> + a2||Tz — Tx||* + (1 — a1 — ag)||z — Tx|?

< BT = all*+ Bl Tz — 2l + (1 = 61 = o) = o
=l — 2II%
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This implies that
[Tz — 2| < |lz— 2|,
which completes that proof. O

Lemma 2.4. Let C' be a nonempty subset of a Banach space E. Let T : C — E be
an (a1, a9, b1, B2)-generalized hybrid mapping for some a1, as, b1, P2 € R. Then for

any x,y € C,
2 = Ty||* <l = y||* + a1|0ry + |a2lney + 181102,y + |B2low.y,
where
Ory = llo — T%2|? + 2|z — T|||| T?x — Tyl|| + 2||a — T?z|||z — Tyl,
ey = || — Ta||* + 2|z — Ta|||Te — Ty + 2|z — T[]z — Tyl
Oy = || T%2 — 96||22 +2|T%x — zfl|lz — y|| + 2| %z — 2| T?x — yl|,
Ozy = [Tz —z|* + 2(|Tz — zf||lz — y|| + 2| Tz — z|||| Tz — y].

Proof. We divide the proof into several cases.
Case 1. If oy, a9, 81, B2 € RT, then

| — Ty||”

= aillz = Ty[|? + aslla — Ty[* + (1 — a1 — az)||lz — Ty|?

< aqlz — 2| + | T2z — Ty||J?

+aoflla = Tl + | Tz = Ty[]* + (1 — a1 — az) ||z — Tyl

< arflle = T%||* + | 7%z — Ty||?* + 2l|a — T%|||T%2 — Ty[| + 2[|= — T*z[|||l= — Ty||]
+aoflla = Tzl* +||Te — Ty|* + 2|z — Ta[|Te — Ty|| + 2|z — Tz|||z — Tyl|]
+(1— a1 —ag)|z —Ty?

= a1||T%z — Ty|? + ao|| Tz — Ty|* + (1 — a1 — az)la — Ty[|* + 16,y + azna,y
< BT = yl* + Ba| Tz =yl + (1 = B — Bo)llz — yl|* + 16y + znay

< BT — || + |z — yll* + Bo[|| Tz — 2| + [l — y|]?

+ (1= = Bo)llz = ylI* + 16y + aznay

< BTz — 2f* + [lo — yl* + 2|T%z — |||z — y|| + 2| 7?2 — 2| 7%z - y]|]

+ BolllTe — z||” + |l — y||* + | Tz — z|[lz — yl| + | Tz — 2| Tz — yl|]

+ (1= 81— Bo)lle — yl* + arby + asney

= Bille = yl* + Ballz =yl + (1 = B = Bo) |z — y||®

+ a0y + Ny + B10z,y + B204y

= llz = yll* + 0100y + a2nary + Prday + Pa0ay-

Thus we have

lz = Tyl* < lle =yl + 0100y + 0210y + Bray + P20y
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Case 2. If a1, a2, 81 € RT and 85 € R™, then
e =yl + 10,y + @2tz + B10a,y
= Billz = ylI? + Ballz =yl + (1 = B1 = Bo)ll — yll* + @16z + 21y + B10ay
> Bullle =yl + | T% — 2|® + 2| T2 — |||z — yl| + 2| Tz — 2||[|T%z — y]|]
+Ball|lTz =yl + | T2 = 2l + (1= B1 = Bo)llw = yl* + 416y + a2nay
> Bullle =yl + 1 T% — 2| + 2| T2z — |||z — yl| + 2| 7%z — 2||[|T%z — y]|]
+ Bo[l Tz =yl + || Tz — ||* + 2| Tz — ||| — yl| + 2| Tz — ||| Tz — y]]
+ (1= 81 = Bo)|lz = ylI” + a1y + a2nay
> 1| T%z — y||*Bol| Tz — y]?
+ Bollle — T||* + 2|l — Tx||| T2 — y|| + 2||z — T||]a — Tyl
+ (1= 01— Bo)llx = ylI* + 16,y + aoney
= BillT?z — y|I” + Bo|| Tx — ylI> + (1 = B1 = Bo)llz — ylI* + a16a,y + @21y + P20y
> a1||T?e — Ty|* + ao||Tz — Ty|* + (1 — a1 — az)|lz — Ty|?
+ a1y, + 2Ny + B20sy
> iz = Tyl|* + asllz = Ty||* + (1 — a1 — az)llz = Ty||* + Sa0,,
= ||z = Tyl* + B20s -
Thus we have
|z — Ty||* < ||z — yl|* + a16sy + Q2ney + B16sy + (—B2)0w 4.

Similarly, we can prove the following possible cases and we omit the details.
Case 3. If a1, oz, 32 € RT and 8; € R™, then

lz = Tyl* < [lz = ylI* + a1,y + @2iey + (=B1)80,y + P20y
Case 4. If a1, 81,82 € RT and ap, € R™, then
lz = Tyl* < [lz = ylI* + @10z + (—a2)n0y + Brdsy + 20y
Case 5. If a1, 09 € RT and 1,2 € R™, then
[ = Tyl* <l = ylI> + a1y + @2my + (=51)02,y + (—B2)00.y-
Case 6. If a1, 80 € RT and s, 81 € R™, then
[ = Ty[I* <l = yll* + a1y + (—2)e,y + (—=B1)30,y + P20y
Case 7. If a1, 81 € RT and aw, f2 € R™, then
=Tyl < llz = yl* + 10sy + (—2)1,y + Brdsy + (—B2)0u,y-
Case 8. If a; € RT and 1, e, B2 € R™, then
2 =Tyl < llz = yl> + 16,y + (—a2)ney + (=51)02,y + (—B2)00.y-
Case 9. If o1 € R™ and ag,, 31,32 € R, then
[z =Tyl < ||z =yl + (—a1)be,y + Q2ney + B10s,y + P20y
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Case 10. If as, 31 € RT and a1, 32 € R™, then
o = Ty[I* <l = yll* + (=1)8s,y + @21,y + Bidsy + (—B2)00,y-
Case 11. If as, 32 € RT and a1, 31 € R™, then
o = Tyll* < llz = ylI* + (—a1)0ey + a2nay + (=B1)8ay + Ba0a.y.
Case 12. If 31,32 € RT and oy, € R™, then
lz = Tyl* < llo =yl + (=01)oy + (—02)ay + Biday + B2040y-
Case 13. If oy € RT and oy, 51,82 € R™, then
|z — TyH2 <z - y”2 + (—a1)bey + a2mey + Br0ay + (—B2)05,y.
Case 14. If 3, € RT and oy, a9, 81 € R™, then
lz =Tyl < llo = yl* + (—a1)bay + (—a2)iey + (—51)0uy + P20y
Case 15. If 8; € Rt and aq, a9, 32 € R™, then
lz =Tyl < llo = yl* + (—a1)bay + (—a2)iey + Bidey + (—B2)00y-
Case 16. If a1, a9, 81,82 € R™, then
lz = Tyl? < llo = yl* + (=a1)bay + (—a2)iey + (=51)8uy + (—B2)00.y.
This completes that proof. O

Proposition 2.1. (Demiclosedness Principle) Let E be a Banach space with the
Opial property and C be a subset of E. Let T : C — FE be an (ay, a9, 51, 02)-
generalized hybrid mapping for some ay,as, b1, P2 € R. If {x,tnen converges weakly
to z, lim, oo [|[ Ty, — x| = 0 and lim, oo [|[T?2,, — 24| = 0, then Tz = 2. That is,
I —T is demiclosed at zero, where I is the identity mapping on E.

Proof.  Since {x,}nen converges weakly to z, lim, o ||[T2, — z,|]| = 0 and
limy, 00 || 7?2, — @n]] = 0, we have that {x,}nen, {Ton}neny and {T?,}nen are
bounded. Let My = sup{||x,||, [Tz ||, | T2, |2]l, | T2]| : » € N} < oo. It is obvious
that

lim |T%z, — Tx,| = 0. (2.2)

By the definition of 2-generalized hybrid mapping and in view of Lemma 2.2, for all
n € N, we get that

lan = Tzl < [lan — 2l + |a|0n + |az|nn + 116, + |B2lon,
where
O = |20 — T?ap||” + 2l|zn — T?20 || T?2n — Tzl| + 2|20 — T2wpllllz, — T2,
Mo = |75 — Txn”Q + 2|z — Tap|||| T2y, — T2| + 2|20 — Tan||l|zn — T2,
Oy = HT2xn - xn”Q + 2||T2xn = zpllllzn — 2l + 2||T293n - xn”HTzzn — 2|,
on = |Txn — xn||2 + 2| Txn — zollllzn — 2|l + 2| Tzn — 20| T20 — 2|

In view of (2.2), we conclude that

lim 6, = lim 7, = lim ¢, = lim o, =0.
n—oo n—oo n—oo n—oo
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This implies

limsup ||z, — Tz|| < limsup ||z, — z||.
n—oQ n—oo

From the Opial property, we obtain Tz = z. (]

Corollary 2.2. Let E be a Banach space with the Opial property and C be a subset
of E. Let T : C — E be an («, B8)-generalized hybrid mapping for some o, 8 € R. If
{Zp}nen converges weakly to z and lim, o || T2y — x| = 0, then Tz = z. That is,
I —T is demiclosed at zero, where I is the identity mapping on E.

Proof. Since {x,}nen converges weakly to z and lim, o [|Tx, — x,| = 0, we have
that {z,}nen and {T2, }nen are bounded. Let My = sup{||z, ||, | Tzl |2l | T2 :
n € N} < co. A similar argument as in the proof of Proposition 2.1 shows that for
allneN

lzn — T2||? < ||zn — 2||* + anp + Bon,

where
M = |2 = Toa|? + 2|20 — Tap|||T2n — T2l + 2llzn — Tapllllz, — Tz,
on =Ty — anQ +2[|Tzn — znlll|lzn — 2| + 2| T20 — 2ol T2n — 2||.
Since limy,—, o0 || T2n — 2, || = 0, we see that

lim n, = lim o, =0.
n— oo n— o0

This implies

limsup ||, — Tz|| < limsup ||z, — 2|
n—oo n—oo

From the Opial property, we obtain Tz = z.

Lemma 2.5. ([31]) Let v > 0 be a fized real number. If E is a uniformly convex
Banach space, then there exists a continuous strictly increasing conver function g :
[0, +00) — [0, 4+00) with g(0) =0 such that

A+ (1= Nyl* < Allel® + (1= Nlyl* = A1 = Ng(lz — yl),
forallz,y € B.(0) ={u € E:||ul| <r} and X € [0,1].

Lemma 2.6. ([27]) Let E be a uniformly convex Banach space, let {t,}nen be a
sequence of real numbers such that 0 < a <t, <b<1 foralln € N, and let {x, }nen
and {yn tnen be sequences of E such that limsup,,_, . ||zx] < 7, imsup,,_, llyn]l <7
and

lim ||tpzn + (1 —t)ynl| =7  for some r > 0.

n—oo
Then limy, 00 [|[Zn — yn|| = 0.
Let C and D be nonempty subsets of real Banach space E with D C C. A mapping
Qp : C — D is said to be sunny if

Qp(Qpz +tlx — Qpx)) = Qpx

for each x € F and t > 0. A mapping Qp : C — D is said to be a retraction if
Qpx =z for each x € C. If E = H is a real Hilbert space, then Qp = Pp the metric
projection of C onto D.
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Lemma 2.7. (26, 29]) Let C and D be nonempty subsets of a real Banach space E
with D C C and let Qp : C — D be a retraction from C into D. Then Qp is sunny
and nonexpansive if and only if

(2 =Qp(2),J(y = Qp(2))) <0
for all z € C and y € D, where J is the normalized duality mapping of E.

Lemma 2.8. ([26]) Let E be a real Banach space and J be the normalized duality
mapping of E. Then,

lz +yl* < llzl* + 2(y, J (= + y)),
forallx,y € E.

Lemma 2.9. ([32]) Let {sp tnen be a sequence of nonnegative real numbers satisfying
the inequality:
5n+1 S (1 - ’Yn)sn + 7n5na vn Z 17
where {Yn }nen and {0y, tnen satisfy the conditions:
(i) {¥n}nen C [0,1] and Y07 | v, = 00, or equivalently, TI22 (1 — ~,,) = 0;
(%) limsup,,_, ., 0, <0, or
(id)" Y00 Yl < 00.
Then, lim,, o s, = 0.

Lemma 2.10. ([21]) Let {an }nen be a sequence of real numbers such that there exists
a subsequence {n;}ien of {n}nen such that a,, < an,11 for all i € N. Then there
exists a subsequence {my}ren C N such that my — oo and the following properties
are satisfied by all (sufficiently large) numbers k € N:

Gy, < Gmy+1 and ag < Qpyt1-

In fact, mp = max{j < k:a; <aj1}.
The following result which is a generalization of Lemma 2.5 has been proved in [7].

Lemma 2.11. Let E be a uniformly convex Banach space and B, := {x € E :
lz|| <7}, > 0. Then there exists a continuous strictly increasing convex function
g :10,00) = [0,00) with g(0) =0 such that

Az + By + 212 < Alz|1? + Bllyll* + 111> = Mg (|l - yl))
for all z,y,z € B, and all X\, B,y € [0,1] with A+ +y=1.

3. FIXED POINT AND CONVERGENCE THEOREMS IN BANACH SPACES

In this section, we prove weak and strong convergence theorems for Ishikawa and
Halpern iterations of 2-generalized hybrid mappings in a Banach space.

Lemma 3.1. Let E be a Banach space and let C be a nonempty, closed and convex
subset of E. Let T : C — E be an (a1, as, f1, B2)-generalized hybrid mapping for
some o, az, f1, P2 € R such that the fized point set F(T) is nonempty. Let {Tn}nen
and {yYn }nen be two sequences defined by (1.2) such that {\,}nen and {vn}nen are
arbitrary sequences in [0,1]. Then the following assertions hold:

(1) max{||xnt1 — 2|, lyn — 2|} < ||z — 2|| for any z € F(T) and for alln =1,2,....
(2) im0 ||2n — 2|| exists for any z € F(T).
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(8) im0 d(xy, F(T)) exists, where d(z, F(T)) denotes the distance of x to the
fized-point set F(T).

Proof. Let z € F(T). In view of Lemma 2.3, we conclude that
lyn =2l = [AT2n + (1= Ap)zs — 2|

Al|[Txp — 2] + (1 = Ap)|lzn — 2|

Anllzn — 2|l + (1L = Ap)l|zn — 2|

= llzn -zl

<
<

Consequently,

”'YnTyn + (1 - 'Yn)xn - Z”

Vol Tyn — 2l + (1 = v0) 20 — 2|
Yallyn = 2| + (1 = ) #n — 2||
Yollzn — 2| + (1 = y)llzn — 2|

= llzn ==l

[€nt1 — 2|l

IAIA A

This implies that {||z, — z||}nen is a bounded and nonincreasing sequence for all

z € F(T). Thus we have lim,_, ||z, — z|| exists for any z € F(T). In the same

manner, we see that {d(z,, F(T))}nen is also a bounded nonincreasing real sequence,

and thus converges. O
The proof of the following corollary is similar to that of Lemma 3.1 and we omit

it.

Corollary 3.1. Let E be a Banach space and C be a nonempty, closed and convex

subset of E. LetT : C — E be an (a1, aa, f1, B2)-generalized hybrid mapping for some

ay, a9, 81, P2 € R such that the fized point set F(T) is nonempty. Let a sequence

{Zn}nen with 1 in C be defined by (1.1) such that {Vn}nemathobn @S an arbitrary

sequence in [0,1]. Then the following assertions hold:

(1) |Tn+1 — 2|| < ||xn — 2| for any z € F(T) and for alln=1,2,....

(2) imy, o0 ||zn — 2|| exists for any z € F(T).

(8) im0 d(xy, F(T)) exists, where d(z, F(T)) denotes the distance of x to the

fized-point set F(T).

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C — E be an (a1,as, b1, 52)-
generalized hybrid mapping for some aq,az, 81, P2 € R. Let a sequence {xy, }nen with
x1 € C be defined by (1.1) and the sequence {yn}nen be chosen so that 7, € [0,1].
(i) If {xn}nen is bounded, 1inH_l)iOI<1>fHT$n — x| =0 and linn_1>ioréf |T?x, — x| = 0,

then the fived point set F(T) # (.
(it) Suppose that F(T) # § and liminf v, (1 — v,) > 0. Then {xy, }nen is bounded
n—oo

and liminf ||Tx,, — z,| = 0.
n—oo

Proof. (i) Assume that {x,}nen is bounded, liminf|Tz, — z,|| = 0 and
n—oo

liminf | 7%z, — x,| = 0. Consequently, there is a bounded subsequence {Tz,, }ren
n—oo
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of {Txy }nen such that
khﬁrgo ”Txnk = Ty, H = khﬁrgo ”Tz‘rnk = Ty, ” =0.
Suppose A(C,{xn, }) = {z}. Let M3 = sup{||zn, ||, |Txn, |, |2, |T%| : k € N} < o0.
In view of Lemma 2.4, for all k£ € N,
||'Tnk - TZH2 < ||xnk - 2”2 + alenk + Q21 + 6157119 + 62(7”“
where

9”’“ = Hx”k — sznkHz + 2||xnk - sznk||||T2xnk - TZH
+2H‘r”k - sznk ” Hxnk - TZH,

M, = ne = Tan|* + 2w, — Tan, [[|T2n, — T2

2|0, = Twn, |20, — Tz,
6nk = ||T2xnk — Tny, ||2 + 2||T2xnk — Tny, ||||$nk - Z”

+2HT2xnk — Ty ||HT2I711¢ - Z”v
Onp = HTxnk — Ty, ”2 + QHTxnk — Ty, ||||x”k - Z” + 2||T'Tnk — Ty ||HTxnk - ZH

It is obvious that

lim 6,, = lim n,, = lim §,, = lim o,, =0.

k—o0 —00 k— k— o0
This implies

limsup ||z, — Tz|| < limsup ||z, — z]|.
k—o0 n— 00

From the Opial property, we obtain Tz = z.
(ii) Let F(T) # 0 and let z € F(T). It follows from Corollary 3.1 that lim, o ||z, —2||
exists and hence {2, },en is bounded. In view of Lemma 2.3 and Lemma 2.5, we obtain

[Zn41 — Z||2 = v Ton + (1 = yn)zn — zHQ
< Wl Tzn — Z||2 + (1 =) llzn — ZHQ = (1 =) g Ty — 24
< Ynllzn — Z||2 + (1 =) llzn — ZH2 =M1 =) g(| Tz — 4]|)
= o0 = 2l1> = ¥ (1 = ¥)g(| Twn — 2al]).

(3.1)
In view of (3.1), we conclude that
(1 =) T2n = znl)) < llon — 2)2 = lznsr — 2|12
—0
as n — oo. From the assumption liminf, o v, (1 — v5) > 0, we have
liminf g(|| Tz, — z,||) = 0.
n—oo
Therefore, from the property of g we deduce that
liminf || Tz, — z,| = 0.
n—oo
This completes the proof. O

Theorem 3.2. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C — E be an (a1, 2,1, 52)-
generalized hybrid mapping for some aq, s, f1, B2 € R. Let { A }nen and {¥n}nen be
sequences such that A\, € [a,b] and 7, € [a,1] for some a,b with 0 < a < b <1 and
let {Zn}nen be a sequence with x1 in C defined by (1.2).



APPROXIMATING FIXED POINTS OF 2-GENERALIZED HYBRID MAPPINGS 513

(i) If {xn}nen is bounded, linrgioIngTxn —x,]| =0 and linniior.}f |T%x, — x,| = 0,
then the fized point set F(T) # (.

(i1) Assume F(T) # (0. Then {z,}nen is bounded and linrggf Tz, — 2] =0.
Proof. (i) Assume that {x,}nen is bounded, linrr_1>i£f Tz, — 2,]] = 0 and
liminf | T%z,, — 2,|| = 0. Consequently, there is a bounded subsequence {T'z,, }ren
07%_{)?33”}"@\; such that

lim || Txy, — @y, || = lim ||T2xnk —xp, || =0.
k—o0 k— o0

Suppose A(C,{xn, }) = {z}. Let My = sup{||zn, ||, |Tzn, I, 2], |Tz]| : » € N} < 0.
In view of Lemma 2.4, for all k € N,

||$nk - TZH2 < ||xnk - 2”2 + alenk + a2y, + 615nk + 520nka

where

ank = ||$nk - sznk”Q + 2”1'7% - T2xnk ””Tank - TZ”
+2H‘/'Enk - T2mnk HHmnk - TZH,

Nny = Hxnk - T‘Tnk H2 + 2||w’ﬂk - Tmnk || ||Tmnk - TZ”
+2Hxnk N Txnk ” Hxnk - TZ”v

67Lk = ”TZ'ITL}C — Ty, H2 + 2||T2xnk — Ty, ||||z"k - Z”
2T, — 2y [ T2, — 2,
Onp = HT:ET% = Tny ”2 + 2||Txnk - xnk””xnk - Z” + 2||T£L'n,\ — Ty ||HTmnk - Z”

It is easy to see that

k:lggo Oy = klggo e = klggo Oy, = klggo ony = 0-
This implies
limsup ||z, — Tz|| < limsup ||z, — z]|.
k—o0 n—00

From the Opial property, we obtain Tz = z.

(ii) Let F(T) # 0 and take z € F(T') arbitrarily chosen. Then, in view of Lemma
3.1, lim,, o ||z, — 2|| exists and hence {z,, }nen is bounded. By Lemma 2.3, we have
that

Tz, — 2| < ||@n — 2|, VR €N.

Set
lim ||z, — z|| = d.
n—oo
This implies that
limsup ||Tz, — 2| < d. (3.2)
n—oo
On the other hand, we have
[znt1 =2l = Ty + (1 = Wm)zn — 2|

< Wl Tyn — 2l + (1 = v0)lzn — 2|
< Yallyn — 2l + (1 = y)llzn — 2|l
= Yallyn — 2l + |20 — 2|l = ullzn — 2]
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This implies that
[#n+1 — 2]l = llzn — 2]
Tn

[€nt1 = 2| = lzn — 2] < < lyn = 2l = llan — 2]

Thus, we have
d < liminf ||y, — 2| (3.3)
n—oo
In view of (3.3), we conclude that
d < liminf ||y, — z|| < limsup ||y, — 2|| < d.
n— oo n—oo

This means that
lim ||y, — z|| = d.
n—oo

Therefore
lm || An (T2 —2) + (1 = Ap)(zn — 2)|| = lim ||y, — 2|| = d. (3.4)
n—oo n— oo
In view of (3.4) and Lemma 2.6, we obtain
lim ||Tz, — x| = 0.
n—oo
This completes the proof. O

Corollary 3.2. Let C' be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C — E be an an («, B)-generalized
hybrid mapping for some a, B € R. Let {\, }nen and {vn}nen be sequences such that
An € [a,b] and v, € [a,1] for some a,b with 0 < a < b < 1, and let {x,}nen be a
sequence with x1 in C defined by (1.2).

(i) If {xn}nen is bounded and liflni)igf Tz, —z,| =0, then the fized point set F(T) #

0.

(i1) Conversely, assume F(T) # (0. Then {xy, }nen s bounded and lin_l}inf Tz —x,| =
n o0
0.
Proof. (i) Assume that {z, },en is bounded and lim inf || Tz, —x, || = 0. Consequently,
n—oo

there is a bounded subsequence {Tx,, }ren of {TZn tnen such that limy oo || T2y, —
T, || = 0. Suppose A(C, {zn, }) = {z}. Let M5 = sup{||zn, ||, [|[T2n, |, |2, | T2]| : k €
N} < co. In view of Lemma 2.4, for all k € N,

||‘Tnk - TZ||2 < Hxnk - Z||2 + any,, + Bon,,,

where
Nnye = ||xnk - T‘rnkHQ + 2||$le - T‘rnk ||HT‘rnk - TZH
+2||xn1c - Txnk HHxnk - TZH’
Oy = [T, — xnkH2 + 2(|Tzny, — Ty |20, — 2|l
+2||Tan, — @n, 1T 20, — 2|

Since limy 00 ||T%n, — @n, || = 0, we conclude that

lim n,, = lim o,, =0.
k—o0 k— o0
This implies
limsup ||z, —Tz|| < limsup ||z, — z]|.
k—o0 n—00
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From the Opial property, we obtain Tz = z.
A similar argument as in the proof of Theorem 3.2 proves (ii), which completes the
proof. O

Theorem 3.3. Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E with the Opial property. Let T : C — E be an («, B)-generalized
hybrid mapping for some «,B € R such that the fized point set F(T) is nonempty.
Let {A\n}nen and {vn}nen be sequences in [0,1], and let {z,}nen be a sequence with
x1 in C defined by (1.2). Assume that linrgioréf n(1=7n) > 0, and assume, in addition,

limsup A\, < 1. Then {x, }nen converges weakly to a fized point of T.

n— oo

Proof. Tt follows from Theorem 3.2 that {x,}nen is bounded and lim, o || T2, —
Zn|| = 0. The uniform convexity of F implies that F is reflexive; see, for example,
[29]. Then, there exists a subsequence {xy, }ien of {® }nen such that x,, = p € C as
1 — 00. In view of Corollary 2.2, we conclude that p € F(T'). We claim that z,, — p
as n — oo. If not, then there exists a subsequence {xy;}jen of {2, }nen such that
{xn, }jen converges weakly to some ¢ € C' with p # ¢. In view of Corollary 2.2, we
conclude that ¢ € F(T). By Lemma 3.1 we conclude that lim,,_, . ||z, — 2| exists for
all z in F(T). Thus we obtain by the Opial property that

limy o0 |20 —pll = lmiseo [Tn, —pll  <limiseo [[20, — 4l
=lim, o0 |2 —ql] = lim; 0 Hwnj —q||
< limj 00 ”mnj - p|| = lim, 0 Hxn - p||
This is a contradiction. Thus we have p = ¢, and the desired assertion follows. O

Theorem 3.4. Let C' be a monempty, compact and convexr subset of a uniformly
convex Banach space E. Let T : C — E be an («, 8)-generalized hybrid mapping for
some o, B € R. Let {\n} nen and {vn}nen be sequences in [0,1]. We assume either

liminf v, (1 — ) > 0, limsup (1 = 7,) > 0,
n— o0 n— o0

liminf A\, <1, or limsup A\, < 1.

n—oo n— o0

Let {xn}nen be a sequence with x1 in C defined by (1.2). Then {Tp}nen converges
strongly to a fixed point z of T'.

Proof. By Corollary 2.1, we see that the fixed point set F(T) of T is nonempty.
In view of Theorem 3.2, we obtain that {z,},en is bounded and liminf ||Tz, —
n—oo

Zn|| = 0. By the compactness of C, there exists a subsequence {2, }ren of {Zn }nen
such that {x,, }ren converges strongly to some z in C. We can even assume that
limg o0 [|[T%n, — @n, || = 0, and in particular, {Tz,, }ren is bounded. Let Mg =
sup{||zn, ||s |TZn, |, 121, [|T2] : k& € N} < co. In view of Lemma 2.4, we obtain

|n, = T2l < llwn, — 2[|* + o, + Bon,,
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where
My, = ||‘Tnk - T‘TnkH2 + 2||Ink - Txnk ”HTInk - TZH
2|z, — Ton, ||l2n, — Tz,
Ony = ”Txnk = Ty, H2 + 2HTxnk = Ty ||H‘T'ﬂk - Z”
2| Tzp, — @, |1 Tn, — 2.

Since limy 00 ||T%n, — @n, || = 0, we conclude that

lim n,, = lim o,, =0.
k—o0 ) k—o0 )
This implies

limsup ||z, — Tz| < limsup ||z, — 2]
k—o0 n—00

From the Opial property, we obtain Tz = z. (]
Let C' be a nonempty, closed and convex subset of a Banach space E. A mapping
T:C — C is said to satisfy condition (I) [27] if
there exists a nondecreasing function f : [0, 00) — [0, 00) with f(0) =
0 and f(r) > 0 for all » > 0 such that d(z,Tx) > f(d(z, F(T))),
where d(x, F(T)) = inf.cp(r) d(z, 2).

Theorem 3.5. Let C be a nonempty, closed and convex subset of a uniformly conver
Banach space E. Let T : C — E be an («q, e, f1, B2)-generalized hybrid mapping for
some aq,z, f1, P2 € R such that the fized point set F(T') is nonempty. Let {\,}nen
and {vntnen be sequences in [0,1]. We assume either

lim inf v, (1 — v,,) > 0, limsup ¥, (1 = v,) > 0,
N or 1o

liminf A\, < 1, limsup A\, < 1.

n—o0 n—00

Let {xn }nen be a sequence with x1 in C defined by (1.2). If T satisfies condition (I),
then {zp tnen converges strongly to a fixed point z of T.

Proof. Tt follows from Theorem 3.2 that
liminf || Tz, — z,| = 0.
n—oo
Therefore, there is a subsequence {x,, tren of {Zn tnen such that
lim || Txy,, —xn, || = 0.
k—o0
Since T satisfies condition (I), with respect to the sequence {x,, }ren, we obtain
lim d(z,,,F(T))=0.
k— o0

This implies that, there exists a subsequence of {2, }nen, denoted also by {x,, }ren,
and a sequence {zj }ren in F(T) such that

1
(X, 2K) < ok Vk € N. (3.5)

In view of Lemma 3.1, we have that

1
||xnk+l - Zk?” < ||x'nk - Zk” < 27]67 Vk € N.
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This implies that

ok =7l < s = @yl + sy =

<
< orn ook

<siem, VR=1,2,...

Therefore, {zj }ren is a Cauchy sequence in F(T). By Proposition 2.1, we know that
F(T) is closed in E. This implies that limg_,~ 2x = z for some z in F(T). It follows
from (3.5) that limg_,oo n, = 2. By Lemma 3.1, we have that lim, . ||z, — 2|
exists. This forces lim, o ||z, — 2] = 0. O

Theorem 3.6. Let C' be a nonempty, closed and convex subset of a uniformly convex
Banach space E. Let T : C — E be an (a1, ag, 1, B2)-generalized hybrid mapping for
some o, az, f1, P2 € R such that the fived point set F(T) is nonempty. Let {yn}nen
be a sequence in [0,1] such that linrggf'yn(l —n) > 0. Let {xn}nen be a sequence

with 1 in C defined by (1.1). If T satisfies condition (I), then {x,}nen converges
strongly to a fixed point z of T.

Example 3.1. (i) Let T : [-1,1] — [—1,1] be defined by Tz = —z. Then T is
a (0,1,0,0)-generalized hybrid mapping. Setting all A, = 1, the Ishikawa iteration
(1.2) provides a sequence

Tpy1 = fynTan + 1=y =2n, YVn=1,2,...,

no matter how we choose {v,}nen. Unless 1 = 0, we can never reach the unique
fixed point 0 of T via xy,.
(ii) Let T : [0,2] — [0, 2] be defined by

[ oifz#2
Tm_{ lif 2 = 2.

Then T is (3, 2, %, %)—generalized hybrid mapping with F(T) = {0}. Indeed, for any

x €[0,2) and y = 2, we have that To = 0, T?2 = 0 and Ty = 1. Thus we have

35|T%2 = Ty|* + 3|T% — Ty + (1 — 5 = 3)|z — Ty?
=310~ 1P+ 20 =17 + (—g)le — 1P
2 — 1z —1J?

3

IVAVANET
H Qo] s | Ous

0-2P+30 -2+ (1- - Do — 2P

The other cases can be verified similarly. It is worth mentioning that 7" is neither
nonexpansive nor continuous. Now, we define the function f : [0,00) — [0, 00) by

fa) =5,

It is easy to see that T satisfies the condition (I) with respect to f.
Setting all A, = 1, the Ishikawa iteration (1.2) provides a sequence

x € [0, 00).

Tnt1 = 'YnT2xn + (1 - ’Yn)xn, Vn = 17 2,
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If v, # 0, Vn = 1,2, ..., then for any starting point x; € [0, 4], we have that T%x,, = 0
and

Tn4+1 = ’YnTzl'n + (]- - ’Yn)xn
= (1 - %)ffn
=1 =7)(1—2).(1 =)z

n

=L (I =)z, Yn=1,2,..

Consider two possible choices of the values of 7,:
Case 1. If we set v, = %, VYn = 1,2,..., then liminf, oo yn(1 — vn) = % > 0, and
Z, — 0, the unique fixed point of T

Case 2. If we set v, = m, Vn = 1,2, ..., then liminf,, o 7 (1 — v,) = 0 and
Ty = 27;1122551 — 4. Unless 1 = 0, we can never reach the unique fixed point 0 of T’
via x,.

This explains why we need to impose some conditions on the parameters in previous
theorems.

Theorem 3.7. Let E be a real uniformly convex Banach space which admits the
weakly sequentially continuous duality mapping J and C be a nonempty, closed and
convex subset of E. Let T : C — C be a 2-generalized hybrid mapping such that
F = F(T) 7é 0. Let {an}nENy {/Bn,l}nEN; {ﬂn,Q}neN; {ﬂn,S}neN be sequences in [0, 1]
satisfying the following control conditions:

(a) limy, o vy, = 0;

(b) 30y an = 00;

(C) 57171 + ﬁn,2 + Bn,S =1, Vn € N;'

(d) liminf,, oo ijﬁmg >0, g=1,2.

Let {xn tnen be a sequence generated by

ueC, 1 € C chosen arbitrarily,

Yn = ﬂn,lTxn + Bn,2T2xn + ﬂn,3$n7 (36)
Tnt1 = Aptt + (1 — ) Yn.

Then, the sequence {x, }nen defined in (3.6) converges strongly to Qpu, where Qp s
a sunny nonexpansive retraction from E onto F.

Proof. We divide the proof into several steps.
Since T is a quasi-nonexpansive mapping, we know that F' is closed and convex. Set

z = Qpu.

Step 1. We prove that the sequences {z, }nen, {¥ntnen, {12 tnen and {T22,, }nen
are bounded.

We first show that {x, }nen is bounded.

Let p € F be fixed. In view of Lemma 2.11, there exists a continuous strictly increasing
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convex function g : [0,00) — [0, 00) with g(0) = 0 such that
Hyn 7p||2 = Hﬂn,lTﬁEn + ﬂn,2T2517n + Bn,3-rn - pH2

< BotlTan — pl* + Bu2lIT22n — pl* + Busllza — plI?
—Bn,iBn39([[n — T x|

< Buallzn = plI* + Bu2llzn — plI* + Buallzn —pl? (3.7)
_ﬁn,jﬁnﬁ |xn - ZUJ;nH2 )
= Hxn - p”2 - ﬂn,jﬂn,Sg(Hxn - zjn”)
< lww —pl% 5 =1,2.
This implies that
[Zn1 = pll = llanu+ (1 = an)yn — pll < anllu —pl + (1 — an)llyn — ||

< anllu —pl + (1 — an)llzn — pl| < max{|lu —pl|, [[n —pl}-

By induction, we obtain

[Zn+1 — pll < max{|lu —pl, |lz1 —p|}

for all n € N. This implies that the sequence {||z,, —p||}rnen is bounded and hence the
sequence {, }nen is bounded. This, together with (3.6), implies that the sequences
{Yn}nens {Txp}nen and {T%x, }nen are bounded too.

Step 2. We prove that for any n € N

lzn1 = 2l < (1= an)llzn = 2% + 20m (u = 2, J (2041 — 2)). (3.8)
Let us show (3.8). For each n € N and j = 1,2, in view of (3.7), we obtain

1Yn — 2lI” < llzn — 201> = Bn,jBrzg([lzn — TI2n|).
This implies that

241 = 2l = lomu + (1 = an)yn — 2|2
< omllu = 2|2 + (1 - an)|lyn — 2] ,
< anflu—2* + (1 — an)lllzn — 20> = BnjBnsg(lzn — T7znl])].
(3.9)
Let M7 := sup{||ju — 2||* = ||z — 2||?| + BnjBn3g(|zn — TVzy,]|) :n €N, j=1,2}.
It follows from (3.9) that

Br,iBn3g(||zn — ijnH) < |z — Z||2 = lzns1 — Z||2 + an M. (3.10)
In view of Lemma 2.8 and (3.6), we obtain

”'Tn-i-l - Z||2 = Hanu + (1 - an)yn - Z||2
< lapu+ (1 — an)yn — 2 — ap(u — 2)
2t~ 2), T (1 — 2)
= [[(1 = ) (yn — 2)II> + 200 (u — 2, J (2041 — 2))
= (1 — an)llyn — 2[* + 20 (u — 2, J(Tn41 — 2))
< (1 —ap)|zn — 212 + 200 (u — 2, J(Xpt1 — 2)).

&

Step 3. We prove that z,, — z as n — oco.
We discuss the following two possible cases:

Case 1. Suppose that there exists ng € N such that {[|z,, — z[/}5Z,,, is nonincreasing.
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Then, the sequence {||x,, — z||}nen is convergent. Thus we have ||z, — 2> — || zns1 —
z||? = 0 as n — co. This, together with condition (c) and (3.10), implies that
lim g(||zn, — TV2,||) =0, j =1,2.
n—oo
From the properties of g, it follows that
lim ||z, — Tx,| =0, =1,2. (3.11)
n—oo
On the other hand, we have
Yn — Tp = ﬁn,l(xn - Txn) + ﬁn,Q(xn - TQZ’"), and Tn+l — Yn = an(u - yn)
This implies that
lim |lyn — 2| =0, and lim ||,+1 — ynl = 0. (3.12)
n—oo n—oo
By the triangle inequality, we conclude that
[Znt1 = zall < l2ns1 — ynll + lyn — znll-

It follows from (3.12) that
li_>m |Zn+1 — znll = 0. (3.13)

Since {zy, tnen is bounded, there exists a subsequence {zy, }ien of {zy }nen such that
Zn,+1 — y € F(T). This, together with Lemma 2.7, implies that

limsup,,_,o(u— 2, J(Tnt1 — 2)) = lim;oo(u — 2, J(Zp, 41 — 2))
— (1) (3.14)
<o.

Thus we have the desired result by Lemma 2.9.
Case 2. Suppose that there exists a subsequence {n;};en of {n}nen such that

[, = 2l < l|#n;41 = 2|

for all ¢ € N. Then, by Lemma 2.10, there exists a nondecreasing sequence {my }ren C
N such that my — oo,

12 = 2|l <[z = Zmyga |l and ||z — zpl| < f|l2m, 11 — 2]
for all k£ € N. This, together with (3.9), implies that
ﬁmk(l - Bmk)g(‘lxmk - Txmk ”) < ||xmk - Z||2 - ||xmk+1 - Z||2 + amkM7 < amkM7
for all k € N. Then, by conditions (a) and (c), we get
lim ||z, — T, | =0.
k—o0
By the same argument as Case 1, we arrive at

limsup(u — z, J (%, — 2)) = limsup(u — 2z, J(Tm,+1 — 2)) < 0.
k—o00 k—o0

It follows from (3.8) that

||xmk+1 - Z||2 < (1 - amk)”zmk - 2”2 + Ay, <u - % J(zmk - Z)> (315>
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Since ||Zm, — 2| < |Tm,+1 — 2||, we have that

Ay, ”xmk - 2”2 < ”'rmk - Z||2 - ”xmk-‘rl - 2”2 + Amy, <u - % J(xmk - Z)>
< 20, (U — 2, J (T, — 2)).
(3.16)
In particular, since a,,, > 0, we obtain

m, = 2lI* < (u =2, J(@m, — 2))-
In view of (3.16), we deduce that
lim [, 2] = 0.
This, together with (3.14), implies that
lim || @, +1 — 2| = 0.
k— o0

On the other hand, we have ||z — 2| < ||Zm,+1 — 2| for all k¥ € N which implies that
T, — 2 as k — oo. Thus, we have z,, = z as n — oo, which completes the proof. O

Let C' be a nonempty, closed and convex subset of a Banach space E and T : C' —
C be a 2-generalized hybrid mapping such that F(T) # (). For any real numbers
B,7,0 € (0,1) with 4+~ + 6 = 1, we define a mapping T35 : C — C by

T 50 = Blz +~Tx + 6T%z, (v € C), (3.17)

where I is the identity mapping on E. It is easy to see that F(Tjs ) = F(T). The
following strong convergence result provides an affirmative answer to open question
1.1 in the case where the mapping T is a 2-generalized hybrid mapping.

Theorem 3.8. Let E be a real uniformly convex Banach which admits the weakly
sequentially continuous duality mapping J and C be a nonempty, closed and conver
subset of E. Let T : C — C be a 2-generalized hybrid mapping such that F := F(T) #
0. Let {ap tnen be a sequence in [0,1] and let 8,7v,8 € (0,1) be real numbers satisfying
the following control conditions:

(a) lim,, o ap, = 0;

(b) 32y otn = 00;

(¢c) B+~+6=1.

Let {xzn}nen be a sequence generated by

ueC, x1 € C chosen arbitrarily,
Tn+1 = U + (1 - an)Tﬂ,w,éxnv

where Tg 5 s defined by (3.17). Then, the sequence {xy}nen converges strongly to
Qru, where Qr is a sunny nonexpansive retraction from E onto F.

Remark 3.1. The introduction of condition (I) for the mapping T in theorem 3.5
and the auxiliary mapping T s in theorem 3.8 yields strong convergence theorems
of Ishikawa’s and Halpern’s type iterations for 2-generalized hybrid mappings and
hence resolves in the affirmative the open problem raised by Hojo, Takahashi and
Termwuttipong in [17].



522 ESKANDAR NARAGHIRAD

4. PRELIMINARIES ON CAT(0) SPACES

A metric space X is a CAT(0) space if it is geodesically connected, and if every
geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane. The precise definition is given below. It is well known that any complete,
simply connected Riemannian manifold having nonpositive sectional curvature is a
CAT(0) space. Other examples include pre-Hilbert spaces, CAT(0)-trees (see, for
example [2]), Euclidean building (see, for example [3]), and the complex Hilbert ball
with a hyperbolic metric (see, for example [13]). For a thorough discussion of other
spaces and of the fundamental role they play in geometry, see, for example, [3]. Burago
et al. [5] contains a somewhat more elementary treatment, and Gromov [15] is a deeper
study.

Let (X, d) be a metric space. A geodesic path joining x € X to y € X (or, more
briefly, a geodesic from z to y) is a map ¢ from a closed interval [0,!] C R to X such
that ¢(0) = z, ¢(l) =y, and d(c(t),c(t')) = |t — /| for all ¢,¢' € [0,]]. In particular,
¢ is an isometry and d(z,y) = . The image « of ¢ is called a geodesic (or metric)
segment joining x and y. When it is unique, this geodesic is denoted by [z,y]. The
space (X, d) is said to be a geodesic space if every two points of X are joined by a
geodesic, and X is said to be a uniquely geodesic if there exists exactly one geodesic
joining = and y for each z,y € X. A subset Y of X is said to be convez if Y includes
every geodesic segment joining any two of its points.

A geodesic triangle A(x1,z2,23) in a geodesic space (X, d) consists of three points
x1,x9,x3 in X (the vertices of A), together with a geodesic segment between each pair
of vertices (the edges of A). A comparison triangle for a geodesic triangle A(x1, x2, x3)
in a geodesic space (X, d) is a triangle A(zy, 72, 23) := A(Z1, T2, T3) in the Euclidean
plane E? such that dg2(Z;, ;) = d(z;,z;) for 4,5 € {1,2,3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom CAT(0). Let A be a geodesic triangle in X, and let A
be a comparison triangle for A. Then A is said to satisfy the CAT(0) inequality if,
for all z,y € A and all comparison points Z,7 € A, d(z,y) < dg2(Z, 7). It is easy to
see that a CAT(0) space is uniquely geodesic.

If 2,y1,ys are points in a CAT(0) space, and if yg is the midpoint of the segment
[y1,y2], then the CAT(0) inequality implies that

1 1 1
d(z,yo) < id(%ylf + id(%m)z - Zd(yla y2)*. (CN)

This is the (CN) inequality of Bruhat and Tits [4]. By using the (CN) inequality, it is
easy to see that the CAT(0) Banach spaces are uniformly convex. In fact, a geodesic
space is a CAT(0) space if and only if it satisfies the (CN) inequality [2].

We now collect some properties in CAT(0) spaces. For more details on CAT(0)
spaces, we refer the readers to [6, 10, 23].

Lemma 4.1. ([10]) Let (X,d) be a CAT(0) space. Then the following assertions
hold:
(i) For x,y € X and t € [0, 1], there exists a unique point z € [x,y] such that

d(z,z) = td(x,y) and d(y, z) = (1 — t)d(z,y). (4.1)
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We use the notation (1 — t)x @ ty for the unique point z satisfying (4.1).
(i1) For z,y € X and t € [0,1], we have

d(1-tzdty,z) < (1 —t)d(z,z)+td(y, 2).

The notion of asymptotic centers in a Banach space can be extended to a CAT(0)
space as well, by simply replacing the distance defined by || - — - || with the one by the
metric d(-,-). In particular, in a CAT(0) space, A(C,{x,}) consists of exactly one
point where C'is a closed and convex set and {z, }nen is a bounded sequence; see [9,
Proposition 7].

Definition 4.2. (18, 20]) A sequence {xy}nen in a CAT(0) space X is said to
A-converge to x € X if x is the unique asymptotic center of {un}nen for every
subsequence {un tnen of {xn}nen. In this case, we write A —lim,, o z, = , and we
call x the A —lim of {xy }nen.

Lemma 4.3. ([18]) Every bounded sequence in a complete CAT(0) space X always
has a A-convergent subsequence.

Lemma 4.4. ([8]) If C is a closed and convex subset of a complete CAT(0) space X,
and if {xn }nen 18 a bounded sequence in C, then the asymptotic center of {xp tnen is
in C.

Lemma 4.5. ([19]) Let X be a complete CAT(0) space and let x € X. Suppose that
0<b<t,<c<l, and xpn,yn in X such that limsup d(z,,z) < r, limsup d(y,, z) <

n—oo n—oo
roand lim, o0 d(tn@n @ (1 — ty)yn,x) = r for somer > 0 and n = 1,2,.... Then
limy, o0 d(xru yn) =0.
Recall that the Ishikawa iteration in CAT(0) spaces is described as follows: for any
initial point x; in C, we define the iterates {x, }nen by

4.2
Tn+1 = YT Yn @ (1 - '-Yn)xna ( )

where the sequences {\, }nen and {7y, }nen satisfy some appropriate conditions.
We introduce the notion of 2-generalized hybrid mappings in CAT(0) spaces.

Definition 4.6. Let C be a nonempty subset of a CAT(0) space X. A mapping
T:C — X is said to be
(1) generalized hybrid if there exist «, 8 € R such that

ad(Tz, Ty)* + (1 — a)d(z,Ty)* < B(Tx,y)* + (1 — B)d(x,y)*, Va,ye C.

(2) 2-generalized hybrid or (o, ag, b1, B2)-generalized hybrid if there exist aq, o, B,
B2 € R such that

ar1d(T?z, Ty)? + aod(Tx, Ty)? + (1 — oy — ag)d(z, Ty)?

S ﬂld(T2x7y)2 + /62d(T‘T7 y)2 + (1 - /61 - ﬁg)d(l‘, y)27 Vx,y S C.

Clearly, (0,1, 1,1)-generalized hybrid maps are exactly nonexpansive maps.
The proofs of the following results are similar to those in Sections 2 and 3.
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Lemma 4.7. Let C be a nonempty subset of a CAT(0) space X, and let T : C — X
be be an (aq, o, B1, B2)-generalized hybrid mapping for some aq, s, f1, P2 € R such
that F(T) # 0. Then T is quasi-nonezpansive.

Lemma 4.8. Let C be a nonempty subset of a CAT(0) space X. Let T : C — X be
an (aq, a9, B, B2)-generalized hybrid mapping for some aq,as, b1, P2 € R. Then for
any x,y € C,
d(z, Ty)* < d(z,y)* + |a1|0z,y + 2]z y + 181100,y + |B2]ow.y, (4.3)
where
Oy = d(:r,TQx)2 + 2d(x, T?x)d(T?z, Ty) + 2d(x, T?x)d(x, Ty),
771 y =d(z,Tz)* + 2d(x, Tz)d(Tx, Ty) + 2d(x, Tz)d(z, Ty),
(T%,x) +2d(T?x, x)d(z,y) + 2d(T?x, x)d(T?z, y),
Ua:,y =d(Tz,x)? + 2d(Tx,z)d(z,y) + 2d(Tx,x)d(Tx,y).

(4.4)

Lemma 4.9. Let C be a nonempty, closed and convexr subset of a CAT(0) space
X. Let T : C — C be an (aq, a9, B, PB2)-generalized hybrid mapping for some
aq, a9, B, P2 € R with a nonempty fized point set F(T'). Let {xp tnen and {yn tnen be
two sequences defined by (4.2) such that {\, }nen and {vn }nen are arbitrary sequences
in [0,1].

Then the following assertions hold:

(1) max{d(zn+1,2), d(Yn, 2)} < d(xpn,z) for any z € F(T) and forn=1,2,....

(2) im0 d(p, 2) exists for any z € F(T).

(8) limy, o0 d(zp, F(T)) exists.

Lemma 4.10. ([6]) Let C be a nonempty and convex subset of a CAT(0) space X,
and let T : C — C be a quasi-nonexpansive map whose fized point set is nonempty.
Then F(T) is closed, convex and hence contractible.

The following result is deduced from Lemmas 4.7 and 4.10.

Lemma 4.11. Let C be a nonempty and convez subset of a CAT(0) space X, and let
T:C — C be an (o, oz, 1, B2)-generalized hybrid mapping for some aq, oz, 1, P2 €
R. Then F(T) is closed, convex, and hence contractible.

Lemma 4.12. Let C be a nonempty, closed and convez subset of a complete CAT(0)
space X. Let T : C' — C be an (a1, as, f1, B2)-generalized hybrid mapping for some
ag, a9, 81,02 € R If {xn}nen is a sequence in C such that d(Txy,,x,) — 0 and
A —lim, oo x, = z for some z € X, then z € C and Tz = z.

Proof. In view of Lemma 4.4, it follows that z € C'. By Lemma 4.8, we deduce that
for any z,y € C,

d('r7Ty)2 < d(.l?, y)2 + |O‘1|9x7y + ‘O‘2|77z,y + |61|6m,y + |62|0w,y7 (43)
where
Ozy = d(m,sz)2 +2d(x, T?x)d(T?z, Ty) + 2d(x, T?x)d(x, Ty),
nLy =d(x,Tz)? + 2d(z, Tx)d(Tx, Ty) + 2d(x, Tx)d(z, Ty),
8y = d(T?z,2)? + 2d(T?x, x)d(z,y) + 2d(T?z, 2)d(T?z, y),
Opy = d(Tz,2)? +2d(Tz,z)d(x,y) + 2d(Tx, 2)d(T2,Yy).

(4.4)
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for all n € N. Thus we have
lim sup d(x,,, Tz) < limsup d(zp, 2).
n—oo n—oo

By the uniqueness of asymptotic centers, we obtain that Tz = z.

5. FIXED POINT AND CONVERGENCE THEOREMS IN CAT(0) SPACES

In this section, we extend our results in Section 3 to CAT(0) spaces.

Theorem 5.1. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X and let T : C — C be an (a1, aq, b1, B2)-generalized hybrid mapping for
some aq, a9, 81,02 € R. Let {\p}nen and {yn}tnen be sequences in [0,1] such that
0< hm 1nf Ve < hm sup Yni, < 1 for a subsequence {yn, }ren of {Vn}nen. We assume
also that lim sup )\nk < 1. Let {xy }nen be a sequence with x1 in C defined by (4.2).

k—o00
(i) If {xn}nen is bounded, liminf d(Tx,,x,) = 0 and liminf d(T%z,,x,) = 0, then
n— oo n—o0o
the fized point set F(T) # ().
(i1) Assume F(T) # 0. Then {x,}nen is bounded and liminf d(Tx,,x,) = 0.

n—oo
Proof. (i) By simply replacing || - — - || with d(-,-) in the proof of Theorem 3.2, we
have the desired result F(T') # 0.
(ii) Suppose that F(T) # 0 and z € F(T) is arbitrarily chosen. By Lemma 4.9,
limy, s 00 (@, 2) exists and {zp, }nen is bounded. Let

lim d(z,,z) =1. (5.1)

n—oo

It follows from Lemmas 4.7 and 4.1(ii) that
d(Tyn,2) < d(yn,2)

=dM\ Tz, ® (1= A\p)xn, 2)
< Md(Tzp, 2) + (1 = Np)d(n, 2)
< Ad(@n, 2) + (1= Ap)d(2n, 2)
= d(zna )
Thus, we have
lim sup d(T'yn, z) < limsup d(yy, z) < limsup d(z,,z) = I. (5.2)
n— 00 n—00 n—o0
On the other hand, it follows from (4.2) and (5.1) that
ILm AV Tyn ® (1 —yp)Tn, 2) = ILm d(xpt1,2) =1 (5.3)

In view of (5.1)-(5.3) and Lemma 4.5, we conclude that

lim d(Tyn,,%n,) = 0.

k— o0
By simply replacing || - — - || with d(-,-) in the proof of Theorem 3.2, we have the
desired result limy o0 d(TTy, , Tp, ) = 0. O

Theorem 5.2. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X and let T : C — C be an (a1, aq, b1, B2)-generalized hybrid mapping for
some aq,az, b1, 02 € R. Let {\p}nen and {yn}tnen be sequences in [0,1] such that
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0< hm mf Yo < limsupy,, <1 for a subsequence {vn, }ren of {Vn}tnen. We assume
also that hm sup )\:k < 1. Let {xn}nen be a sequence with x1 in C defined by (4.2).
If F(T) # (Z), then {zn, }ren A-converges to a fized point of T.
Proof. Tt follows from Theorem 5.1 that {x, }nen is bounded and

klirgo d(Txp, , Ty, ) = 0.

Denote by wy(n,) := UA(C, {uy}), where the union is taken over all subsequences
{tun tnen of {n, tren. We prove that wy(z,,) C F(T). Let u € wy(zy,). Then
there exists a subsequence {uy, }nen of {zn, }ren such that A(C, {u,}) = {u}. In view
of Lemmas 4.3 and 4.4, there exists a subsequence {v,}nen Of {un}nen such that
A — lim, o v, = v for some v in C. Since lim, o, d(Tvy,v,) = 0, Lemma 4.12
implies that v € F(T). By Lemma 4.9, the limit lim,, o d(z,,v) exists. We claim
that © = v. For else, the uniqueness of asymptotic centers implies that
limsupd(vp,v) <limsupd(vy,u) < limsupd(uy,u)
n—oo n—oo n—oo

< limsupd(u,,v) = limsupd(z,,v)

n—oo n—oo
= lim sup d(v,,, v),

n—oo

which is a contradiction. Thus, we have u = v € F(T') and hence wy,(z,,) C F(T).

Now, we prove that {z,, }ren A-converges to a fixed point of T. It suffices to
show that w.,(x,, ) consists of exactly one point. Let {u,}nen be a subsequence of
{Zn, }ken. In view of Lemmas 4.3 and 4.4, there exists a subsequence {v,}nen of
{tn }nen such that A —lim,_,o v, = v for some v in C. Let A(C,{uy}) = {u} and
A(C,{zn,}) = {x}. By the argument mentioned above we have u = v and v € F(T).
We show that x = v. If it is not the case, then the uniqueness of asymptotic centers
implies that

limsup d(vy,,v) < limsupd(v,,z) < limsupd(z,,)

n—oo n—oo n—oo

< limsupd(z,,v) = limsupd(v,,v),
n— o0 n—oo
which is a contradiction. Thus we have the desired result. O

Theorem 5.3. Let C' be a nonempty, compact and convex subset of a complete
CAT(0) space X and let T : C' — C be an (a1, o, f1, B2)-generalized hybrid mapping
for some aq,as,B1,P2 € R such that the fixed point set F(T) is nonempty. Let
{An}nen and {5 }nen be sequences in [0, 1] such that 0 < hm 1nf Yy, < limsupy,, <1

k—o0
for a subsequence {yn, }ken of {Vn}nen. We assume also that limsup A, < 1. Let

k—oo
{Zn}nen be a sequence with x1 in C defined by (4.2). Then {x,}nen converges in
metric to a fived point of T.

Proof. Using Lemma 4.8 and simply replacing || - — - || with d(-,-) in the proof of
Theorem 3.4, we conclude the desired result. O
As in the proof of Theorem 3.5, we can verify the following result.
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Theorem 5.4. Let C be a nonempty, closed and convex subset of a complete CAT(0)
space X and let T : C — C be an (a1, aq, b1, B2)-generalized hybrid mapping for
some ay, @z, 1, P2 € R such that the fized point set F(T') is nonempty. Let {\, }nen
and {yntnen be sequences in [0,1] such that 0 < hm 1nf Y < hm sup Yn < 1 for a

subsequence {Vn, }ren of {Vn}tnen. We assume also that lim sup )‘nk < 1. Let {xp }nen
k— o0

be a sequence with x1 in C defined by (4.2). If T satisfies condition (I), then {xy }nen
converges in metric to a fized point of T.
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