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equation

c(x)F (h(x)) = F (x).
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1. Introduction

One of the main topics in functional equations is Hyers-Ulam stability which was
originated from a question of S. M. Ulam [25]. D. H. Hyers [12] gave the first significant
partial solution to Ulam’s question. The theorem of Hyers was generalized by T. Aoki
[1] for additive mappings and by Th.M. Rassias [22] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th.M. Rassias has provided a lot of
influence in the development of what we now call Hyers-Ulam-Rassias stability of
functional equations.

It should be noted that almost all proofs in this topic used Hyers method. In 1991,
Baker [3] used the Banach fixed point theorem to prove Hyers-Ulam stability for a non-
linear functional equation. V. Radu [21], in 2003, employed the fixed point alternative
theorem [9] to establish the stability of Cauchy additive functional equation. Using
such an elegant idea, several authors applied the method to investigate the stability
of some functional equations, (see e. g. [5, 6, 7, 10, 13, 14, 16, 17, 19, 20]).

The theory of set-valued functions was fairly systematically developed for the first
time in Berge’s book [4]. It is of interest to investigate the Hyers-Ulam stability of
set-valued functional equations and inclusions. Although there are much less results
of Hyers-Ulam stability for set-valued ones than those for single-valued ones, some
interesting results were obtained by several mathematicians (e.g. [2, 11, 15, 18, 23,
24, 26]).
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In this paper, we apply the fixed point alternative theorem to prove the stabil-
ity of set-valued functional equations. More precisely, we will prove the stability of
functional equation

c(x)F
(
h(x)

)
= F (x)

in the space of compact convex subsets of a Banach space. We will show that this
result can be applied to prove the stability of set-valued Cauchy functional equation.
Our method may be applied to prove the stability of several other set-valued functional
equations.

2. Main results

Hereafter, unless otherwise state, we will assume that X is a semigroup and Y is
a Banach space. If A,B ⊂ Y and λ ∈ R, we define

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}.
One can easily see that for each A,B ⊂ Y and λ, µ ≥ 0,

λ(A+B) = λA+ λB, (λ+ µ)A ⊆ λA+ µA.

Moreover, if A is convex, then (λ + µ)A = λA + µA. We denote by CC(Y ) the
collection of all non-empty compact convex subsets of Y . Let

H(A,B) = inf{s > 0 : A ⊂ B + sK, B ⊂ A+ sK},
where K is the closed unit ball in Y and A,B ⊂ Y are non-empty closed bounded
sets. The function H is a metric called the Hausdorff metric induced by the space Y .
It is known that if Y is a Banach space, then H defines a complete metric on CC(Y )
[8].

The following result reveals some basic properties of Hausdorff distance.
Theorem 2.1. [8, Page 188] Let Y be a real normed space. If A,B,X ∈ CC(Y ) and
m is a positive number, then

H(A+X,B +X) = H(A,B),

H(mA,mB) = mH(A,B).

Definition 2.2. Let Ω be a nonempty set and d : Ω×Ω→ [0,∞] satisfy the following
properties:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x)(symmetry),

(iii) d(x, z) ≤ d(x, y) + d(y, z)(triangle inequality),

for all x, y, z ∈ Ω. Then (Ω, d) is called a generalized metric space. (Ω, d) is called
complete if every d-Cauchy sequence in Ω is d-convergent.

We recall the following result by Diaz and Margolis.
Theorem 2.3. (The fixed point alternative theorem [9]) Suppose that a complete
generalized metric space (Ω, d) and a strictly contractive mapping J : Ω → Ω with
the Lipschitz constant 0 < L < 1 are given. Then, for a given element x ∈ Ω, exactly
one of the following assertions is true:
either
(a) d(J nx,J n+1x) =∞ for all n ≥ 0 or
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(b); there exists a natural number k such that d(J nx,J n+1x) <∞ for all n ≥ k.
Actually, if (b) holds, then the sequence {J nx} is convergent to a fixed point x∗ of J
and
(b1) x∗ is the unique fixed point of J in F := {y ∈ Ω, d(J kx, y) <∞};
(b2) d(y, x∗) ≤ d(y,J y)

1−L for all y ∈ F .

Definition 2.4. Let Ω denote the set of all functions F : X → CC(Y ) and ϕ : X →
[0,∞) be a mapping. We define a function dϕ : Ω× Ω→ [0,∞] by

dϕ(F,G) = inf{a > 0 | ∀x ∈ X,H(F (x), G(x)) ≤ aϕ(x)} (F,G ∈ Ω).

Lemma 2.5. (Ω, dϕ) is a complete generalized metric space for each ϕ : X → [0,∞).

Proof. We first prove that (Ω, dϕ) is a generalized metric space. Fix F,G,H ∈ Ω.
Let dϕ(F,G) = 0. Then for each x ∈ X and a > 0, we have H(F (x), G(x)) < aϕ(x).
This means that for each x ∈ X, F (x) = G(x).
Conversely, if F = G, then it follows from the definition that dϕ(F,G) = 0. Clearly,
dϕ is symmetric. To prove the triangle inequality note that if either d(F,H) =∞ or
d(H,G) =∞, then dϕ(F,G) ≤ dϕ(F,H)+dϕ(H,G). Suppose that dϕ(F,H) = α <∞
and dϕ(H,G) = β < ∞. Then for each ε > 0, we can find real numbers a1, a2 such
that

α < a1 < α+ ε and β < a2 < β + ε.

Then for each x ∈ X, we have H(F (x), H(x)) ≤ a1ϕ(x) and H(H(x), G(x)) ≤ a2ϕ(x).
It follows that

H(F (x), G(x)) ≤ (a1 + a2)ϕ(x) (x ∈ X).

This means that for each ε > 0, dϕ(F,G) ≤ α + β + 2ε. This proves the triangle
inequality. Next, we will show that (Ω, dϕ) is a complete generalized metric space.
Let {Fn} be a Cauchy sequence in generalized metric space (Ω, dϕ). For each ε > 0
there exists natural number Nε such that for all n,m > Nε we have dϕ(Fn, Fm) < ε.
It follows that

H(Fn(x), Fm(x)) < ϕ(x)ε (x ∈ X,n,m > Nε).

Hence {Fn(x)} is a Cauchy sequence in complete metric space (CC(Y ),H). Let

F (x) = lim
n→∞

Fn(x) (x ∈ X).

We have to show that Fn → F in (Ω, dϕ). The above argument shows that for each
ε > 0, there is some Nε such that

H(Fn(x), Fm(x)) < ϕ(x)ε (n,m > Nε, x ∈ X).

By taking limit of the above inequality as m→∞, we see that

H(Fn(x), F (x)) < ϕ(x)ε (n > Nε, x ∈ X).

Hence

dϕ(Fn, F ) ≤ ε (n > Nε).

This shows that (Ω, dϕ) is a generalized complete metric space.
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Let h : X → X and ϕ, c : X → [0,∞) are given functions. We inductively define
c0(x) = 1, c1(x) = c(x) and for each n > 1, cn(x) = c(x)cn−1(h(x)) for each x ∈ X.
Moreover, let h0(x) = x, h1(x) = h(x) and for each n > 1, define

hn(x) = ho . . . oh︸ ︷︷ ︸
n−terms

(x) for each x ∈ X.

The following Theorem is the main result of this paper.
Theorem 2.6. Let F : X → CC(Y ) satisfy the inequality

H(c(x)F (h(x)), F (x)) < ϕ(x) (x ∈ X). (2.1)

If for some 0 < L < 1,

c(x)ϕ(h(x)) ≤ Lϕ(x) (x ∈ X),

then there is a unique set-valued function G : X → CC(Y ) such that

c(x)G(h(x)) = G(x)

and

H(F (x), G(x)) <
ϕ(x)

1− L
(2.2)

for all x ∈ X.
Proof. Let Ω denote the set of all functions H : X → CC(Y ). In view of Lemma 2.5,
(Ω, dϕ) is a generalized complete metric space. Define J : Ω→ Ω by

J (H)(x) = c(x)H(h(x)) (H ∈ Ω, x ∈ X).

Let H1, H2 ∈ Ω and for some α > 0, dϕ(H1, H2) < α, then

H
(
J (H1)(x),J (H2)(x)

)
= c(x)H

(
H1(h(x)), H2(h(x))

)
≤ αc(x)ϕ(h(x))

≤ αLϕ(x) (x ∈ X).

Thus dϕ

(
J (H1),J (H2)

)
≤ Lα. It follows that

dϕ

(
J (H1),J (H2)

)
≤ Ldϕ(H1, H2) (H1, H2 ∈ Ω).

Hence J is strictly contractive mapping with Lipschitz constant L on Ω. Let Fn =
J n(F ) for each n ∈ N. By induction on n, we will show that for each n ≥ 1,

H
(
Fn(x), Fn−1(x)

)
≤ Lnϕ(x) (x ∈ X). (2.3)

For n = 1, (2.3) is (2.1). Let for some n ≥ 1, (2.3) holds. Then

H
(
Fn+1(x), Fn(x)

)
= H

(
c(x)Fn(h(x)), c(x)Fn−1(h(x))

)
≤ c(x)H

(
Fn(h(x)), Fn−1(h(x))

)
≤ Lnc(x)ϕ(h(x))

≤ Ln+1ϕ(x) (x ∈ X).
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Hence (2.3) holds for each n ≥ 1. It follows that

dϕ

(
J n(F ),J n−1(F )

)
≤ Ln (n ∈ N).

In view of Theorem 2.3, the sequence {J n(F )} is convergent to a fixed point G
of J , G is the unique fixed point of J in F := {H ∈ Ω, d(J k(F ), H) < ∞} and

dϕ(H,G) ≤ dϕ(H,J (F ))
1−L for all H ∈ F . It follows that

G(x) = J (G)(x) = c(x)G(h(x)) (x ∈ X)

and

dϕ(F,G) ≤ dϕ(F,J (F ))

1− L
≤ 1

1− L
.

Hence (2.2) holds.
The next result gives an application of Theorem 2.6.

Theorem 2.7. Let F : X → CC(Y ) satisfies the following inequality

H
(
F (x+ y), F (x) + F (y)

)
≤ ψ(x, y) (x, y ∈ X), (2.4)

where ψ : X ×X → [0,∞) is a function with the following properties:
(i) ψ(2x, 2x) ≤ Lψ(x, x) for each x ∈ X, where 0 < L < 1.
(ii) limn→∞ 2−nψ(2nx, 2ny) = 0 for each x, y ∈ X.
Then there exists a unique additive function A : X → CC(Y ) such that

H
(
F (x), A(x)

)
≤ ψ(x, x)

2(1− L)
(x ∈ X). (2.5)

Proof. Put y = x in (2.4) to obtain H
(
F (2x), 2F (x)

)
≤ ψ(x, x) (x, y ∈ X).

It follows from the above inequality that for

c(x) = 1
2 , h(x) = 2x and ϕ(x) = 1

2ψ(x, x), (x ∈ X),

the conditions of Theorem 2.6 hold. Hence there is a unique function A : X → CC(Y )
which is defined by A(x) = lim

n→∞
2−nF (2nx) (x ∈ X) and satisfies (2.5) and A(2x) =

2A(x) for each x ∈ X. Since for each x, y ∈ X and n ≥ 1,

H
(
A(x+ y), A(x) +A(y)

)
≤ H

(
A(x+ y), 2−nF (2n(x+ y))

)
+ H

(
2−nF (2n(x+ y)), 2−nF (2x) + 2−nF (2ny)

)
+ H

(
2−nF (2x) + 2−nF (2ny), A(x) +A(y)

)
and the right hand side of the above inequality tends to zero as n→∞, A is additive.
Remark. A similar argument as it was used in Theorem 2.7 may be applied to prove
the stability of other set-valued functional equations.
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[5] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach,
Grazer Math. Ber., 346(2004), 43–52.
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Śla̧skiego W Katowicach, Katowice, 889(1987).

[25] S.M. Ulam, Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: §1,
Stability), Science Editions, John Wiley & Sons, New York, 1964.

[26] Z. Wanxiong, X. Bing, Hyers-Ulam stability for a multivalued equation, Acta Math. Scientia,

28(2008), 54–62.

Received: May 02, 2012; Accepted: May 05, 2013


