Fixed Point Theory, 15(2014), No. 2, 495-500 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

THE FIXED POINT ALTERNATIVE THEOREM AND SET-VALUED FUNCTIONAL EQUATIONS

ALIREZA KAMEL MIRMOSTAFAEE AND MOSTAFA MAHDAVI

Center of Excellence in Analysis on Algebraic Structures Department of Pure Mathematics, School of Mathematical Sciences Ferdowsi University of Mashhad Mashhad 91775, Iran E-mail: mirmostafaei@ferdowsi.um.ac.ir

Abstract. We use the fixed point alternative theorem to prove the stability of the set-valued function equation

c(x)F(h(x)) = F(x).

This result enable us to prove the stability of some set-valued functional equations. **Key Words and Phrases**: Set-valued mappings, functional inequalities, non-expensive mappings, fixed point.

2010 Mathematics Subject Classification: 39B52, 39B69, 47S09, 47H10.

1. INTRODUCTION

One of the main topics in functional equations is Hyers-Ulam stability which was originated from a question of S. M. Ulam [25]. D. H. Hyers [12] gave the first significant partial solution to Ulam's question. The theorem of Hyers was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [22] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations.

It should be noted that almost all proofs in this topic used Hyers method. In 1991, Baker [3] used the Banach fixed point theorem to prove Hyers-Ulam stability for a nonlinear functional equation. V. Radu [21], in 2003, employed the fixed point alternative theorem [9] to establish the stability of Cauchy additive functional equation. Using such an elegant idea, several authors applied the method to investigate the stability of some functional equations, (see e. g. [5, 6, 7, 10, 13, 14, 16, 17, 19, 20]).

The theory of set-valued functions was fairly systematically developed for the first time in Berge's book [4]. It is of interest to investigate the Hyers-Ulam stability of set-valued functional equations and inclusions. Although there are much less results of Hyers-Ulam stability for set-valued ones than those for single-valued ones, some interesting results were obtained by several mathematicians (e.g. [2, 11, 15, 18, 23, 24, 26]).

495

In this paper, we apply the fixed point alternative theorem to prove the stability of set-valued functional equations. More precisely, we will prove the stability of functional equation

$$c(x)F(h(x)) = F(x)$$

in the space of compact convex subsets of a Banach space. We will show that this result can be applied to prove the stability of set-valued Cauchy functional equation. Our method may be applied to prove the stability of several other set-valued functional equations.

2. Main results

Hereafter, unless otherwise state, we will assume that X is a semigroup and Y is a Banach space. If $A, B \subset Y$ and $\lambda \in \mathbb{R}$, we define

$$A + B = \{a + b : a \in A, b \in B\}, \quad \lambda A = \{\lambda a : a \in A\}.$$

One can easily see that for each $A, B \subset Y$ and $\lambda, \mu \ge 0$,

$$\lambda(A+B) = \lambda A + \lambda B, \quad (\lambda+\mu)A \subseteq \lambda A + \mu A.$$

Moreover, if A is convex, then $(\lambda + \mu)A = \lambda A + \mu A$. We denote by CC(Y) the collection of all non-empty compact convex subsets of Y. Let

$$\mathcal{H}(A,B) = \inf\{s > 0 : A \subset B + sK, \ B \subset A + sK\},\$$

where K is the closed unit ball in Y and $A, B \subset Y$ are non-empty closed bounded sets. The function \mathcal{H} is a metric called the *Hausdorff metric* induced by the space Y. It is known that if Y is a Banach space, then \mathcal{H} defines a complete metric on CC(Y)[8].

The following result reveals some basic properties of Hausdorff distance. **Theorem 2.1.** [8, Page 188] Let Y be a real normed space. If $A, B, X \in CC(Y)$ and m is a positive number, then

$$\mathcal{H}(A+X, B+X) = \mathcal{H}(A, B),$$

$$\mathcal{H}(mA, mB) = m\mathcal{H}(A, B).$$

Definition 2.2. Let Ω be a nonempty set and $d : \Omega \times \Omega \to [0, \infty]$ satisfy the following properties:

(i) d(x, y) = 0 if and only if x = y,

(ii)
$$d(x,y) = d(y,x)$$
(symmetry),

(iii) $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality),

for all $x, y, z \in \Omega$. Then (Ω, d) is called a generalized metric space. (Ω, d) is called complete if every *d*-Cauchy sequence in Ω is *d*-convergent.

We recall the following result by Diaz and Margolis.

Theorem 2.3. (The fixed point alternative theorem [9]) Suppose that a complete generalized metric space (Ω, d) and a strictly contractive mapping $\mathcal{J} : \Omega \to \Omega$ with the Lipschitz constant 0 < L < 1 are given. Then, for a given element $x \in \Omega$, exactly one of the following assertions is true: either

(a) $d(\mathcal{J}^n x, \mathcal{J}^{n+1} x) = \infty$ for all $n \ge 0$ or

(b); there exists a natural number k such that $d(\mathcal{J}^n x, \mathcal{J}^{n+1}x) < \infty$ for all $n \ge k$. Actually, if (b) holds, then the sequence $\{\mathcal{J}^n x\}$ is convergent to a fixed point x^* of \mathcal{J} and

(b1) x^* is the unique fixed point of \mathcal{J} in $\mathcal{F} := \{y \in \Omega, d(\mathcal{J}^k x, y) < \infty\};$ (b2) $d(y, x^*) \leq \frac{d(y, \mathcal{J} y)}{1-L}$ for all $y \in \mathcal{F}$.

Definition 2.4. Let Ω denote the set of all functions $F: X \to CC(Y)$ and $\varphi: X \to [0, \infty)$ be a mapping. We define a function $d_{\varphi}: \Omega \times \Omega \to [0, \infty]$ by

$$d_{\varphi}(F,G) = \inf\{a > 0 \mid \forall x \in X, \mathcal{H}(F(x),G(x)) \le a\varphi(x)\} \quad (F,G \in \Omega).$$

Lemma 2.5. (Ω, d_{φ}) is a complete generalized metric space for each $\varphi : X \to [0, \infty)$.

Proof. We first prove that (Ω, d_{φ}) is a generalized metric space. Fix $F, G, H \in \Omega$. Let $d_{\varphi}(F, G) = 0$. Then for each $x \in X$ and a > 0, we have $\mathcal{H}(F(x), G(x)) < a\varphi(x)$. This means that for each $x \in X$, F(x) = G(x).

Conversely, if F = G, then it follows from the definition that $d_{\varphi}(F,G) = 0$. Clearly, d_{φ} is symmetric. To prove the triangle inequality note that if either $d(F,H) = \infty$ or $d(H,G) = \infty$, then $d_{\varphi}(F,G) \leq d_{\varphi}(F,H) + d_{\varphi}(H,G)$. Suppose that $d_{\varphi}(F,H) = \alpha < \infty$ and $d_{\varphi}(H,G) = \beta < \infty$. Then for each $\epsilon > 0$, we can find real numbers a_1, a_2 such that

$$\alpha < a_1 < \alpha + \epsilon \text{ and } \beta < a_2 < \beta + \epsilon.$$

Then for each $x \in X$, we have $\mathcal{H}(F(x), H(x)) \leq a_1 \varphi(x)$ and $\mathcal{H}(H(x), G(x)) \leq a_2 \varphi(x)$. It follows that

$$\mathcal{H}(F(x), G(x)) \le (a_1 + a_2)\varphi(x) \quad (x \in X).$$

This means that for each $\epsilon > 0$, $d_{\varphi}(F,G) \leq \alpha + \beta + 2\epsilon$. This proves the triangle inequality. Next, we will show that (Ω, d_{φ}) is a complete generalized metric space. Let $\{F_n\}$ be a Cauchy sequence in generalized metric space (Ω, d_{φ}) . For each $\epsilon > 0$ there exists natural number N_{ϵ} such that for all $n, m > N_{\epsilon}$ we have $d_{\varphi}(F_n, F_m) < \epsilon$. It follows that

$$\mathcal{H}(F_n(x), F_m(x)) < \varphi(x)\varepsilon \quad (x \in X, n, m > N_{\varepsilon}).$$

Hence $\{F_n(x)\}$ is a Cauchy sequence in complete metric space $(CC(Y), \mathcal{H})$. Let

$$F(x) = \lim_{n \to \infty} F_n(x) \quad (x \in X).$$

We have to show that $F_n \to F$ in (Ω, d_{φ}) . The above argument shows that for each $\varepsilon > 0$, there is some N_{ε} such that

$$\mathcal{H}(F_n(x), F_m(x)) < \varphi(x)\varepsilon \quad (n, m > N_\varepsilon, x \in X).$$

By taking limit of the above inequality as $m \to \infty$, we see that

$$\mathcal{H}(F_n(x), F(x)) < \varphi(x)\varepsilon \quad (n > N_{\varepsilon}, x \in X).$$

Hence

$$d_{\varphi}(F_n, F) \le \varepsilon \quad (n > N_{\varepsilon}).$$

This shows that (Ω, d_{φ}) is a generalized complete metric space.

Let $h: X \to X$ and $\varphi, c: X \to [0, \infty)$ are given functions. We inductively define $c_0(x) = 1$, $c_1(x) = c(x)$ and for each n > 1, $c_n(x) = c(x)c_{n-1}(h(x))$ for each $x \in X$. Moreover, let $h^0(x) = x$, $h^1(x) = h(x)$ and for each n > 1, define

$$h^n(x) = \underbrace{ho \dots oh}_{n-terms}(x)$$
 for each $x \in X$.

The following Theorem is the main result of this paper. **Theorem 2.6.** Let $F: X \to CC(Y)$ satisfy the inequality

$$\mathcal{H}(c(x)F(h(x)), F(x)) < \varphi(x) \quad (x \in X).$$
(2.1)

If for some 0 < L < 1,

$$c(x)\varphi(h(x)) \le L\varphi(x) \quad (x \in X)$$

then there is a unique set-valued function $G: X \to CC(Y)$ such that

$$c(x)G(h(x)) = G(x)$$

and

$$\mathcal{H}(F(x), G(x)) < \frac{\varphi(x)}{1 - L}$$
(2.2)

for all $x \in X$.

Proof. Let Ω denote the set of all functions $H : X \to CC(Y)$. In view of Lemma 2.5, (Ω, d_{φ}) is a generalized complete metric space. Define $\mathcal{J} : \Omega \to \Omega$ by

$$\mathcal{J}(H)(x) = c(x)H(h(x)) \quad (H \in \Omega, x \in X).$$

Let $H_1, H_2 \in \Omega$ and for some $\alpha > 0$, $d_{\varphi}(H_1, H_2) < \alpha$, then

$$\mathcal{H}\Big(\mathcal{J}(H_1)(x), \mathcal{J}(H_2)(x)\Big) = c(x)\mathcal{H}\Big(H_1(h(x)), H_2(h(x))\Big) \\ \leq \alpha c(x)\varphi(h(x)) \\ \leq \alpha L\varphi(x) \quad (x \in X).$$

Thus $d_{\varphi} \Big(\mathcal{J}(H_1), \mathcal{J}(H_2) \Big) \leq L \alpha$. It follows that

$$d_{\varphi}\Big(\mathcal{J}(H_1), \mathcal{J}(H_2)\Big) \leq Ld_{\varphi}(H_1, H_2) \quad (H_1, H_2 \in \Omega).$$

Hence \mathcal{J} is strictly contractive mapping with Lipschitz constant L on Ω . Let $F_n = \mathcal{J}^n(F)$ for each $n \in \mathbb{N}$. By induction on n, we will show that for each $n \geq 1$,

$$\mathcal{H}\Big(F_n(x), F_{n-1}(x)\Big) \le L^n \varphi(x) \quad (x \in X).$$
(2.3)

For n = 1, (2.3) is (2.1). Let for some $n \ge 1$, (2.3) holds. Then

$$\mathcal{H}\Big(F_{n+1}(x), F_n(x)\Big) = \mathcal{H}\Big(c(x)F_n(h(x)), c(x)F_{n-1}(h(x))\Big)$$

$$\leq c(x)\mathcal{H}\Big(F_n(h(x)), F_{n-1}(h(x))\Big)$$

$$\leq L^n c(x)\varphi(h(x))$$

$$\leq L^{n+1}\varphi(x) \quad (x \in X).$$

498

Hence (2.3) holds for each $n \ge 1$. It follows that

$$d_{\varphi}\Big(\mathcal{J}^n(F), \mathcal{J}^{n-1}(F)\Big) \le L^n \quad (n \in \mathbb{N}).$$

In view of Theorem 2.3, the sequence $\{\mathcal{J}^n(F)\}$ is convergent to a fixed point G of \mathcal{J} , G is the unique fixed point of \mathcal{J} in $\mathcal{F} := \{H \in \Omega, d(\mathcal{J}^k(F), H) < \infty\}$ and $d_{\varphi}(H, G) \leq \frac{d_{\varphi}(H, \mathcal{J}(F))}{1-L}$ for all $H \in \mathcal{F}$. It follows that

$$G(x) = \mathcal{J}(G)(x) = c(x)G(h(x)) \quad (x \in X)$$

and

$$d_{\varphi}(F,G) \leq \frac{d_{\varphi}(F,\mathcal{J}(F))}{1-L} \leq \frac{1}{1-L}.$$

Hence (2.2) holds.

The next result gives an application of Theorem 2.6.

Theorem 2.7. Let $F: X \to CC(Y)$ satisfies the following inequality

$$\mathcal{H}\Big(F(x+y), F(x) + F(y)\Big) \le \psi(x,y) \quad (x,y \in X),$$
(2.4)

where $\psi: X \times X \to [0, \infty)$ is a function with the following properties: (i) $\psi(2x, 2x) \leq L\psi(x, x)$ for each $x \in X$, where 0 < L < 1. (ii) $\lim_{n\to\infty} 2^{-n}\psi(2^nx, 2^ny) = 0$ for each $x, y \in X$.

Then there exists a unique additive function $A: X \to CC(Y)$ such that

$$\mathcal{H}\Big(F(x), A(x)\Big) \le \frac{\psi(x, x)}{2(1-L)} \quad (x \in X).$$
(2.5)

Proof. Put y = x in (2.4) to obtain $\mathcal{H}(F(2x), 2F(x)) \leq \psi(x, x)$ $(x, y \in X)$. It follows from the above inequality that for

 $c(x) = \frac{1}{2}, h(x) = 2x \text{ and } \varphi(x) = \frac{1}{2}\psi(x, x), (x \in X),$

the conditions of Theorem 2.6 hold. Hence there is a unique function $A: X \to CC(Y)$ which is defined by $A(x) = \lim_{n \to \infty} 2^{-n} F(2^n x)$ $(x \in X)$ and satisfies (2.5) and A(2x) = 2A(x) for each $x \in X$. Since for each $x, y \in X$ and $n \ge 1$,

$$\begin{aligned} \mathcal{H}\Big(A(x+y), A(x) + A(y)\Big) &\leq \mathcal{H}\Big(A(x+y), 2^{-n}F(2^n(x+y))\Big) \\ &+ \mathcal{H}\Big(2^{-n}F(2^n(x+y)), 2^{-n}F(2^x) + 2^{-n}F(2^ny)\Big) \\ &+ \mathcal{H}\Big(2^{-n}F(2^x) + 2^{-n}F(2^ny), A(x) + A(y)\Big) \end{aligned}$$

and the right hand side of the above inequality tends to zero as $n \to \infty$, A is additive. **Remark.** A similar argument as it was used in Theorem 2.7 may be applied to prove the stability of other set-valued functional equations.

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64–66.
- J. Brzdęk, D. Popa, B. Xu, Selection of set-valued maps satisfying a linear inclusion in single variable, Nonlinear Anal., 74(2011), 324–330.

- [3] J.A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc, 112(1991), 729-732.
- [4] C. Berge, *Topological Spaces*, Dover Publications, 1963.
- [5] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43–52.
- [6] L. Cădariu, V. Radu, Remarks on the stability of monomial functional equations, Fixed Point Theory, 8(2007), 201–218.
- [7] L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008(2008), Art. ID 749392.
- [8] S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publ., 2002.
- [9] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative for the contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309.
- [10] M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory, 12(2011), 71–82.
- Z. Gajda, R. Ger, Subadditive mulifunctions and Hyers-Ulam stability, Numer. Math., 80, (1987), 281–291.
- [12] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222–224.
- [13] S.-M. Jung, T.-S. Kim, K.-S. Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc., 43(2006), No. 3, 531–541.
- [14] D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 160(2009), 1663–1667.
- [15] K. Nikodem, W. Zhang, On a multivalued iterative equation, Publ. Math. Debrecen, 64(2004), 427-435.
- [16] A.K. Mirmostafaee, Non-Archimedean stability of quadratic equations, Fixed Point Theory, 11(2010), 67–75.
- [17] A.K. Mirmostafaee, Non-Archimedean stability of the monomial functional equations, Tamsui Oxford J. Math. Sci., 26(2010), 221–235.
- [18] C. Park, D. O'Regan, R. Saadati, Stability of some set-valued functional equations, Appl. Math. Lett., 24(2011), 1910–1914.
- [19] C. Park, Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach, Fixed Point Theory Appl., Volume 2008 (2008), Article ID 493751, 9 pagesdoi:10.1155/2008/493751.
- [20] J.M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J., 9(7)(2005), 190–199.
- [21] V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory, 4(2003), no. 1. 91–96.
- [22] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297–300.
- [23] A. Smajdor, Additive selections of superadditive set-valued functions, Aequations Math., 39(1990), 121–128.
- [24] A. Smajdor, Subadditive and subquadratic set-valed functions, Prac Naukowe Uniwersytetu Śląskiego W Katowicach, Katowice, 889(1987).
- [25] S.M. Ulam, Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: §1, Stability), Science Editions, John Wiley & Sons, New York, 1964.
- [26] Z. Wanxiong, X. Bing, Hyers-Ulam stability for a multivalued equation, Acta Math. Scientia, 28(2008), 54–62.

Received: May 02, 2012; Accepted: May 05, 2013

500