
Fixed Point Theory, 15(2014), No. 2, 487-494

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

PERIODIC SOLUTIONS OF SECOND ORDER

NON-AUTONOMOUS DIFFERENTIAL SYSTEMS

SHENGJUN LI∗, FANG-FANG LIAO∗∗ AND HAILONG ZHU∗∗∗

∗College of Information Sciences and Technology
Hainan University, Haikou 570228, China

E-mail: shjli626@126.com

∗∗ Nanjing College of Information Technology

Nanjing 210046, China

E-mail: liaofangfang8178@sina.com

∗∗∗School of Statistics and Applied Mathematics

Anhui University of Finance and Economics
Bengbu 233030, China

E-mail: hai-long-zhu@163.com

Abstract. We study the existence of nonnegative solutions for second order nonlinear differential

systems with periodic boundary conditions. In this class of problems, where the associated Green’s
function may take on negative values, and the nonlinear term is allowed to be singular. Our method is

based on the Guo-Krasnosel’skii fixed point theorem of cone expansion and compression type, involv-

ing a new type of cone. Recent results in the literature, even in the scalar case, are complemented,
generalized and improved.
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1. Introduction

In this paper, we study the existence of nonnegative solutions for the n-dimensional
nonlinear system:

x′′ + a(t)x = h(t)g(x), (1.1)

and boundary conditions

x(0) = x(T ), x′(0) = x′(T ), (1.2)

where h(t) = diag(h1(t), · · · , hn(t)), a(t) = diag(a1(t), · · · , an(t)), (n > 1) are contin-
uous T -periodic functions, and g(x) = (g1(x), · · · , gn(x))T ∈ C(Rn,Rn). As usual, by
a T -periodic nonnegative solution, we mean a function x(t) = (x1(t), · · · , xn(t))T ∈
C2(R/TZ,Rn) solving (1.1) and such that xi(t) ≥ 0 for all t, i = 1, 2, · · · , n.

During the last few decades, the study of the existence of periodic solutions for the
second order differential equations and systems with the nonlinearity has attracted
the attention of many researchers [5, 10, 12, 11, 14, 17, 20, 21, 22]. Usually, in the
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literature, the proof is based on variational methods [1, 15], or topological methods,
which were started with the pioneering paper of Lazer and Solimini [10]. In particular,
the method of upper and lower solutions [2, 12], degree theory [20, 21], Schauder’s
fixed point theorem [5, 8] , a nonlinear Leray-Schauder alternative principle [4, 6, 11]
and some fixed point theorem in cones for completely continuous operators [3, 7, 16]
are the most relevant tools.

Guo-Krasnosel’skii fixed point theorem on compression and expansion of cones has
been used to study positive solutions for systems of ordinary, functional differential
equations [9, 16, 18, 19]. The proof of the main results in this paper is based on it. In
the process of the paper, we define a new cone and a new norm by the scalar product,
which is different to other papers. By the use of the new cone, we do not need the
positivity of the Green function, however, the positivity of the Green function plays
a very important role in [6, 7], and therefore they cannot cover the critical case, such
as k = π/T when ai(t) ≡ k2, whereas the result in [12] covers such a case.

As mentioned above, this paper is mainly motivated by the recent paper [3, 9, 18].
And the remaining part of this paper is organized as follows. In Section 2, some
preliminary results are given. In Section 3, by employing the Guo-Krasnosel’skii fixed
point theorem, we establish the main result. To illustrate the new results, some
applications are also given.

2. Preliminaries

We say that the linear system

x′′ + a(t)x = 0 (2.1)

is nonresonant if its unique T -periodic solution is the trivial one. When (2.1) is
nonresonant, as a consequence of Fredholm’s alternative, the nonhomogeneous system

x′′ + a(t)x = l(t)

admits a unique T -periodic solution which can be written as

x(t) =

∫ T

0

G(t, s)l(s)ds,

where G(t, s) = diag(G1(t, s), · · · , Gn(t, s)) is the Green function of (2.1), associated
with (1.2), and l(t) = (l1(t), · · · , ln(t)) ∈ C(R/TZ,Rn).

Throughout this paper, we always assume that the following standing hypothesis
(A) is satisfied:

(A) The Hill equation x′′ + ai(t)x = 0 is nonresonant, and the Green function

associated with (1.2) verifies
∫ T

0
Gi(t, s)ds > 0, for all t, i = 1, 2, · · · , n.

In other words, the (strict) anti-maximum principle holds for (2.1)− (1.2).
Remark 2.1. If ai(t) ≡ k2, condition (A) is equivalent to 0 < k2 ≤ λ1 = (π/T )2,
where λ1 is the first eigenvalue of the homogeneous equation x′′ + k2x = 0 with
Dirichlet boundary conditions x(0) = x(T ) = 0. In this case, we have

Gi(t, s) =

{
sin k(t−s)+sin k(T−t+s)

2k(1−cos kT ) , 0 ≤ s ≤ t ≤ T,
sin k(s−t)+sin k(T−s+t)

2k(1−cos kT ) , 0 ≤ t ≤ s ≤ T,
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and

0 ≤ Gi(t, s) ≤
1

2k sin kT
2

,

∫ T

0

Gi(t, s)ds =
1

k2
.

For a nonconstant function ai(t), there is not an explicit expression of the Green
function, but there is an Lp-criterion proved in [16], which is given in the following
lemma for the sake of completeness. To describe these, given an exponent q ∈ [1,∞],
the best constant in the Sobolev inequality

C‖u‖2q ≤ ‖u′‖22 for all u ∈ H1
0 (0, T ),

is denoted by M(q). The explicit formula for M(q) is known, that is,

M(q) =

{
2π

qT 1+2/q

(
2
q+2

)1−2/q (
Γ(1/q)

Γ(1/2+1/q)

)2

, for 1 ≤ q <∞,
4
T , for q =∞,

where Γ(·) is the Gamma function of Euler.
The ai(t) � 0 means that ai(t) ≥ 0 for all t ∈ [0, T ], and it is positive for t in a

subset of positive measure. The usual Lp-norm is denoted by ‖ ·‖p, and the conjugate
exponent of p is denoted by q : 1/p+ 1/q = 1.
Lemma 2.2. [16] For each i = 1, 2, · · · , n, assume that ai(t) � 0, and ai ∈ Lp[0, T ]
for some 1 ≤ p ≤ ∞ . If

‖ai‖p ≤M(2q).

Then the standing hypothesis (A) holds.
Under hypothesis (A), we always denote

Mi = max
0≤s,t≤T

Gi(t, s), τi = min
0≤t≤T

∫ T

0

Gi(t, s)ds,

and

M = max{M1, · · · ,Mn}, τ = min{τ1, · · · , τn}, σ =
τ

M
.

One may readily see that 0 < σ ≤ 1. When ai(t) ≡ k2 and 0 < k ≤ π/T , we have

τ =
1

k2
, M =

1

2k sin kT
2

, σ =
2

k
sin

kT

2
.

Let us fix some notation, we will use R+ = [0,∞), Rn+ =
∏n
i=1 R+. Given x =

(x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn, the usual scalar product is denoted by (x, y),
that is (x, y) =

∑n
i=1 xiyi. The usual Euclidean norm is denoted by |x|, whereas

|x|1 =
∑n
i=1 |xi| is the l1−norm. More generally, for a fixed vector v ∈ Rn+, we have

a well-defined norm

|x|v =

n∑
i=1

vi|xi|.

Obviously, |x|v = |x|1 if v = (1, · · · , 1). Let ‖·‖ denote the supremum norm of C[0, T ],
and take X = C[0, T ] × · · · × C[0, T ] (n copies). For x(t) = (x1(t), · · · , xn(t)) ∈ X,
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the natural norm becomes

‖x‖v =

n∑
i=1

vi‖xi‖ =

n∑
i=1

vi ·max
t
|xi(t)|.

Obviously X is a Banach space.
Definition 2.3. Let X be a Banach space and let K be a closed, nonempty subset
of X. K is a cone if

(i) αu+ βv ∈ K for all u, v ∈ K and all α, β > 0,

(ii) u,−u ∈ K implies u = 0.

Let X = C[0, T ]×· · ·×C[0, T ] (n copies), we write x(t) ≥ 0, if (x1(t), . . . , xn(t)) ∈ Rn+
and define

K = {x ∈ X : x(t) ≥ 0 for all t ∈ [0, T ] and

∫ T

0

(v, x(t))dt ≥ σ‖x‖v, v ∈ Rn+}.

One may verify that K is a cone in X. In fact, clearly K is closed and nonempty.
Moreover, for x, y ∈ K and a, b > 0, we have∫ T

0

(v, ax(t) + by(t))dt = a

∫ T

0

(v, x(t))dt+ b

∫ T

0

(v, y(t))dt

≥ aσ‖x‖v + bσ‖y‖v ≥ σ‖ax+ by‖v.

Suppose now that hi : [0, T ] → R, gi : Rn → R are continuous functions. Define
the integral operator T : X → X by

(Tx) = (T1x, · · · ,Tnx)T

where

(Tix)(t) =

∫ T

0

Gi(t, s)hi(s)gi(x(s))ds, i = 1, 2, · · · , n,

for x ∈ X, t ∈ [0, T ].
Lemma 2.4. T : X → K is well defined.
Proof. Let x ∈ X and we have(

v, (Tx)(t)
)

=

n∑
i=1

vi |(Tix)(t)| =

n∑
i=1

vi

∣∣∣∣∣
∫ T

0

Gi(t, s)hi(s)gi(x(s))ds

∣∣∣∣∣
≤

n∑
i=1

viMi

∣∣∣∣∣
∫ T

0

hi(s)gi(x(s))ds

∣∣∣∣∣ .
which implies ‖Tx‖v ≤M

∣∣∣∫ T0 (v, h(s)g(x(s))ds
∣∣∣.

On the other hand,∫ T

0

(v, (Tx)(t))dt =

∫ T

0

n∑
i=1

vi

∣∣∣∣∣
∫ T

0

Gi(t, s)hi(s)gi(x(s))ds

∣∣∣∣∣ dt
≥ τ

∫ T

0

(v, h(s)g(x(s))ds.
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Thus
∫ T

0
(v, Tx(t))dt ≥ σ‖Tx‖v, i.e.,Tx ∈ K, and the proof is completed.

Since hi : [0, T ]→ R, gi : Rn → R are continuous functions, it is easy to see
Lemma 2.5. T : X → K is continuous and completely continuous.

3. Main results

In this section, we state and prove the new existence results for (1.1). In order
to prove our main results, the following well-known Guo-Krasnosel’skii fixed point
theorem of cone and expansion and compression type is need, which can be found in
[13].
Theorem 3.1. Let X be a Banach space and K (⊂ X) be a cone. Assume that
Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

A : K ∩ (Ω̄2 \ Ω1)→ K

be a continuous and completely continuous operator such that either

(i) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2; or

(ii) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω̄2 \ Ω1).
Now we present our main existence result of nonnegative solution to problem (1.1).

For convenience, we introduce the notation

f0 = lim
|x|v→0+

(v, g(x))

|x|v
, f∞ = lim

|x|v→∞

(v, g(x))

|x|v
.

Theorem 3.2. Suppose that a(t) satisfies conditions (A). Furthermore, we assume
that

(H1) hi(t) : [0, T ]→ R+ are continuous with hi(t) > 0. i = 1, 2, · · · , n.
(H2) gi(x) : Rn+ → R+ are continuous. i = 1, 2, · · · , n.
Then problem (1.1) has a nontrivial solution x with x(t) ≥ 0 for t ∈ [0, T ], if one of
the following conditions hold.

(i) f0 =∞ and f∞ = 0.

(ii) f0 = 0 and f∞ =∞.
To prove Theorem 3.2, we define new functions

g∗i (x) = max
t
gi(x)(i = 1, 2, · · · , n), g∗(x) = (g∗1(x), · · · , g∗n(x))

and let

f∗0 = lim
|x|v→0+

(v, g∗(x))

|x|v
, f∗∞ = lim

|x|v→∞

(v, g∗(x))

|x|v
.

The following Lemma is needed in the proof of Theorem 3.2.
Lemma 3.3.[18] Assume (H2) holds. Then f0 = f∗0 and f∞ = f∗∞.
Proof of Theorem 3.2. Part (i). By (H2) and f0 =∞, we set

γ = min{h1(t), · · · , hn(t)}, λ =
TM

τ2γ
,
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there exist R1 > 0, such that

|x|v ≤ R1 ⇒ (v, g(x)) ≥ λ|x|v.

For any r > 0, let

Ωr = {x ∈ K : ‖x‖v < r}.

First we show

‖Tx‖v ≥ ‖x‖v for x ∈ K ∩ ∂ΩR1
. (3.1)

In fact, x ∈ K ∩ ∂ΩR1
, then R1 = ‖x‖v ≥ |x|v.

‖Tx‖v =
1

T

∫ T

0

‖Tx‖vdt ≥
1

T

∫ T

0

(v, (Tx)(t))dt

=
1

T

∫ T

0

n∑
i=1

vi

∣∣∣∣∣
∫ T

0

Gi(t, s)hi(s)gi(x(s))ds

∣∣∣∣∣ dt
≥ λγτ

T

∫ T

0

(v, x(s))ds

≥ λγτ2

TM
‖x‖v = ‖x‖v.

Since f∞ = 0, Lemma 3.3 implies f∗∞ = 0. Thus, there exists R2 > |x|v, |x|v ∈
(R1,+∞) such that

(v, g∗(x)) ≤ |x|v
TM‖h‖

.

where ‖h‖ = max
i∈{1,··· ,n}

sup
t∈[0,T ]

hi(t).

Next, we show

‖Tx‖v ≤ ‖x‖v for x ∈ K ∩ ∂ΩR2
. (3.2)

To see this, let x ∈ K ∩ ∂ΩR2 , then ‖x‖v = R2.

‖Tx‖v =

n∑
i=1

vi max
t

∣∣∣∣∣
∫ T

0

Gi(t, s)hi(s)gi(x(s))ds

∣∣∣∣∣
≤ M‖h‖

∫ T

0

n∑
i=1

vi|g∗i (x(s))|ds

≤ M‖h‖T
(
v, g∗(x)

)
≤ ‖x‖v.

Now (3.1),(3.2) and Theorem 3.1(i) guarantee that T has a fixed point x ∈ K ∩
(Ω̄R2

\ΩR1
).

Part (ii). Since f∞ = ∞, we can choose r2 > |x|v, and |x|v sufficiently large such
that

(v, g(x)) ≥ λ|x|v.
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Let x ∈ K ∩ ∂Ωr2 , then ‖x‖v = r2. Similar to part(i) f0 =∞, we have

‖Tx‖v ≥ ‖x‖v for x ∈ K ∩ ∂Ωr2 . (3.3)

If f0 = 0, Lemma 3.3 implies f∗0 = 0. Thus, there exists r1 ∈ (0, r2) such that

|x|v ≤ r1 ⇒ (v, g∗(x)) ≤ |x|v
TM‖h‖

.

Let x ∈ K ∩ ∂Ωr1 , then ‖x‖v = r1. Similar to part (i) f∞ = 0, we have

‖Tx‖v ≤ ‖x‖v for x ∈ K ∩ ∂Ωr1 . (3.4)

Now (3.3),(3.4) and Theorem 3.1(ii) guarantee that T has a fixed point x ∈ K ∩
(Ω̄r2\Ωr1). Clearly, x(t) ≥ 0 is a nontrivial solution of (1.1). This completes the proof
of the theorem.
Corollary 3.4. Assume that g ∈ C(Rn,Rn), h ∈ C(R,Rn) and there exists a vector
v ∈ Rn+, and continuous positive functions a(t), b(t) such that

(F)
a(t)

|x|αv
≤ (v, g(x)) ≤ b(t)

|x|αv
, for all t and x ∈ Rn+.

Then problem (1.1) has a solution x with x(t) ≥ 0.
Proof. We will apply Theorem 3.2, with the above functions g and h, we see that
(H1) and (H2) hold. Moreover, it is easy to see that

f0 =∞ and f∞ = 0, if α ∈ (−1,∞),

and

f0 = 0 and f∞ =∞, if α ∈ (−∞,−1).

Then the conclusion follows from Theorem 3.2(i) if α ∈ (−1,∞) and Theorem 3.2(ii)
if α ∈ (−∞,−1).
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