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Abstract. The purpose of this paper is to present some fixed point theorems for operators f: X% —
X satisfying a general Presi¢-type contractivity condition on a partially order complete metric space
X. Moreover, we give an application of our main theorem to the study of nonlinear differential
equations.
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1. INTRODUCTION AND PRELIMINARIES

Banach proved a fixed point theorem for contraction mappings in complete metric
spaces. In fact, he supposed that (X,d) is a complete metric space and T': X — X
is a contraction, namely,

d(Tz,Ty) < kd(z,y)
for all z,y € X and 0 < k < 1. Then he concluded that T has a unique fixed point
in X.

Recently, Bhaskar and Lakshmikantham [2] proved the existence of fixed point in
partially ordered metric spaces. Let (X, <) be a partially ordered set and d a metric
on X such that (X,d) is a complete metric space. Further, we endow the product
space X x X with the following partial order:

(u,0) < (@,9) & @ > uy < v
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for (z,y), (u,v) € X x X. We begin with the following theorem that establishes
existence of a fixed point theorem for a function F' on the product space X x X.

Theorem 1.1. Let F': X x X — X be a continuous mapping having the mized
monotone property on X, namely, F(x,y) is nondecreasing in x and is nonincreasing
in vy, that is, for all x,y € X and x1,x2,y1,y2 € X,

1 <29 = F(x1,y) < F(x2,y)

y1 Sy2 = Flz,y1) = F(z,y2).
Assume that there exists a k € [0,1) with

k
d(E(z,y), F(u,v)) < 5ld(z,u) +d(y, v)],
for x > u,y <w. If there exists xg,yo € X such that

zo < F(0,90), Y0 = F(yo, o),
then there exist x,y € X such that

ZU:F(Z,y),y:F(y,.’ﬂ),

namely, F' has a coupled fized point.

Existence of a fixed point for contraction type mappings in partially ordered metric
spaces has been considered recently in [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14|, where
some applications to matrix equations, ordinary differential equations and integral
equations are presented.

Presi¢ [13] proved the existence and uniqueness of fixed points for operators satis-
fying a special type of contraction condition, and also providing a so-called multi-step
iteration method for approximating the fixed points. In the sequel we shall consider
(X, d) a metric space. Presi¢’ condition generalizes Banach’s contraction condition,
namely,

d(f(x), f(y)) < ad(z,y)

for all z,y € X, where f : X — X is an operator and « € [0,1) is a constant, by
considering instead

k
d(f(x(hxlv e ,xk,1)7f(x1,x2, e ,l'k)) é Zaic . d(xiflvxi)
i=1

for all zg, 1, --,2x € X, where k is a positive integer, f : X* — X is an operator
k

and aq,---,a € Ry are constants such that Z a; < 1.
i=1
Several general Presi¢ type results followed in literature, see for example the papers

due to Rus [15, 16], Serban [17] and Taskovic [18].

Theorem 1.2. (Rus [15]) Let (X,d) be a complete metric space, k a positive integer,
and @ : Ri — R4 a function with the properties:
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a) p(r) < @(s) forr,s € RE,r < s;
b) QD(T,’I","' 77') <7nf07'71€R+ 7‘>0,’
¢) @ is continuous;

d) Y @' (r) < oo;
i=0
6) (P(T,O,"' 70)+50(07T703"' 70)++90(03 707T) < 90(7"77"7"' ﬂr) fOT anyr € R—i—;
and let f : X* — X be an operator such that
d(f(l'o,l‘]_, o 7xk71)af(xl7x27' o ,Ik;)) S So(d(anxl)ad(xth)a T ad(xkflaxk))

for all xg,z1, -,z € X.
Then
1) there exists a unique x* € X solution of the equation

fo(a?,x,~-~ 71")7
ii) the sequence {x,}, <, with xo,x1, - ,x_1 € X and
Tn = f(Tn—k, Tn—kt1, "+ Tn-1), for nm=>k,

converges to x*;
iii) the rate of convergence for {xyn},~, is given by

d@n,e*) <k @UF(do, -+ ,do),
=0

where dyg = max{d(zg,x1),d(x1,x2), - ,d(xp_1,2k)}
Let (X, <) be a partially ordered set. We endow the product space X* with the
following partial order: for (w1, 22, ,ok), (Y1,Y2, ,yx) € X*

(Ihx?,"' axk) < (y15y27’” 7yk)<:>xi Syz for i € {1727 ;k}

Definition 1.3. We say that x* € X is a fized point of f: X* — X if
f(x*,$*7. .. ,z*) = 1‘*,

In this paper, we investigate some fixed point theorems for operators f: X* — X
satisfying a general Presi¢-type contractivity condition on partially order complete
metric space X. Moreover, we give an application of our main theorem in the study
of nonlinear difference equations.

2. MAIN RESULTS

We start our work with the following theorem which can be regarded as an extension
of Theorem 1.2.

Theorem 2.1. Let (X, <) be a partially ordered set and d be a metric on X such
that (X, d) is a complete metric space, k a positive integer. Suppose that there exists
a function ¢ : Ri — Ry with the properties:
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a) (r) < @(s) forr,s €RY, 7 <'s;
b) o(ryry..r) <r forr e Ry, r>0;
¢) @ is continuous;

o0
d) > ¢ (r) < oo

i=0
6) @(Tv Oa o 70)+50(07T7 03 T 70)+ ' +90(03 T 707T) < 90(7"7 Ty ,7’) fOT anyr € R—i—;
and let f : X* — X be a continuous mapping having the increasing property on X
such that

d(f(zo.x1, - yxp—1), f(z1, 22, - ,2k)) < @(d(x0,21),d(x1,22), - ,d(Tp_1,2k))

(2.1)
forallxg,x1, -+ ,xk_1,x € X, wherexg < x1 <29 < -+ < a1 < x). If there exist
To, 21, , k1 € X such that xg < w1 < 29 < -+ < a1 < f(2o, 21, Tro1),
then there exists ©* € X such that o* = f(a*, z*, - -, z*).

Proof. Let f(xg,x1, -+ ,xp—1) = Tk. Since

rg <xy <o < - <1 < fwo, w1, 1),
due to the increasing property of f, we have

r = f(xo, 21, ,x8-1) < f(21, 22, ,Tp) = Tpy1.
In this manner, we construct the increasing sequence {z, }»>0 such that
Tn = f(xnflm e ,.’L'nfl), n > k.
We denote
do = max{d(zg,z1),d(z1,22), - ,d(Tk—1,2k)} (2.2)

and this is positive, assuming that zg,x1,--- , T} are not equal.

The following estimations hold. By hypothesis,

d(f(zoaxlv T 7xk—1)7 f(l'hl'g, e ,Ik))
(d(m()?xl)?d(mlaxQ)a e 7d($k71,$k))
(d07d05 e ,do) < d07

d(x, Try1)

<o

<y

d(Zps1, Tryo) = d(f(x1, 22, -+, 2p), f(T2, 23, , Tpy1))
<

o(d(z1,x2),d(x2,23),- - ,d(Tp—1,Tk), d(Tk, Tpt1))
@(do,do, -+ ,do,o(do,- - ,do)) < do,

IN
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d(wop—1,%ox) = d(f(r—1," ", Tar—2), f(@n, -+, T2x_1))
< (d(zp—1,28), 5 d(T2K—2, T2k 1))
< ¢(do, ¢(do, -+ ,do),++ ,p(do, -+ ,do))
< ¢(do, do, - - ,do) < do,
d(2ak, ory1) = d(f(xr, - wop—1), f(Trt1, -+, Tar))
d(xg, Try1), -+ d(Tor—1, Tor))

o(
@(@(do, 7d0)790(d07"' 7d0)a"' 780(d07"' 7d0))
¢*(do, - ,do) < ¢(do, -+ ,do) < do,

f(@rg1, o @ok)s fTrga, s Tant1))
(d(Trs1, Zry2), - d(T2r, Tary1))
*(do, do, -+, do, p(do, -~ ,do))
*(do, -+ ,do) < do

S
—
3
N
ES
X
—
8
N
o
+
™
N
I
=

and so on
AT, Tng1) < ¥ (do, -+, do), n > k.

Thus, for some integer p > 1, we obtain that

ntp—1

d(xn7:cn+p)§<p[%](do,-~-,do)+-~-+go[ % ](dm“wdo), (n>0).

Denoting
n n+p—1

E]vm: [T]a

we have m > [. Besides, the above relation (2.4) implies further estimation

1=

d(Tn, Tngp) < @ (do, -+ ,do) + -+ @' (do, -+, do) +
k—times

+(pl+1(d07"' 7d0) + - +Sol+1(d07"' 7d0)+

k—times
++Som(d07 ad0)++@m(d0a 7d0)7
k—times

and so

d(wnvanrp) Skzwl(dm ,d()), (nZO,pZ 1)

i=l
Denoting S,, = Z ©'(do, - -~ ,dp), we have
i=0

m

Z@i(doa"' 7d0):Sm*Sl—17 m > 1.

467
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Then from assumption d) upon ¢, the limit

S = lim S,,
m—r oo
exists. From (2.5), it follows that
lim » "' (do, -+ ,do) = S — 8 =0,

and in view of (2.6), d(2n,Zntp) — 0, as n — oco. This means that {z,}n>0 is a
Cauchy sequence. Since X is a complete metric space, there exists z* € X such that
lim;, 00 , = 2*. On the other hand, since z,, = f(@n—, -+ ,2p—1) for all n > k and
f is a continuous mapping, we have

z* = lim x, = lim f(xp—k, " ,Tn_1)
n—oo n—oo
= f(lim zp_g, -+, lim x,_1)
n—oo n—oo
:f(x*a 756'*).

This completes the proof.

Theorem 2.2. Let (X,d) be a partially ordered set and suppose that there exists a
metric d in X such that (X,d) is a complete metric space. Assume that X has the
following property:

if a nondecreasing sequence {x,} — x, then x, <z for all n. (2.7)

Let f: X* — X be a mapping having the increasing property on X such that

d(f(l’o, T, 7xk—1), f(xl,J/'Q, e azk)) S (p(d(x(bxl)v d(thQ)a T ad(xk—lvxk))

for all xg,x1, -+ jxp_1,2 € X, where xp < 1 < 29 < -+ < xp_1 <z and @
satisfies the conditions of Theorem 2.1. If there exist xg,x1, - ,xx—1 € X such that
2o <w <a9< - <wpg < fwo, 21, ,Tk—1), then there exists x* € X such that
x* = fla*,x*,-- x").

Proof. Following the proof of Theorem 2.1, we only have to show that z* =
fla®, e a).

Let € > 0. Since {x,} — «*, there exists m € N such that, for all n > m, we have

€
d(z,,x") < 7

Taking n € N, we get

d(f(z*,z*,--- ,x%),a")

<d(f(@, 2%, 2"), f(@mi1s Tmg2, 0 Tngk)) + A (@mgt, Tmaz, o Tmk), )

< @(d(@”, zmir), d(@", Tmga), - (27, Tmgk)) + A(@mgrgr, 27)

< go(%, %, e ,%) +d(@mirt1,2") < % + % =e.
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This implies that f(a*, a*,...,a*) = a*.
One can prove that the fixed point is in fact unique, provided that the product
space X* endowed with the partial order mentioned earlier has the following property:

for (z1, 29, ,xk), (Y1,Y2, - ,yk) € XF, there exists a (21,22, ,2,) € X*
that is comparable to (x1,xa, - ,x) and (y1,Y2,"** ,Yk)- (2.8)

Theorem 2.3. If we add condition (2.8) to the hypothesis of Theorem 2.1, then we
obtain the uniqueness of the fived point of f.
Proof. If y* € X is another fixed point of f, then we show that

d(z",y") = 0.

We consider two cases:
Case 1: If 2* is comparable to y*, then

d(l‘*,y*) (f(l‘*,.%'*,“ ,x*),f(y*,y*, 7y*))
< p(d(z*,y"), - ,d(z",y"))
<d(z",y")

This contradiction implies that z* = y*.

Case 2 : If z* is not comparable to y*, then there exists z € X which is comparable
to x* and y*.
We denote f*(z,---,2) = f(f" Yz, ,2), -, f" Yz ,2)) for n = 1,2,---.
Monotonicity implies that f™(z,...,z) is comparable to f™(z*,---,z*) = z* and
My, ,y")=y* forn=1,2,---. Moreover

< <)0( (fn 1( T vx*)vfn_l(za U 7Z))7' te 7d(fn_1(x*7' o ax*)vfn_l(za U 7Z)))

d(fn 1( o ’x*)’fn—l(z’.“7z))
(z ( 7))
Consequently, {d(z*, f*(z,---,2))} is a nonnegative and decreasing sequence and
hence there is a limit v. We claim v = 0, otherwise, from the last inequality, we can
obtain v < ¢(v,7, -+ ,v) <. This contradiction implies 7 = 0. Analogously, it can
be proved that lim d(y*, f*(z,---,2)) =0.

n—o0
Finally,

|
&

d(x*»y*) < d(x*vfn(zv 72)) +d(fn(zv 72)73/*)7

and taking the limit as n — oo, we obtain that d(z*,y*) = 0.
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3. APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

In this section, by application of Theorem 2.2, we prove the existence of solution
of an ordinary differential equation. Hence, we prove the existence of solution for the
following first—order periodic problem

/(t) = f( ,u(t),u(t),~ e ,U(t)), tel= [O7T]
) -y (3

where T'> 0 and f : I x R¥ — R is a continuous function.
Previously, we consider the space C(I) (I = [0,T]) of continuous functions defined on
I. Obviously, this space with the metric given by

d(z,y) = sup{le(t) —y(t)| : t € I}

for z,y € C(I), is a complete metric space. C'(I) can also be equipped with a partial
order given by

z,y €CI), x<y<w )<yt

for t € I. Obviously, for z,y € C(I), there exists a lower bound or an upper bound,
since, for z,y € C(I), the functions max{z,y} and min{z,y} are least upper and
greatest lower bounds of x and y, respectively. Moreover, in [9], it was proved that
(C(I), <) with the above mentioned metric satisfies the condition (2.7). Let ® denote
the class of those functions ¢ : Ri — R, with the properties:

a) @(r1,ra, ++ ,1k) < p(s1, 82, ,sx) for (ri,--+ 1), (51, ,s) € RE r; <s; for
all i € {1,2, k)
b) o(r,r, -+ ,1r) <rforr e Ry, r>0;

c) p 1s contmuous

d)Zw

e) ( 0)+L,0(0,T,0,---,0)+"'+Lﬂ(0,'~',O,T)SQO(T,T,-”,T)fOI'aHyTER+.
Now we give the following definition.

Definition 3.1. A lower solution for (3.1) is a function o € C*(I) such that

{ I(t) < f(t>a(t)’a(t)v eya(t), tel= [OvT]
a(0) < a(T)

Theorem 3.2. Consider the problem (3.1) with f : I x R¥ — R continuous and
suppose that there exist A1, Ao, -+ , A > 0 such that for x1,x2, - , Tk, Y1,Y2,"* , Yk €
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R with x; > y; forall1 <i <k
0< f(t, w1, w2, ,ox) + Mx1 + Aoxg + -+ 4+ Ay,
—[ft oy, 92, ok) + My + Ay + - 4 Ay

QO(ZL']_ — Y1, T2 — Y2, , Tk — yk)a

IN
i
&

where ¢ € ®. Then the existence of a lower solution for (3.1) provides the existence
of a unique solution of (3.1).

Proof. Problem (3.1) can be written as

{ w(t) + Au(t) + -+ Mu(t) = fEu(t), w(t), - u(t)) + Aut) + - - + Apu(t),
u(0) = u(T)

for t € I = [0,T]. This problem is equivalent to the integral equation

/Gts (s,u(s) +Z)\u

where
TR X (THs—t)
e—1i
B> e ve 0<s<t<T
G(t,s) =
SE A (s—t)
est 0<t<s<T.

k
eXi=12'T 1

Define F': C(I)* — C(I) b
F($17I2,"‘ ,.Tk;)(t)

T
= /0 G(t,s)[f(s,21(s), 22(5), -+, 2k (8)) + Mawi(s) + Aawa(s) + - - + Apw(s)]ds.

Note that if z € C(I) is a fixed point of F, then x € C*(I) is a solution of (3.1).
Now we will check that hypotheses in Theorem 2.2 are satisfied. The mapping F
is increasing since, by hypothesis, for (uy,ug, -+ ,us), (vi,va, -+ ,vx) in C(I)¥ with
u; > v; for 0 <1 <k,

@ ur(t),uz(t), - ur(t)) + Arua (t) + Agua(t) + -+ + Apug(t)
> f(t,vi(t),va(t), - k() + Avi(t) + Agva(t) + -+ + Apor(?)
for all ¢t € I, which implies that

T
F(uy,ug, - u)(t) :/ G(t,8)[f(s,u1(s), - ,up(s)) + AMur(s) + - - + Agur(s)]ds

/ G(t,9)[f(s,v1(8), - ,vE(8)) + Av1(s) + - -+ + Apvr(s)]ds

*F 1}1,1}2, 7vk)(t)
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for all ¢ € I by using that G(t,s) > 0 for (t,s) € I x I. Besides, for all
U, Uty -+ Up—1, Uk € C(I), where ug < up < -+ <wup—1 <ug and ¢ € P,

d(F(uo,u1, - yuk—1), Fur,ug, -, ug))

= Sul})|F(U/O7U17"' )uk:fl) _F(Ul,U27"' ,Uk)(t)'
te

Ssup/ G(t,s)|[f(s,u0(s), -+ yup—1(s)) + Aug(s) + Aauq(s) + -+

tel

Awug—1(s)] = [f(s ui(s), -+, uk(s)) + Aua(s) + Agua(s) + - - + Apun(s)][ds

tel

< sup/0 G(t,s) - Z)\i - o(ur(8) —uo(s),uz(s) —ur(s), -+ ,ug(s) — ug—1(s))ds

k
<S A+ o, o), d(uz,ur), - d(ur, u1) sup/ G(t,s)

tel

= @(d(ula uO)a d(u2vu1)7 te ’d(ukvukfl))-

Finally, let a(¢) be a lower solution for (3.1) and we will show that o < F(a, o, -+ , ).
——
k—times
Indeed,
k k
)+ Nialt) < ftat), - at) + > A alt)
i=1 i=1

(@)= < [f(talt), - alt) + DA alt)le= !
i=1
for t € I and this gives us
k t k
a(t)eXi=12 " < a(0) +/ Fs.a(s),- - als)) + DN+ als)leXm ™ *ds (32)
0 i=1
for ¢t € I, which implies that
a(O)eZﬁ:l AT < a(T)er:l’\i'T
T k .
< a0) +/ F(5,0(),+a(s) + 3 A+ a(s)]eSirsds
0 i=1
and so
T 62?:1 Ai-s k
00) < [ <SS s o) + YA als)lds.
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From this inequality and (3.2), we obtain
¢ 62?:1 Ai'(T“‘S) k

« eZi'CZIA""t s,a(s), -, (s i+ a(s)|ds
(® <[ Cf(sals)sals) £ YA+ als)ld

0 62?:1 AT

T @Zf:l Aivs k
+/t ———— [f(s5,a(s), - ,a(s))—l—Z)\i- a(s)]ds

eXiza N T

=1
and so
: Z?:l i( s—t) k
a(t) S/O eezifjk;! [f(s,a(s), -, a(s)) + ;)\i' a(s)]ds
T 62?:1 Ai+(s—t) k
/t ST 1 [f(s,a(s), -, afs)) +;)\i' a(s)]ds.
Hence
T k
o) £ [ Gle)lf(ssals)+ als) + YA+ als)lds = Fla, )0
fort e I.

Finally, it follows from Theorems 2.2 and 2.3 that F' has a unique fixed point.
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