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1. Introduction

Problems with non-local conditions have been extensively studied by several au-
thors in the last two decades. The reader is referred to [1]-[6] and [9]-[19] and references
therein.
Here we are concerning with the Cauchy problem of the differential equation

x′(t) = f(t, x(t), x′(t)), for a.e. t ∈ (0, 1) (1.1)

with the general internal nonlocal condition
m∑
k=1

akx(τk) = α

n∑
j=1

bjx(ηj) (1.2)

where τk ∈ (a, c), ηj ∈ (d, b), 0 < a < c ≤ d < b < 1 and α is parameter.
Our aim here is to study the existence of at least one absolutely continuous solution

x ∈ AC[0, 1] for the problem (1.1)-(1.2) when the function f is measurable in t ∈
[0, 1] for any (u1, u2) ∈ R2 and continuous in (u1, u2) ∈ R2 for almost all t ∈ [0, 1].
Also we deduce the existence of solutions for the Cauchy problem of equation (1) with
the nonlocal integral condition∫ c

a

x(s) ds = α

∫ b

d

x(s) ds. (1.3)
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It must be noticed that the following nonlocal and integral conditions are special cases
of our nonlocal and integral conditions

x(τ) = β x(η), τ ∈ (a, c) and η ∈ (d, b), (1.4)
m∑
k=1

akx(τk) = β x(η), τk ∈ (a, c) and η ∈ (d, b), (1.5)

m∑
k=1

akx(τk) = 0, τk ∈ (a, c), (1.6)∫ c

a

x(s) ds = β x(η), η ∈ (d, b), (1.7)

and ∫ c

a

x(s) ds = 0, (a, c). (1.8)

The following theorems will be needed.
Theorem. (Kolmogorov Compactness Criterion) (see [8])

Let Ω ⊆ LP (0, 1), 1 ≤ P <∞. If

(i) Ω is bounded Lp(0, 1),
(ii) xh → x as h→ 0 uniformly with respect to x ∈ Ω, then Ω is relatively

compact in LP (0, 1), where

xh(t) =
1

h

∫ t+h

t

x(s) ds.

Theorem. (Schauder) (see [14])
Let U be a convex subset of a Banach space X , and T : U → U is compact,
continuous map. Then T has at least one fixed point in U .

2. Existence of solution

Consider the nonlocal problem (1)-(2). Let dx(t)
dt = y(t), then

y(t) = f(t, x(t), y(t)) (2.1)

and

x(t) = x(0) +

∫ t

0

y(s) ds. (2.2)

Let t = τk in (2.2), we obtain

x(τk) = x(0) +

∫ τk

0

y(s) ds,

than
m∑
k=1

akx(τk) =

m∑
k=1

akx(0) +

m∑
k=1

ak

∫ τk

0

y(s) ds. (2.3)

Let t = ηj in (2.2), we can obtain

α

n∑
j=1

bjx(ηj) = α

n∑
j=1

bjx(0) + α

n∑
j=1

bj

∫ ηj

0

y(s) ds. (2.4)
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From (2.3) and (2.4), we obtain

x(0) = A(

m∑
k=1

ak

∫ τk

0

y(s) ds− α
n∑
j=1

bj

∫ ηj

0

y(s) ds). (2.5)

Substitute from (2.5) into (2.2), we get

x(t) = A(

m∑
k=1

ak

∫ τk

0

y(s) ds− α
n∑
j=1

bj

∫ ηj

0

y(s) ds) +

∫ t

0

y(s) ds, (2.6)

where y is the solution of the functional integral equation

y(t) = f(t, {A(

m∑
k=1

ak

∫ τk

0

y(s) ds−α
n∑
j=1

bj

∫ ηj

0

y(s) ds)+

∫ t

0

y(s) ds}, y(t)). (2.7)

Then we proved the following lemma.
Lemma 2.1. Let α

∑n
j=1 bj 6= −

∑m
k=1 ak. Then the solution of the nonlocal

problem (1)-(2) can be expressed by the integral equation (2.6) where y is the solution
of the functional integral equation (2.7).

Consider the functional equation (2.7) with the following assumptions
(i) f : [0, 1] × R2 → R is measurable in t ∈ [0, 1], for any (u1, u2) ∈ R2 and

continuous in (u1, u2) ∈ R2 , for almost all t ∈ [0, 1] .
(ii) There exists a function a ∈ L1[0, 1] and constant bi > 0 ; i = 1, 2 such that

|f(t, u1, u2)| ≤ |a(t)|+
2∑
i=1

bi|ui|; ∀(t, u1, u2) ∈ [0, 1]×R2.

(iii) (Ab1(
∑m
k=1 ak + α

∑n
j=1 bj) + b1 + b2) < 1.

Now, we have the following theorem.
Theorem 2.1. Assume that the assumptions (i) - (iii) are satisfied. Then the func-
tional integral equation (2.7) has at least one solution y ∈ L1[0, 1].
Proof. Define the operator H by

Hy(t) = f(t, {A(

m∑
k=1

ak

∫ τk

0

y(s) ds− α
n∑
j=1

bj

∫ ηj

0

y(s) ds) +

∫ t

0

y(s) ds}, y(t)).

(2.8)
Let

Br = {y : ||y||L1 ≤ r, r > 0},

r = ||a||(1− (Ab1(

m∑
k=1

ak + α

n∑
j=1

bj) + b1 + b2))−1.

Clearly Br is nonempty, convex and closed .
Let y ∈ Br, then from assumptions (i) and (iii), we obtain

||Hy||L1
=

∫ 1

0

|f(t, {A(

m∑
k=1

ak

∫ τk

0

y(s)ds−α
n∑
j=1

bj

∫ ηj

0

y(s)ds) +

∫ t

0

y(s)ds}, y(t))|dt
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≤
∫ 1

0

(|a(t)|+ b1|A
m∑
k=1

ak

∫ τk

0

y(s)ds−Aα
n∑
j=1

bj

∫ ηj

0

y(s)ds+

∫ t

0

y(s)ds|+ b2|y(t)|)dt

≤
∫ 1

0

(|a(t)|+Ab1
m∑
k=1

ak

∫ τk

0

|y(s)|+Ab1α
n∑
j=1

∫ ηj

0

|y(s)|ds+b1
∫ t

0

|y(s)|ds+b2|y(t)|)dt

≤ ||a||+Ab1

m∑
k=1

ak||y||+Ab1α

n∑
j=1

bj ||y||+ b1||y||+ b2||y||

≤ ||a||+ (Ab1

m∑
k=1

ak +Ab1α

n∑
j=1

bj + b1 + b2)||y||

≤ ||a||+ (Ab1(

m∑
k=1

ak + α

n∑
j=1

bj) + b1 + b2)||y||

≤ ||a||+ (Ab1(

m∑
k=1

ak + α

n∑
j=1

bj) + b1 + b2)r ≤ r.

Then ||Hy||L1
≤ r, which implies that the operator H maps Br into it-

self, i.e H : Br → Br.
Assumption (ii) implies f ∈ L1 → L1 and assumption (i) implies that H is continu-
ous. To apply Schauder fixed point theorem it remains to show that H is compact
Now, let Ω be a bounded subset of Br , therefore H(Ω) is bounded in L1[0, 1],
i.e condition (i) of Kolmogorov compactness criterion is satisfied, it remains to show
that

(Hy)h → (Hy), in L1[0, 1].

Let y ∈ Ω ⊂ L1[0, 1] , we have the following estimation

||(Hy)h − (Hy)||L1 =

∫ 1

0

|(Hy)h(t)− (Hy)(t)| dt

=

∫ 1

0

| 1
h

∫ t+h

t

(Hy)(s) ds− (Hy)(t)| dt ≤
∫ 1

0

(
1

h

∫ t+h

t

|(Hy)(s)− (Hy)(t)| ds) dt

≤
∫ 1

0

1

h

∫ t+h

t

|f(s,A

m∑
k=1

ak

∫ τk

0

y(τ)dτ − αA
n∑
j=1

bj

∫ ηj

0

y(τ)dτ +

∫ s

0

y(τ)dτ, y(s))

− f(t, A

m∑
k=1

ak

∫ τk

0

y(s)ds− αA
n∑
j=1

bj

∫ ηj

0

y(s)ds+

∫ t

0

y(s)ds, y(t))| ds dt.

Now f ∈ L1 → L1 and y ∈ Ω ⊂ L1 implies that f ∈ L1[0, 1] and

1

h

∫ t+h

t

|f(s,A

m∑
k=1

ak

∫ τk

0

y(τ)dτ

− αA

n∑
j=1

bj

∫ ηj

0

y(τ)dτ +

∫ s

0

y(τ)dτ, y(s))− f(t, A

m∑
k=1

ak

∫ τk

0

y(s)ds
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− αA

n∑
j=1

bj

∫ ηj

0

y(s)ds+

∫ t

0

y(s)ds, y(t))| ds→ 0 as h→ 0, for t ∈ [0, 1].

Therefore (Hy)h → (Hy), uniformly as h→ 0. Then by Kolmogorov compactness
criterion, H(Ω) is relatively compact. Hence H has a fixed point in Br, then there
exists at least one solution y ∈ L1[0, 1] such that y(t) = f(t, x(t), y(t)), t ∈ [0, 1]. �
Theorem 2.2. Let the assumptions (i) - (iii) are satisfied. Then the nonlocal problem
(1)-(2) has at least one an absolutely continuous solution x ∈ AC[0, 1].
Proof. Form Theorem 2.1 and the integral equation (2.6) we deduce that there exists
at least one absolutely continuous solution x ∈ AC(0, 1) of the integral equation (2.6).
Therefore the integral equation (2.6) has at least one absolutely continuous solution
x ∈ AC(0, 1) . Now,

lim
t→0

x(t) = A(

m∑
k=1

ak

∫ τk

0

y(s) ds− α
n∑
j=1

bj

∫ ηj

0

y(s) ds) + lim
t→0

∫ t

0

y(s) ds = x(0),

lim
t→1

x(t) = A(

m∑
k=1

ak

∫ τk

0

y(s) ds − α
n∑
j=1

bj

∫ ηj

0

y(s) ds) +

∫ 1

0

y(s) ds = x(1).

Then the integral equation (2.6) has at least one an absolutely continuous solution
x ∈ AC[0, 1] .

To complete the proof, we prove that the integral equation (2.6) satisfies nonlocal
problem (1)-(2). Differentiating (2.6), we get

dx

dt
= y(t) = f(t, x(t),

dx

dt
).

Let t = τk in (2.6) , we obtain

x(τk) = A(

m∑
k=1

ak

∫ τk

0

y(s) ds− α
n∑
j=1

bj

∫ ηj

0

y(s) ds) +

∫ τk

0

y(s) ds

= (A

m∑
k=1

ak + 1)

∫ τk

0

y(s) ds− αa
n∑
j=1

bj

∫ ηj

0

y(s) ds.

Then
m∑
k=1

akx(τk) =

m∑
k=1

ak(A

m∑
k=1

ak + 1)

∫ τk

0

y(s)ds− αA
m∑
k=1

ak

n∑
j=1

bj

∫ ηj

0

y(s)ds. (2.9)

Also, let t = ηj in (2.6), we obtain

x(ηj) = A(

m∑
k=1

ak

∫ τk

0

y(s) ds− α
n∑
j=1

bj

∫ ηj

0

y(s) ds) +

∫ ηj

0

y(s) ds

= A

m∑
k=1

ak

∫ τk

0

y(s) ds+ (1− αA
n∑
j=1

bj)

∫ ηj

0

y(s) ds
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and

α

n∑
j=1

bjx(ηj) = αA

n∑
j=1

bj

m∑
k=1

ak

∫ τk

0

y(s)ds+ α

n∑
j=1

bj(1− αA
n∑
j=1

bj)

∫ ηj

0

y(s)ds.

(2.10)
Subtraction (2.10) from (2.9), we obtain

m∑
k=1

akx(τk)− α
n∑
j=1

bjx(ηj) = 0.

This completes the proof of the equivalent between the nonlocal problem (1)-(2) and
the integral equation (2.6). This implies that there exists at least one absolutely
continuous solution x ∈ AC[0, 1] of the nonlocal problem (1)-(2). �

Now letting α = 0 in (2), then we can easily prove the following corollary .
Corollary 2.1. Let the assumptions (i) - (iii) are satisfied. Then the nonlocal problem

dx(t)

dt
= f(t, x(t),

dx(t)

dt
), for a.e. t ∈ (0, 1),

m∑
k=1

akx(τk) = 0.

has at least one an absolutely continuous solution x ∈ AC[0, 1].

3. Nonlocal integral condition

Let x ∈ [0, 1] be a solution of the nonlocal problem (1)-(2). Let ak = tk−tk−1, τk ∈
(tk−1, tk) = (a, c) ⊂ (0, 1) and let bj = tj − tj−1, ηj ∈ (tj−1, tj) = (b, d) ⊂ (0, 1), then
the nonlocal condition (2) will be

m∑
k=1

(tk − tk−1) x(τk) = α

n∑
j=1

(tj − tj−1) x(ηj).

From the continuity of the solution x of the nonlocal condition (2) we obtain

lim
m→∞

m∑
k=1

(tk − tk−1) x(τk) = lim
n→∞

α

n∑
j=1

(tj − tj−1) x(ηj).

i.e the nonlocal condition (2) transformed to the integral condition∫ c

a

x(s) ds = α

∫ d

b

x(s) ds (3.1)

and the solution of the integral equation (2.6) will be

x(t) = A (

∫ c

a

∫ t

0

y(s) ds dt− α
∫ b

d

∫ t

0

y(s) ds dt) +

∫ t

0

y(s) ds. (3.2)

Now, we have the following corollary.
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Corollary 3.1. Let the assumptions (i)-(iii) of Theorem 2.1 are satisfied. Then the
nonlocal problem with the integral condition

dx(t)

dt
= f(t, x(t),

dx(t)

dt
), for a.e. t ∈ (0, 1),∫ c

a

x(s) ds = α

∫ b

d

x(s) ds

has at least one an absolutely continuous solution x ∈ AC[0, 1].
Letting α = 0 in (2.6), the we can easily prove the following corollary .

Corollary 3.2. Let the assumptions (i) - (iii) are satisfied. Then the nonlocal problem

dx(t)

dt
= f(t, x(t),

dx(t)

dt
), for a.e. t ∈ (0, 1),∫ c

a

x(s) ds = 0.

has at least one an absolutely continuous solution x ∈ AC[0, 1].
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