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solution of an equilibrium problem, the set of solution of a pseudomonotone variational inequality
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1. Introduction

In the recent past, equilibrium problems, variational inequality problems and fixed
points problems have been attracted so much attention. How to construct algorithms
for finding the common element of the set of solution of an equilibrium problem, the
set of solution of a variational inequality problem and the set of common fixed points of
nonexpansive mappings is an interesting topic. Some related works have been studied
extensively in the literature. See, for instance, [1]-[26] and the references therein. It
is our main purpose in this paper that we construct a hybrid method for finding a
common element of the set of solution of an equilibrium problem, the set of solution
of a pseudomonotone, Lipschitz-continuous variational inequality problem and the
set of common fixed points of an infinite family of nonexpansive mappings. We will
show the strong convergence of the proposed algorithm to the common element of the
set of solution of an equilibrium problem, the set of solution of a pseudomonotone
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variational inequality problem and the set of common fixed points of an infinite family
of nonexpansive mappings.

We next briefly review some historic approaches in the literature which relate
to the variational inequality problems and fixed points problems. Let us start with
Korpelevich’s extragradient method which was introduced by Korpelevich [13] in 1976
and which generates a sequence {xn} via the recursion:{

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ≥ 0,
(1.1)

where PC is the metric projection from Rn onto C, A : C → H is a monotone operator
and λ is a constant. Korpelevich [13] proved that the sequence {xn} converges strongly
to a solution of V I(C,A). Note that the setting of the space is a finite dimension
Euclid space.

Korpelevich’s extragradient method has extensively been studied in the literature
for solving a more general problem that consists of finding a common point that lies in
the solution set of a variational inequality and the set of fixed points of a nonexpansive
mapping. This type of problem aries in various theoretical and modeling contexts,
see e.g., [27]-[33] and references therein. Especially, Nadezhkina and Takahashi [34]
introduced the following iterative method:

x0 = x ∈ C,
yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SPC(xn − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x), ∀n ≥ 0,

(1.2)

where PC is the metric projection from H onto C, A : C → H is a monotone k-
Lipschitz-continuous mapping, S : C → C is a nonexpansive mapping, {λn} and
{αn} are two real number sequences. They proved the strong convergence of the
sequences {xn}, {yn} and {zn} to a common element of the set of solution of a
variational inequality problem and the set of fixed points of a nonexpansive mapping.

Very recently, Ceng, Teboulle and Yao [35] further suggested a new iterative
method as follows:

yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SnPC(xn − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
find xn+1 ∈ Cn such that

〈xn − xn+1 + en − σnAxn+1, xn+1 − x〉 ≥ −εn, ∀x ∈ Cn,

(1.3)

where A : C → H is a pseudomonotone, k-Lipschitz-continuous and (w, s)-
sequentially-continuous mapping, {Si}Ni=1 : C → C are N nonexpansive mappings.
Under some mild conditions, they proved the weak convergence of the sequences {xn},
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{yn} and {zn} to a common element of the set of solution of a pseudomonotone varia-
tional inequality problem and the set of fixed points of a finite family of nonexpansive
mappings if and only if lim infn〈Axn, x− xn〉 ≥ 0, ∀x ∈ C.

On the algorithms (1.2) and (1.3), we have the following remarks.
Remark 1.1. (1) We note that Nadezhkina and Takahashi’s method (1.2) combines
Korpelevich’s extragradient method and a CQ method. They obtained the strong
convergence of their method. It is observed that Nadezhkina and Takahashi [34] em-
ployed the monotonicity and Lipschitz-continuity of A to define a maximal monotone
operator T as follows:

Tv =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C,

where NCv = {w ∈ H : 〈v−u,w〉 ≥ 0,∀u ∈ C} is the normal cone to C at v ∈ C (see,
[36]). However, if the mapping A is a pseudomonotone Lipschitz-continuous, then T
is not necessarily a maximal monotone operator. This fact implies that the approach
used in [34] cannot be applied.

(2) Ceng, Teboulle and Yao’s method (1.3) combines Korpelevich’s extragradient
and approximate proximal method. It is interesting that they have overcome the diffi-
culty mentioned above, i.e., they assumed the involved operator A is pseudomonotone
(not monotone). However, Ceng, Teboulle and Yao’s method has only weak conver-
gence.

It is an interesting problem: could we construct a new algorithm involving pseu-
domonotone operators such that the strong convergence is guaranteed?

Motivated and inspired by the works of Nadezhkina and Takahashi [34] and Ceng,
Teboulle and Yao [35], in this paper we suggest a hybrid method which combines two
well-known methods: extragradient method and CQ method. We derive a necessary
and sufficient condition for the strong convergence of the proposed sequences for
finding a common element of the set of solution of an equilibrium problem, the set
of solution of a pseudomonotone, Lipschitz-continuous variational inequality problem
and the set of common fixed points of an infinite family of nonexpansive mappings.

2. Preliminaries

In this section, we will recall some basic notations and collect some conclusions
that will be used in the next section.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H. Recall that a mapping A : C → H
is called α-inverse-strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
A mapping A : C → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.
A mapping A : C → H is called pseudomonotone if

〈Ax, y − x〉 ≥ 0⇒ 〈Ay, y − x〉 ≥ 0, ∀x, y ∈ C.
It is clear that if a mapping A is monotone, then it is pseudomonotone.
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Recall also that a mapping S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Denote by Fix(S) the set of fixed points of S, that is, Fix(S) = {x ∈ C : Sx = x}.
Let B : C → H be a nonlinear mapping and F : C × C → R be a bifunction. The

equilibrium problem is to find z ∈ C such that

F (z, y) + 〈Bz, y − z〉 ≥ 0, ∀y ∈ C. (2.1)

The solution set of (2.1) is denoted by EP (F,B). If B = 0, then (2.1) reduces to the
following equilibrium problem of finding z ∈ C such that

F (z, y) ≥ 0, ∀y ∈ C. (2.2)

The solution set of (2.2) is denoted by EP (F ). If F = 0, then (2.1) reduces to the
variational inequality problem of finding z ∈ C such that

〈Bz, y − z〉 ≥ 0, ∀y ∈ C. (2.3)

The solution set of variational inequality (2.3) is denoted by V I(C,B).
Throughout this paper, we assume that a bifunction F : C × C → R satisfies the

following conditions:
(H1) F (x, x) = 0 for all x ∈ C;
(H2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(H3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);
(H4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.
It is well known that, for any u ∈ H, there exists a unique u0 ∈ C such that

‖u− u0‖ = inf{‖u− x‖ : x ∈ C}.

We denote u0 by PC(u), where PC is called the metric projection of H onto C.
The metric projection PC of H onto C has the following basic properties:

(1) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ for all x, y ∈ H.
(2) 〈x− PC(x), y − PC(x)〉 ≤ 0 for all x ∈ H, y ∈ C.
(3) The property (2) is equivalent to

‖x− PC(x)‖2 + ‖y − PC(x)‖2 ≤ ‖x− y‖, ∀x ∈ H, y ∈ C.

(4) In the context of the variational inequality problem, the characterization of the
projection implies that u ∈ V I(C,A)⇔ u = PC(u− λAu), ∀λ > 0.

Recall that H satisfies the Opial condition [37]; i.e., for any sequence {xn} with
xn converges weakly to x, the inequality lim infn→∞ ‖xn − x‖ < lim infn→∞ ‖xn − y‖
holds for every y ∈ H with y 6= x.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Si}∞i=1

be infinite family of nonexpansive mappings of C into itself and let {ξi}∞i=1 be real
number sequences such that 0 ≤ ξi ≤ 1 for every i ∈ N. For any n ∈ N, define a
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mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = ξnSnUn,n+1 + (1− ξn)I,

Un,n−1 = ξn−1Sn−1Un,n + (1− ξn−1)I,
...

Un,k = ξkSkUn,k+1 + (1− ξk)I,

Un,k−1 = ξk−1Sk−1Un,k + (1− ξk−1)I,
...

Un,2 = ξ2S2Un,3 + (1− ξ2)I,

Wn = Un,1 = ξ1S1Un,2 + (1− ξ1)I.

(2.4)

Such Wn is called the W -mapping generated by {Si}∞i=1 and {ξi}∞i=1.
We have the following crucial Lemmas 3.1 and 3.2 concerning Wn which can be

found in [38]. Now we only need the following similar version in Hilbert spaces.
Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S1, S2, · · · be nonexpansive mappings of C into itself such that

⋂∞
n=1 Fix(Sn) is

nonempty, and ξ1, ξ2, · · · be real numbers such that 0 < ξi ≤ b < 1 for any i ∈ N.
Then, for every x ∈ C and k ∈ N, limn→∞ Un,kx exists.
Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S1, S2, · · · be nonexpansive mappings of C into itself such that

⋂∞
n=1 Fix(Sn) is

nonempty, and ξ1, ξ2, · · · be real numbers such that 0 < ξi ≤ b < 1 for any i ∈ N .
Then Fix(W ) =

⋂∞
n=1 Fix(Sn).

Lemma 2.3. ([39]) Using Lemmas 2.1 and 2.2, one can define a mapping W of C
into itself as: Wx = limn→∞Wnx = limn→∞ Un,1x for every x ∈ C. If {xn} is a
bounded sequence in C, then we have limn→∞ ‖Wxn −Wnxn‖ = 0.

We also need the following well-known lemmas for proving our main results.
Lemma 2.4. ([6]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F : C×C → R be a bifunction which satisfies conditions (H1)-(H4). Let µ > 0
and x ∈ C. Then there exists z ∈ C such that F (z, y) + 1

µ 〈y− z, z−x〉 ≥ 0, ∀y ∈ C.
Further, if Tµ(x) =

{
z ∈ C : F (z, y) + 1

µ 〈y − z, z − x〉 ≥ 0 for all y ∈ C
}

, then the

following hold:
(a) Tµ is single-valued and Tµ is firmly nonexpansive, i.e., for any x, y ∈ C,

‖Tµx− Tµy‖2 ≤ 〈Tµx− Tµy, x− y〉;
(b) EP (F ) is closed and convex and EP (F ) = Fix(Tµ).

Lemma 2.5. ([40]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let S : C → C be a nonexpansive mapping with Fix(S) 6= ∅. Then S is demiclosed
on C, i.e., if yn → z ∈ C weakly and yn − Syn → y strongly, then (I − S)z = y.
Lemma 2.6. ([41]) Let C be a closed convex subset of H. Let {xn} be a sequence
in H and u ∈ H. Let q = PC(u). If {xn} is such that ωw(xn) ⊂ C and satisfies the
condition ‖xn − u‖ ≤ ‖u− q‖, ∀n. Then xn → q.

We adopt the following notation:
1. xn ⇀ x stands for the weak convergence of (xn) to x.
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2. xn → x stands for the strong convergence of (xn) to x.
3. For a given sequence {xn} ⊂ H, ωw(xn) denotes the weak ω-limit set of {xn};

that is, ωw(xn) := {x ∈ H : {xnj
} converges weakly to x for some subsequence {nj}

of {n}}.

3. Main results

In this section we will state and prove our main results.
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H and F : C × C → R be a bifunction satisfying (H1)-(H4). Let A : C → H be a
pseudomonotone, k-Lipschitz-continuous and (w, s)-sequentially-continuous mapping.
Let B : C → H be an α-inverse-strongly monotone mapping and {Sn}∞n=1 : C → C be
an infinite family of nonexpansive mappings such that Ω := EP (F,B) ∩ V I(C,A) ∩⋂∞
n=1 Fix(Sn) 6= ∅. For x0 ∈ C, let {xn}, {yn}, {zn} and {un} be sequences generated

by 

F (un, y) + 〈Bxn, y − un〉+ 1
µ 〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(I − λnA)un,

zn = αnxn + (1− αn)WnPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x0), n ≥ 0,

(3.1)

where µ ∈ (0, 2α) is a constant and Wn is W -mapping defined by (2.4). Assume the
following conditions are satisfied:

(a) {λn} ⊂ [a, b] for some a, b ∈
(
0, 1

k

)
;

(b) {αn} ⊂ [0, c] for some c ∈ [0, 1).
Then the sequences {xn}, {yn}, {zn} and {un} generated by (3.1) converge strongly
to the same point PΩ(x0) if and only if lim infn〈Axn, x− xn〉 ≥ 0, ∀x ∈ C.

Next, we will divide our detail proofs into several Lemmas. In the sequel, we
assume that all conditions of Theorem 3.1 are satisfied.
Lemma 3.2. (a) Cn and Qn are closed and convex, ∀n ≥ 0;

(b) Ω ⊂ Cn ∩Qn, ∀n ≥ 0;
(c) {xn} is well-defined.

Proof. It is obvious that Cn is closed and Qn is closed and convex for every n ≥ 0.
From (3.1), we can rewrite Cn as

Cn =

{
z ∈ C :

〈
z − xn + zn

2
, zn − xn

〉
≥ 0

}
.

It is clear that Cn is a half space. Hence, Cn is convex. Therefore, Cn and Qn are
closed and convex, ∀n ≥ 0. Next we show that Ω ⊂ Cn ∩Qn,∀n ≥ 0.

From Lemma 2.4, we have un = Tµ(I − µB)xn, ∀n ≥ 0. Set tn = PC(un − λAyn)
for all n ≥ 1. Pick up u ∈ Ω. From property (3) of PC , we have

‖tn − u‖2 ≤ ‖un − λnAyn − u‖2 − ‖un − λnAyn − tn‖2

= ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, u− tn〉
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= ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, u− yn〉+ 2λn〈Ayn, yn − tn〉. (3.2)

Since u ∈ V I(C,A) and yn ∈ C, we get 〈Au, yn − u〉 ≥ 0.
This together with the pseudomonotonicity of A imply that

〈Ayn, yn − u〉 ≥ 0. (3.3)

Combine (3.2) with (3.3) to deduce

‖tn − u‖2 ≤ ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖un − u‖2 − ‖un − yn‖ − 2〈un − yn, yn − tn〉 − ‖yn − tn‖2

+ 2λn〈Ayn, yn − tn〉
= ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2

+ 2〈un − λnAyn − yn, tn − yn〉.

(3.4)

Note that yn = PC(un− λnAun) and tn ∈ C. Then, by using the property (2) of PC ,
we have 〈un − λnAun − yn, tn − yn〉 ≤ 0. Hence

〈un−λnAyn− yn, tn− yn〉 = 〈un−λnAun− yn, tn− yn〉+ 〈λnAun−λnAyn, tn− yn〉
≤ 〈λnAun − λnAyn, tn − yn〉 ≤ λnk‖un − yn‖‖tn − yn‖. (3.5)

From (3.4) and (3.5), we get

‖tn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2λnk‖un − yn‖‖tn − yn‖

≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + λ2
nk

2‖un − yn‖2

+‖yn − tn‖2 = ‖un − u‖2 + (λ2
nk

2 − 1)‖un − yn‖2 ≤ ‖un − u‖2. (3.6)

Notice that I − µB is nonexpansive and for all x, y ∈ C
‖(I − µB)x− (I − µB)y‖2 ≤ ‖x− y‖2 + µ(µ− 2α)‖Bx−By‖2.

Then we have

‖un − u‖2 = ‖Tµ(xn − µBxn)− Tµ(u− µBu)‖2

≤ ‖(I − µB)xn − (I − µB)u‖2

≤ ‖xn − u‖2 + µ(µ− 2α)‖Bxn −Bu‖2

≤ ‖xn − u‖2.

(3.7)

Therefore, from (3.6) and (3.7), together with the convexity of the norm, we get

‖zn − u‖2

= ‖αn(xn − u) + (1− αn)(Wntn − u)‖2

≤ αn‖xn − u‖2 + (1− αn)‖Wntn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖un − u‖2 + (λ2
nk

2 − 1)‖un − yn‖2]

≤ αn‖xn − u‖2 + (1− αn)[‖xn − u‖2 + µ(µ− 2α)‖Bxn −Bu‖2

+ (λ2
nk

2 − 1)‖un − yn‖2]

≤ ‖xn − u‖2,

(3.8)
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which implies that

u ∈ Cn.
So,

Ω ⊂ Cn, ∀n ≥ 0.

Next, let us show by mathematical induction that {xn} is well-defined and Ω ⊂
Cn ∩Qn for every n ≥ 0. For n = 0 we have Q0 = C. Hence we obtain

Ω ⊂ C0 ∩Q0.

Suppose that xk is given and Ω ⊂ Ck ∩ Qk for some k ∈ N . Since Ω is nonempty,
Ck ∩Qk is a nonempty closed convex subset of C. So, there exists a unique element
xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

(x0). It is also obvious that there holds
〈xk+1 − u, x0 − xk+1 ≥ 0 for every u ∈ Ck ∩Qk. Since Ω ⊂ Ck ∩Qk, we have

〈xk+1 − u, x0 − xk+1〉 ≥ 0, ∀u ∈ Ω

and hence

Ω ⊂ Qk+1.

Therefore, we obtain

Ω ⊂ Ck+1 ∩Qk+1.

Lemma 3.3. The sequences {xn}, {zn}, {un} and {tn} are all bounded and
limn→∞ ‖xn − x0‖ exists.
Proof. From xn+1 = PCn∩Qn

(x0), we have

〈x0 − xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Cn ∩Qn.

Since Ω ⊂ Cn ∩Qn, we also have

〈x0 − xn+1, xn+1 − u〉 ≥ 0, ∀u ∈ Ω.

So, for u ∈ Ω, we have

0 ≤ 〈x0 − xn+1, xn+1 − u〉
= 〈x0 − xn+1, xn+1 − x0 + x0 − u〉
= −‖x0 − xn+1‖2 + 〈x0 − xn+1, x0 − u〉
≤ −‖x0 − xn+1‖2 + ‖x0 − xn+1‖‖x0 − u‖.

Hence

‖x0 − xn+1‖ ≤ ‖x0 − u‖, ∀u ∈ Ω, (3.9)

which implies that {xn} is bounded. From (3.6)-(3.8), we can deduce that {zn}, {un}
and {tn} are also bounded.

Since xn+1 ∈ Cn ∩Qn ⊂ Qn and xn = PQn
(x0), we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖.

This together with the boundedness of the sequence {xn} imply that limn→∞ ‖xn−x0‖
exists.
Lemma 3.4. limn→∞ ‖xn+1 − xn‖ = limn→∞ ‖xn − yn‖ = limn→∞ ‖xn − zn‖ =
limn→∞ ‖xn − tn‖ = 0 and limn→∞ ‖xn −Wnxn‖ = limn→∞ ‖xn −Wxn‖ = 0.
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Proof. It is well-known that in Hilbert spaces H, the following identity holds:

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H.

Therefore

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉.

Since xn+1 ∈ Qn, we have

〈xn − xn+1, x0 − xn〉 ≥ 0.

It follows that

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.
Since limn→∞ ‖xn − x0‖ exists, we get ‖xn+1 − x0‖2 − ‖xn − x0‖2 → 0. Therefore,

lim
n→∞

‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have

‖zn − xn+1‖ ≤ ‖xn − xn+1‖,

and hence
‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖

≤ 2‖xn+1 − xn‖
→ 0.

For each u ∈ Ω, from (3.8), we have

(1− αn)µ(2α− µ)‖Bxn −Bu‖2 + (1− αn)(1− λ2
nk

2)‖un − yn‖2

≤ ‖xn − u‖2 − ‖zn − u‖2

≤ (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

Since ‖xn−zn‖ → 0, lim infn→∞(1−αn)µ(2α−µ) > 0, lim infn→∞(1−αn)(1−λ2
nk

2) >
0 and the sequences {xn} and {zn} are bounded, we obtain ‖Bxn − Bu‖ → 0 and
‖un − yn‖ → 0.

From Lemma 2.4, we obtain

‖un − u‖2

= ‖Tµ(xn − µBxn)− Tµ(u− µBu)‖2

≤ 〈(xn − µBxn)− (u− µBu), un − u〉

=
1

2

(
‖(xn − µBxn)− (u− µBu)‖2 + ‖un − u‖2

− ‖(xn − un)− µ(Bxn −Bu)‖2
)

≤ 1

2

(
‖xn − u‖2 + ‖un − u‖2 − ‖(xn − un)− µ(Bxn −Bu)‖2

)
=

1

2

(
‖xn − u‖2 + ‖un − u‖2 − ‖xn − un‖2 + 2µ〈xn − un, Bxn −Bu〉

− µ2‖Bxn −Bu‖2
)
.
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It follows that

‖un − u‖2

≤ ‖xn − u‖2 − ‖xn − un‖2 + 2µ〈xn − un, Bxn −Bu〉 − µ2‖Bxn −Bu‖2

≤ ‖xn − u‖2 − ‖xn − un‖2 + 2µ‖xn − un‖‖Bxn −Bu‖
≤ ‖xn − u‖2 − ‖xn − un‖2 +M‖Bxn −Bu‖,

where M > 0 is some constant. Therefore

‖zn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖un − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖xn − u‖2 − ‖xn − un‖2 +M‖Bxn −Bu‖]
≤ ‖xn − u‖2 − (1− αn)‖xn − un‖2 +M‖Bxn −Bu‖.

It follows that

(1− αn)‖xn − un‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 +M‖Bxn −Bu‖
≤ (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖+M‖Bxn −Bu‖,

which implies that

‖xn − un‖ → 0.

We note that

‖tn − u‖2

≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2λnk‖un − yn‖‖tn − yn‖
≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + ‖un − yn‖2 + λ2

nk
2‖yn − tn‖2

= ‖un − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2.
Hence

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)(‖un − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2)

≤ ‖xn − u‖2 + (1− αn)(λ2
nk

2 − 1)‖yn − tn‖2.
It follows that

‖tn − yn‖2 ≤
1

(1− αn)(1− λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

≤ 1

(1− αn)(1− λ2
nk

2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖

→ 0.

Since A is k-Lipschitz-continuous, we have ‖Ayn −Atn‖ → 0. From

‖xn − tn‖ ≤ ‖xn − un‖+ ‖un − yn‖+ ‖yn − tn‖,
we also have

‖xn − tn‖ → 0.
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Since zn = αnxn + (1− αn)Wntn, we have

(1− αn)(Wntn − tn) = αn(tn − xn) + (zn − tn).

Then
(1− c)‖Wntn − tn‖ ≤ (1− αn)‖Wntn − tn‖

≤ αn‖tn − xn‖+ ‖zn − tn‖
≤ (1 + αn)‖tn − xn‖+ ‖zn − xn‖

and hence ‖tn −Wntn‖ → 0. Observe also that

‖xn −Wnxn‖ ≤ ‖xn − tn‖+ ‖tn −Wntn‖+ ‖Wntn −Wnxn‖
≤ ‖xn − tn‖+ ‖tn −Wntn‖+ ‖tn − xn‖
≤ 2‖xn − tn‖+ ‖tn −Wntn‖.

So, we have ‖xn −Wnxn‖ → 0. On the other hand, since {xn} is bounded, from
Lemma 2.3, we have limn→∞ ‖Wnxn −Wxn‖ = 0. Therefore we have

lim
n→∞

‖xn −Wxn‖ = 0.

Finally, according to Lemmas 3.2-3.4, we prove the remainder of Theorem 3.1.
Proof. First, we claim that the necessity of Theorem 3.1 holds. Indeed, suppose that
{xn}, {yn}, {zn} and {un} converge strongly to the same element ũ ∈ Ω. From the
(w, s)-sequential continuity of A, we have Axn → Aũ. Observe that, for every x ∈ C,

|〈Axn, x− xn〉 − 〈Aũ, x− ũ〉|
≤ |〈Axn, x− xn〉 − 〈Aũ, x− xn〉|+ |〈Aũ, x− xn〉 − 〈Aũ, x− ũ〉|
= |〈Axn −Aũ, x− xn〉|+ |〈Aũ, ũ− xn〉|
≤ ‖Axn −Aũ‖‖x− xn‖+ |〈Aũ, ũ− xn〉|.

This implies that

lim inf
n→∞

〈Axn, x− xn〉 = lim
n→∞

〈Axn, x− xn〉 = 〈Aũ, x− ũ〉, ∀x ∈ C.

Consequently, the necessity holds.
Next, we claim the the sufficiency of Theorem 3.1 holds. Indeed, by Lemmas

3.2-3.4, we have proved that

lim
n→∞

‖xn −Wxn‖ = 0.

Furthermore, since {xn} is bounded, it has a subsequence {xnj
} which converges

weakly to some ũ ∈ C, hence, we have limj→∞ ‖xnj − Wxnj‖ = 0. Note that,
from Lemma 2.5, it follows that I −W is demiclosed at zero. Thus ũ ∈ Fix(W ) =⋂∞
n=1 Fix(Sn). Observe that, for every x ∈ C,

|〈Axnj
, x− xnj

〉 − 〈Aũ, x− ũ〉|
≤ |〈Axnj , x− xnj 〉 − 〈Aũ, x− xnj 〉|+ |〈Aũ, x− xnj 〉 − 〈Aũ, x− ũ〉|
= |〈Axnj −Aũ, x− xnj 〉|+ |〈Aũ, ũ− xnj 〉|
≤ ‖Axnj

−Aũ‖‖x− xnj
‖+ |〈Aũ, ũ− xnj

〉|.
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From the (w, s)-sequential continuity of A, it follows that limj→∞ ‖Axnj − Aũ‖ = 0.
Hence, we have

〈Aũ, x− ũ〉 = lim
j→∞
〈Axnj

, x− xnj
〉 ≥ lim inf

n→∞
〈Axn, x− xn〉 ≥ 0, ∀x ∈ C.

This implies that ũ ∈ V I(C,A).
Now we show ũ ∈ EP (F,B). Since un = Tµ(xn − µBxn), for any y ∈ C we have

F (un, y) +
1

µ
〈y − un, un − (xn − µBxn)〉 ≥ 0.

From the monotonicity of F , we have

1

µ
〈y − un, un − (xn − µBxn)〉 ≥ F (y, un), ∀y ∈ C.

Hence 〈
y − uni

,
uni − xni

µ
+Bxni

〉
≥ F (y, uni

), ∀y ∈ C. (3.10)

Put vt = ty + (1 − t)ũ for all t ∈ (0, 1] and y ∈ C. Then, we have vt ∈ C. So, from
(3.10) we have

〈vt − uni , Bvt〉 ≥ 〈vt − uni , Bvt〉 −
〈
vt − uni ,

uni
− xni

µ
+Bxni

〉
+ F (vt, uni)

= 〈vt − uni
, Bvt −Buni

〉+ 〈vt − uni
, Buni

−Bxni
〉

−
〈
vt − uni

,
uni
− xni

µ

〉
+ F (vt, uni

).

(3.11)

Note that ‖Buni
−Bxni

‖ ≤ 1
β ‖uni

− xni
‖ → 0. Further, from monotonicity of B, we

have 〈vt − uni
, Bvt −Buni

〉 ≥ 0. Letting i→∞ in (3.11), we have

〈vt − ũ, Bvt〉 ≥ F (vt, ũ). (3.12)

From (H1), (H4) and (3.12), we also have

0 = F (vt, vt) ≤ tF (vt, y) + (1− t)F (vt, ũ)

≤ tF (vt, y) + (1− t)〈vt − ũ, Bvt〉
= tF (vt, y) + (1− t)t〈y − ũ, Bvt〉

and hence

0 ≤ F (vt, y) + (1− t)〈Bvt, y − ũ〉. (3.13)

Letting t→ 0 in (3.13), we have, for each y ∈ C,

0 ≤ F (ũ, y) + 〈y − ũ, Bũ〉.

This implies that ũ ∈ EP (F,B). Consequently, ũ ∈ Ω. That is, ωw(xn) ⊂ Ω.
In (3.9), if we take u = PΩ(x0), we get

‖x0 − xn+1‖ ≤ ‖x0 − PΩ(x0)‖. (3.14)



COUPLING EXTRAGRADIENT METHODS WITH CQ METHODS 323

Notice that ωw(xn) ⊂ Ω. Then, (3.14) and Lemma 2.6 ensure the strong convergence
of {xn+1} to PΩ(x0). Consequently, {yn}, {zn} and {un} also converge strongly to
PΩ(x0). This completes the proof.
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