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1. INTRODUCTION

In recent years, boundary value problems of nonlinear fractional differential equa-
tions have been studied by many researchers. Fractional differential equations appear
naturally in various fields of science and engineering, and constitute an important
field of research. As a matter of fact, fractional derivatives provide an excellent tool
for the description of memory and hereditary properties of various materials and pro-
cesses [18, 20, 21, 22]. Some recent work on boundary value problems of fractional
order can be found in [1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 15, 27] and the references therein.

The theory of impulsive differential equations of integer order has found its ex-
tensive applications in realistic mathematical modelling of a wide variety of practical
situations and has emerged as an important area of investigation. The impulsive
differential equations of fractional order have also attracted a considerable attention
and a variety of results can be found in the papers [4, 11, 12, 19, 24, 25, 28].

Integral boundary conditions are found to be a useful tool in the mathematical
modelling of many practical situations such as blood flow problems, chemical engi-
neering, thermoelasticity, underground water flow, population dynamics, etc. For a
detailed description of the integral boundary conditions, we refer the reader to the pa-
pers [13, 16] and references therein. It has been observed that the limits of integration
in the integral part of the boundary conditions are taken to be fixed, for instance, from

265



266 GUOTAO WANG, BASHIR AHMAD AND LIHONG ZHANG

0 to 1 in case the independent variable belongs to the interval [0, 1]. It is imperative
to note that the available literature on nonlocal boundary conditions is confined to
the nonlocal parameters involvement in the solution or gradient of the solution of the
problem. In [26], a nonlocal boundary value problem of impulsive fractional differen-
tial equations is studied to obtain the sufficient conditions for the existence of at least
one solution of the problem. In [17], the author discussed the existence of solutions for
a fractional nonlocal impulsive quasilinear multi-delay integro-differential systems. In
[6], a nonlinear fractional boundary value problem with three-point nonlocal integral
boundary conditions is addressed.

In this paper, we consider a nonlinear nonlocal impulsive fractional boundary value
problem given by

CDix(t) = f(t,x(t), 1<q<2, te],

Aw(te) = Ie(x(tr)), Ax'(te) = Ii(2(te)), k=1,2,---,p, (1.1)

2(0) =0, z(1) =B [ z(s)ds, 0 <n <1,
where © D7 is the Caputo fractional derivative, f € C(JxR,R), Iy, I} € C(R,R), 3 €
R, B#2/% J=[0,1, 0=ty <t1 < -+ <l < <ty <tlpp1 =1 J =
IN{t1,t2, -t} Da(ty) = 2(t)) — x(t;,), where 2(¢t]) and z(t; ) denote the right
and the left limits of z(¢) at ¢t = t,(k = 1,2,--- ,p), respectively. Ax'(tx) have a
similar meaning for 2’(t).

We prove some existence and uniqueness results for problem (1.1). The main tools
of our study include a well known fixed point theorem (Theorem 3) and Banach’s
contraction mapping principle. This choice of fixed point theorems ensures less re-
strictive criteria for our existence results and can readily be verified. In fact, our

approach is simple and is applicable to a variety of problems. We demonstrate it by
providing an example.

2. PRELIMINARIES

Let Jo = [0,t1], J1 = (t1,t2], -, Jp—1 = (tp=1,1p), Jp = (tp, 1], and we introduce
the spaces:

PC(J,R)={z:J = Rlz € C(Jx), k=0,1, -+ ,p, and z(t}) exist, k =1,2,--- ,p, }
with the norm ||z|| = sup |z(t)], and
ted
PCYJR)={z:J =R |zeC'(Jy), k=0,1,---,p, and z(t]),
o () exist, k=1,2,--- ,p, }

with the norm ||z||pc1 = max{||z|,||z’||}. Obviously, PC(J,R) and PC'(J,R) are
Banach spaces.

Definition 2.1. For a continuous function f : [0,00) — R, the Caputo derivative of
fractional order « is defined as

C na _ 1 ! 7Sn7a71 (n)s s n=la
D*f0) = gy | (6= s, = o]+

where [a] denotes the integer part of real number a.
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Definition 2.2. The Riemann-Liouville fractional integral of order « is defined as

1 t
I°f(t) = —/ (t —s)*"1f(s)ds, a >0,
I(a) Jo
provided the integral exists.

Definition 2.3. A function z € PC'(J,R) with its Caputo derivative of order ¢
existing on J is a solution of (1.1) if it satisfies (1.1).

The following lemma plays a pivotal role in the forthcoming analysis.

Lemma 2.1. Let B # 2/n%,0 < n < 1,0 € J,,, where m is a nonnegative integer,
0 <m < p. For a giveny € C[0,1], a function  is a solution of the integral boundary
value problem

CDix(t)=y(t), 1<q<2, teJ,
Ax(ty) = Ie(x(te)), Az'(te) = I;(x(ty)), k=1,2,---,p, (2.1)
2(0) =0, z(1) =B [ x(s)ds

if and only if x is a solution of the impulsive fmctional integral equation

fg (t}(sq))q_y(s)ds—i— 5= 26t " ft — ) y(s)ds

T(g+1)”
(1—s)at
Bn? J, ['(q)
t (t — S)qil

251 — 5)
Jo. gy Y S)s + 5= thm N

y(s)ds + M(t), t € Jo;

B 1 (1 — S)q 1
z(t) = 2 — Bn? L, I'(q)
(t; —s)a7 1

ftl T y(s)ds + I;(x(t;))
[ I(q) }

(t; — s)172

)i, Sy v + 1 ()|

o (ti—s)1?
(t- m[ gy Vs + I )] + M), te

y(s)ds

+
~ -l
Il >
Il LHM

_|_

s
SOl
“)—‘
u[\D
]

where



268 GUOTAO WANG, BASHIR AHMAD AND LIHONG ZHANG

+_§pj<1 —t,)| / B2 )ds + 17 (a(t)]

i=1 I'(g—1)
_7:2_%1 /:H Wy(S)ds
zm o[ T s+ 1)
_ngﬁ(tﬁl —t;)(t; — 1) [/tt_ (tli(;i)q:y(s)ds I ()]
-2 g :l(tjﬂ ;)2 [/tt (tli(qi)ql)zy(s)ds £ 1 (a(t,)]
_ i_n; B(n —tm) [/tt_l (ti;(z))q_ly(s)ds + Ii(a;(ti))]

_ :16(77 — ) (b — ) [/tt My(s)ds + I (1)

_§ é(n —t)? [/tt m.y(s)ds + Ig(x(ti))} }

Proof. Let z be a solution of (2.1). Then, for ¢ € Jy, there exist constants ci,co € R
such that

1 ] /0 (t —s)7 1y(s)ds — ¢1 — cat, (2.3)

x(t) =1y(t) — ¢1 — cot = e

1 t
") = —— [ (t — 8)7" 2y (s)ds — cs.
(1) = gy Jo (= ) 2u(s)ds — e
For t € Jy, there exist constants di,ds € R, such that
1 /t .
x(t) = — t—38)1" y(s)ds —dy — do(t — t1),
(t) e tl( )7 y(s) 1—da(t —t1)

2 (t) = ﬁ /tl (t — 5)7 2y(s)ds — dy.

Then we have

Vo b N — ) y(s)ds — e1 — ¢ z(t) = —
w00) = g5 [ (0= () ds e = eatr, a(r}) = —di,

a(ty) = ﬁ/o ! (b s)q_2y(8)d8 — ¢, x’(tf) — _dy,

In view of the impulse conditions
Ax(ty) = a(t]) — a(ty) = L(x(t))
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and
Ax!(ty) = o' (tF) — o' (t7) = I} (x(t1)),
we have that

1 " q-1 —c1—c x
dy = m/0 (t1 — )7 y(s)ds — e1 — sty + L (w(t)),
—dy = ﬁ/{) 1 (t1 — )1 ?y(s)ds — ca + I} (z(t1)).
Consequently,
1 ' q—1 1 " — ) Ly(s)ds
z(t) = F(q)/tl (t—8)" y(s)ds + @/0 (t1— )1 y(s)d
+ri;j11) /0 (- )y (s)ds

+IL(z(t1)) + (t —t)I{ (x(t1)) — 1 — cat, t € Ji.
By a similar process, we get

_ [ E ot (- s
z(t) = /tk W?J(S)ds + ; [/tl () y(s)ds + Iz(w(tz))}
k-1 _
tz (t; —s)172 §
+;(tk —t;) [/tl T(q—1) y(s)ds + I (x(ti))}
+i(t — tg) {/t (ti — s)q—Qy(s)ds +1; (x(tz))} et tE€ Ty k=1,2,--,p.
=1 ti—1 F(Q*l)

(2.4)
By the condition x(0) = 0, we get ¢; = 0. For a given n € J,;,, 0 < m < p, we have

fatem ([ [ [ Yot
[ o)

7=0 J

S e e e

—|—/t: (/t: (s Fg)qu(r)dr)ds
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m

m—

(L g s et

+/t?7 (Z(tm—ti)[/: (tli(; i)ql;2y(r)d7“+Ii*($(ti))]>d3

m i=1

o[ (el [ S+ siwt] s o [

n

Jj=0""%
m—1 j ti (t; —r)at
+J:1; j+1 — 1) {/t rig) et )
m—1j—1 t (t _T)q 2 N
+;;<tﬂ+l t)(t *ti){/, T /e ))}
A S| o+ o]
+/t: qu +T)1q)?J )dr + Z = tm [/ 1 . F(Z))qu(r)dr+li(x(ti))}

ti _p q—2
) t)[/til (tf‘(q—)l)

i [/t T T)q72y(r)dr+—’f($(ti))} - %02.

o, Tle-1)

Using the condltlon z(1) = B [, x(s)ds, we find that

Coy =

-2

2 — pn?

{/ s F(Sq)q 1 d”z[/

(t— 5)?

y(r)dr + I (x(ti))}

2

(ti — S)q_l

o) y(s)ds + Iz(x(tz))}

+§(’51’ ‘tiﬂ/ﬂ_l D) y(s)ds + I (a(t:) |

e -] [ G s+ 1 a)]
m—1 it B(t] |- S)q
— jzzg /tj 7“‘;_’_1) y(s)ds
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- Zj:ﬂ(tjﬂ —t5) {/ttl My(s)ds + L(w(tl))}

ti — S)q_2

— 2. B(tj+1_tj)(tj_ti)[/tvi (F(q_l)y(s)dsﬂj(x(ti))}

St -0 [ s 1 et

m

- [ gt = S st [ [ s+ 1ot

i=1

m—1 t; o q—2
=3 B = tm)(tm — 1) [/ (tli(q_)l)y(s)ds + Ii*(x(ti))]
i=1 ti—1

oS [ [ S i+ ete)]

Substituting the value of ¢1, ¢o in (2.3) and (2.4), we obtain (2.2). Conversely, assume
that z is a solution of the impulsive fractional integral equation (2.2), then by a direct
computation, it follows that the solution given by (2.2) satisfies (2.1). This completes
the proof.

3. MAIN RESULTS

Let 8 # 2/n%,0 < n < 1, € J,,, where m is a nonnegative integer, 0 < m < p.
Define an operator T : PC(J,R) — PC(J,R) as

ra(0) = | O 4 a(s))ds + =22 / (=) 1 a(s))ds

o 2= 6, T+ 1)
2t L(1—s)at
2 pip? /t I'(q) f(s,2(s))ds
+Zk: [/tz Mf(s x(s))ds + I(x(t))}
i=1 tioa F(q) ? i i
k—1 b e _ -
—|—Z(tk —ti)[/t‘ (tf\(q_)l)f(s,x(s))ds—klf(x(ti))}

k ti . g)4—2
3=t [ G s atnds+ 1 ete)]

(> [/tt Wf(s,x(s))ds+[i(x(ti))}
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p—1 ti (tz' _ s)q72 .
+ i:1(tp —t;) |:/t1 mf(&l’(s))ds + I (l’(tl))]

+§pj<1 = " o + 1 o(00)]

= T(q—1)
_: /t Wf(s,x(s))ds
_j_:i;ﬁ(tﬁl —tg)[/:l ¢ ;(Z)) 1f( (s))ds + I (x( ))}
_:igﬁ(tﬁl —t)(t; — t;) [/tt_ mf(s,x(S))ds + zg(x(ti))}
E mg g(““ o[ [ S s+ 1 ot
- éﬁ(n ~tm) {/:1 (ti;(?)q_lf(sa z(s))ds + Ii(m(ti))}

_ n:_: B —tm)(tm — ;) [/tt (tli(;i)q:f(s, 2(s))ds + I} (x(ti))]

_g i(n ~tm)’ {/tfl (tli(;S)q:f(S’ a(s))ds + If(x(ti))] } (3.1)

Observe that the problem (1.1) has a solution if and only if the operator T has a
fixed point.

Lemma 3.1. The operator T : PC(J,R) — PC(J,R) defined by (3.1) is completely
continuous.

Proof. It is obvious that T' is continuous in view of continuity of f, I, and I}. Let
Q2 C PC(J,R) be bounded. Then, there exist a function L (¢t) € C(J,R™) and positive
constants Lo, Lz > 0 such that |f(¢,2(¢))] < Li(¢), [Ix(x)| < Lo and |[}(z)| < Ls,
Vz € Q. Thus, Vx € ), we have

e < [ G s+ 20 [ E o o)
2 (1= g1t
+I2—5172| ()

-1

k b gy
+; {/tll mf(s,x(s))|ds + |Il(x(tl))q

|/ (s, 2(s))lds
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k—1

_|_

™

=] [ G e sl + 11 )|

i=1

+

-

Il
[NCRN

= [ G soids + 17w

2

+W{ Ep: [/t . ;(f]))q_l £ (s 2(3))|ds + L (t)

i=1 ti-1

[ [ G a1 ot

XS
i ) [ S s ateias + 1 )]

I(g—1)
=18t = 8)°
+3 L Py o

-1

+ZZ‘/3| s —13)] / (t ;(?)q [F(s,(5))lds + | T (t:))]]

j=1 i=1

m—17—1

#3 SIBlt — ) -0 [ G s ads + 117 (e

j=1 i=

Y St =62 [ i tnateplas + 11 ot )]

w1l tw)| [ s n(olds + nta)]

313l =t = 0] [ G (el + 11 )]

ti .5 q—2
+@ ;(n —tm)® {/t (tf(q _)1) (s, (s))lds + |1 (o(t)]] |

(i s 208 [ (n—s)
</tk T O% 550 ), e

2 [ta-st ST (i)t
+2—/3772|/tp I(q) Ll(s)dH;[/t“ Mg sl
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p—1 t; —2 P t; —2

K (t1 - S)q ‘ (tl - S)q
¥ [/ S Li(s)ds + Lo + Y [ | ST La(s)ds + L]
21 T 21, T s+ L
p i )qfl
71;1(5)(&9 n LQ]
\Q—ﬁn I{Zl[/t1 I'(q)

p

S Bt — )12
+; |:/t11 (tli(q_)l)Ll(S)dS-i-LS] + ; {/til (tI‘(q _)1) Ly (s)ds + L3}

J

+Z ) / el s Sy [ s+ 1

1
j=11i=1

+pzui 18] [/ (tr"(; f)i)QLl(s)ds + Ly

Jj=11i=1

(t; — )12

+ZZ|B|[/ T Ll(s)ds—i—Lz}

j=11i=1

+;Iﬁln /

p—1
t fs
+Z|ﬂln/ e (s + L)

)dS + L2

p
1817”1 / (=)
L
+; i A vy (s)ds + 3}
< I Q‘Bl Iq+1L 2 q q
1) + 2= | 1(n) + WI Li(1) + p[I?L1(1) + Lo

+(p = DI La(1) + L] + p[I7" La(1) + Ls]

L
2 = Bn?

I La(V) + L] + pllr L (1) + P2 ) 4 1)

{PUILiV) + Lol + (p = DI L (1) + Lo

LD 2y ) g

AP DB gam, 0) 4 1)+ plilr L (1) + Lo
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plBIn* [
2

+(p = DB La(1) + L] + Z2 1 Ly (1) + Lo |

2|8 q+1 q+1 2 q
S BT A [I Ly () + pI7* Ll(l)} + (1+ W)I Li(1)
+{p+ p(1+ I%nz;;)ﬂ )IBI} [Iqu(lHLz}

2 (p—1)3p—4)|8] o B
+{2p—1+m[2p—1+ : - )|5|nm1 1L1(1)+L3](3;,
which implies that ||Tz|| < L. On the other hand, for any ¢ € Jk, 0<k<p, we haLve

|(Tx)'(t)] S/t (;( S)q) |f(s,z(s))|ds + |2 |[;|772|/ q+1 |f s,x(s))|ds
e 6772| / z(s))lds
2 (ti — ) .
+|2_577|{i221 [ ST st + tete]
pl to(f _ g)a-
#3060 e o) s + 1 ()
>0 [ G e+ 1) ]
T [Bl(t — 8)?
+]§;)/t T fea@lds
503 S :
+ ]; Z 18] (tj+1 — —t ){/tl1 Tlq—1) |f(s,z(s))|ds + | (w(tz))ﬂ

=1
m—1 j t; —g)a2
LY S -0 / GV o)) lds + 177 (alt)]|

Jj=11=1 Ha=b
Z [/t . (q)> [F(s,(s))lds + | L(a(t:)]]
(t: — 5)

+Z|ﬂ|<nftm><tmfti>[ / ) | s, as)lds + 177 (6]
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m t; S g)a—2
g 3! [ S st + ]}

bt —s)12 2|4 " (n— s)
- /tk I'(g—1) La(s)ds =+ 12 — Bn?| tm INCES 1)L1(S)d$

2 La—s)at
+D—6WLA) (g s
2 P

tq L g)a1
" 2 — B2 { 2 [/t“ . F(q)) La(s)ds+ LQ]

i=1

+p§ [/tt (tli(_s)q;QLl(s)ds + Ly

2 - rti __Sq72 .
+Z|ﬁ|2" /t (tli( ) ) Ll(s)ds+L3_}

2|8
12877
2p(1 + |Bln) +p(p — 1)|8]
12 — An?|
(p—1)(3p—4)|8]
4

2
12 — Bn?|

[I"Ll(l) + LQ} F I (1)

(199 L)+ pI L ()] e (1)

2p— 1+ +(p— 1+ EDIB| [ L) + L] = T.

L
12 — Bn?|
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Hence, for t1,t5 € Ji, t1 < tz, 0 < k < p, we have

(Ta)(t2) = (To)(t)] < [ |(T2) ()lds < Tt~ )

t1
This implies that T is equicontinuous on all Ji, k = 0,1,2,--- ,p. Thus, by the Arzela-
Ascoli Theorem, the operator T : PC(J,R) — PC(J,R) is completely continuous.
This completes the proof.

We need the following known fixed point theorem [23] to prove the existence of
solution for (1.1).

Theorem 3.2. Let E be a Banach space. Assume that T : E — E be a completely
continuous operator and the set V ={x € E | x = pTz,0 < px < 1} be bounded. Then
T has a fixed point in E.

Now, we are in a position to prove the main results of this paper.

Theorem 3.3. Assume that

(Hy) there exist a function Li(t) € C(J,R") and positive constants L; (i = 2,3)
such that | f(t,z)] < Li(t), |Ix(x)| < Lo, I} (z)] < L3, forte J z€Rand k =
1,2,---,p. Then the problem (1.1) has at least one solution.

Proof. Let us consider the set
V={xe PC(J,R)|z=pTz,0<p<1},

where the operator T : PC(J,R) — PC(J,R) is defined by (3.1). We just need to
show that the set V is bounded as it has already been proved that the operator 7' is
completely continuous in the lemma 3.1. Let z € V, then z = Tz, 0 < o < 1. For
any t € J, we have

t _g)a1 m (n—g)e
o) = [ PSS ptsatods 25 [T S (s

I'(q) 2—pn2 )i, Tlg+1)
2ut L1 —s)rt
s /t T/ o al)ds

+;M{/:l (tir(‘;))qlf(s,x(s))ds + Iz(l'(tl)):|

k-1 e
+Z(tk — ti)u{/t_ (l;(q_)l)f(s,z(s))ds + I{k(z(ti))}
k .
Bt — )12 )
+;(t - tk)ﬂ[/t” mf(s,x(s))ds + I (x(m)]

- zp: [/j G T a(s))ds + Ii(a(t:)|
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St [ = s 1100

i=1 F(q_ 1)
P t; (tz _ S)q—? §
+;(1 - tp)/l{/t T f(s,z(s))ds + I (:U(tl))}
Z/tﬁl Mf(&x(s))ds
m—1 J t .
_ _ g (tl _ S)q .
2 2 Pultya =t [ S atnds + 1ate)|
m—17—1 . Ly
’ (ti—s)q
_ ; 2 Bu(tjr —t;)(t tz){/t“ Tg=1) f(s,x(s))ds + I (x( ))]
m—1 7J i g2
_%“ Z(tg+1—tg)2[/t‘ (tz(q)l) f(s,2(s))ds + I (a( ))}
m t . 1
—Zﬂu(n—tm)[/t_ t F(q)) S (s,2(s))ds + I (1) |
m—1
t (ti _ S) 2 §
— 2 Bu(n — tm)(t tz)[/t TG-1D f(s,x(s))ds + I (a( ))}

Z —tm [/ti;lmf(s,x(s))ds+If(x(ti))}}. (3.3)

Using the assumptlon (Hy) in (3.3), we obtain

o) = o] < [ L s a(elas +

(q)
2 L1 —s) !
+I2*6n2| e, L)

k

tq g q—1
([ s ]

k—1

t; g q—2
3=t [ S sl 11 ()]

28] T (n—s)?
12— pBn?| Jy, T(g+1)

|/ (s, 2(s))lds

|f(s,2(s))lds

30t [ G s atonlas + 17 ote]

D
p_ﬁn,{i[ I s e

=1
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|
—

3t =t0] [ G (ol + 11 )]

1

K3

+

-

-] [ G (ol + 11 )

G |B| 1PIG4+1 ™ 5)7 )
+Z / P () s
m—1 J

+30 Y IBl - )] / o (sae)lds + |1 o)

=1 =1 - q

i=1

S Bl - )05 -0 | G et + 11 (e

=1 i=

3 =

]

S ] P S s atenias + 1]

i=1 I'(q

.
ﬁ
g

+ 32181~ to) / s o) lds + |1 ol

+ZIBI n=ta)ta—t)] [ G s alelas + 11 ()]

LS -0 / o s atslds + 11 ot

ti—1
T
2 — Bn?|

+[p+

[Iq“Ll(n) +p1q+1L1(1)} + (1 + %)Imu)

Bn?|
p(1+1681n) +p—DIBI T4
B HI L1(1)+L2}

+{2p_1+|2 2 2|[2p_1+<p—1><ip—4>|5
-1+ )\mn}}[ﬂ—lL1<1>+Lg] = M,

which implies that ||z| < M for any t € J. So, the set V' is bounded. Thus, by the
conclusion of Theorem 3, the operator T has at least one fixed point, which implies
that (1.1) has at least one solution. This completes the proof.

Theorem 3.4. Assume that

(Hy) there ezist a function K; € C(J,RT) and nonnegative constants K;(i = 2,3)
such that | f(t, x) = f(t,y)| < Ki()|z—yl, [In(z)—Ix(y)| < Ko|z—yl, [[;(z)—1;(y)] <
Kslx —y|, fort € J, z,y € Rand k =1,2,--- ,p. Then problem (1.1) has a unique
solution if H < 1, where

2|]
12— Bn?|

H= [Iq+1K1(n) +p1q+1K1(1)} + (1 v ﬁ)[”ﬁ(l)
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A1 [Iqu(l) n KQ} + A [IHKM) + Kq,} :
2p(1 +[8|n) + p(p — )|
12 — Bn?|
(p—1)(3p—4)|8|

A =p+

2 P
Xp=2p—1 7[2—1 1+ 2 ]
2 =214 o2 1 1 + =1+ 5016l

Proof. For xz,y € PC(J,R), we have

)0 - ol < [ “}(“'3;_ F(s.2(5)) — Fls.(s))lds

|2 ilﬁﬁn?I / (5)) — f(s,y(s))|ds

g)?—1
5 2ﬁnz| 1F(q)) F(,2() — Fls,y()lds

k
2 [/ . f(Z) 29 £, w5l + 1)) ~ Hw(t)

k—1 .
PN AU Lty
DICELIAE o 1£.0(6) — F(s.y(s))ld
I (@ () = I (y(t)]

ti S g)a—2
e [ G o) - s
I (@ () = I (y(t)
P ¢ (ti — S)q_l
| / For— I (s.(5) = (5. y() s
Hi(a(t:) —A(y(t»)\]

+

p—1 t; s
3t [ Gt ~ st

I} (k) = I (y(t:) ]

m—1 B
tjt1 ‘Bl(tj+1 _ S)q
2> [ R et - oo

3 S - ol / <ti;(sq>)"‘ f(s,2(5)) = f(s.y(s))lds

=1 =1

<.

(3.4)

30—t [ G (o) - S p(elds + 1 w(t) = 10|
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I (t)) — Lyt

£ 30S lt —pt— 0 [ G als) - sGsutsas

I @ (k) = 17 (y(t)]

m—1 J t; . g)a—2
Hg 3 Dottt [ G 90w~ ool

I (k) = I (y(t:) ]

+§}mw%mL[:W;grﬁﬂ&mm—f@M$ws
1 (@ (t:)) = I (y(8)
+§§WW7thmuﬂl?fiw?;ﬂﬂ&ﬂ$)f@w@mﬁ
I (@ () = I (y (k)]
oIS =t [ G et — ot

I (k) — I ()] }

t -1
(t— 5" 208 [ (s’
< Ki(s)||lx — y||ds + Ki(s)||lx — yl||ds
| e s + 20 [ K @l )
2 L1 —s)a?

12-61% Ji, T(q)
1

Ki(s)|lz — yllds
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iy [/ G s + 1]~ )

~LJ),_, Ta-1)

+j 1|6| T sydsle
+§i|g|[/ (ti;(‘;))q_lm(s)dsjtl(z}llx—yll
+’j’:§|ﬂ|[/ b Ka(oyds + K]~
*ZZ@[ [ s+ -
*é'ﬁ”[ / (ti;(‘jz))qlKl(s)ds+K2]x—y|

p—1 t; L g)a—2
e ia] [ G K+ 5l )

. zp: il [/tt (= 9)"2 p (syds + Ka|lle — yl }

2 I(g—1)
2|5| q q 2 q
< {m[z R ) +p1m ()] + (14 m)I Ki(1)

A [mqa) + KQ} + Ao {Iq’lKl(l) + Kg} }Hx —yll.
Consequently, we have | Tx — Ty|| < H||z — y||, where H is given by (3.4). As H < 1,

the conclusion of the theorem follows by the contraction mapping principle. This
completes the proof.

Remark 3.5. The existence results for a nonlocal integral boundary value problems
for impulsive nonlinear second-order differential equations follow by taking ¢ = 2 in
the results of this paper. In the limit n — 1, our results correspond to the ones with

the usual integral boundary condition x(1) = 5f01 x(s)ds

Example 3.6. Consider the following nonlocal integral boundary value problem for
impulsive nonlinear fractional differential equations
C Dig(t) = 28 (t) + sin® (3 (t) + 1) + 5¢2
316 (t) + ecos z(t)
Az(ty) = e~ () 4 2sinz(ty), Ax'(t) = 2cos(3 + 523(t1)),

z(0) = 0, )=3f0%xsds

2
where 1 < ¢ <2, §=3, n:gandpzl.

,0<t <1, t#tq,

(3.5)
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In this case, Li(t) = (1 + 5t%)e, Ly = 3, L3 = 2, and the conditions of Theorem

3 can readily be verified. Therefore, the conclusion of Theorem 3 applies to the
impulsive fractional integral boundary value problem (3.5).

Acknowledgment. The authors thank the referee for his/her useful comments.
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