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Abstract. We introduce the notions of weakly *-concave and weakly naturally quasi-concave cor-

respondence and prove fixed point theorems and continuous selection theorems for these kind of

correspondences. As applications in the game theory, by using a tehnique based on a continuous
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1. Introduction

It is known that the theory of correspondences has very widely developed and
produced many applications, especially during the last few decades. Most of these
applications concern fixed point theory and game theory. The fixed point theorems
are closely connected with convexity. A considerable number of papers devotes to
correspondences on nonconvex and noncompact domains (see e.g. [16], [17], [18]) or
to correspondences without convex values and continuity ([5]).

The aim of this paper is to introduce the notions of weakly *-concave and weakly
naturally quasi-concave correspondence and prove fixed point theorems and continu-
ous selection theorems for these kind of correspondences. We also define the corre-
spondences with WNQS and e-WNQS property.

The applications concern the equilibrium theory: we establish new existence results
for the equilibrium of the abstract economies. The constraint correspondences are
weakly concave-like or have the WNQS, respectively the e-WNQS property.

For the reader’s convenience, we review the main results in the equilibrium the-
ory, emphasizing that most authors have studied the existence of equilibrium for
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abstract economies with preferences represented as correspondences which have con-
tinuity properties. We mention here the results obtained by W. Shafer and H. Son-
nenschein [14], which concern economies with finite dimensional commodity space and
preference correspondences having an open graph. N. C. Yannelis and N. D. Prah-
bakar [21] used selection theorems and fixed-point theorems for correspondences with
open lower sections defined on infinite dimensional strategy spaces. Some authors
developed the theory of continuous selections of correspondences and gave numerous
applications in game theory. Michael’s selection theorem [11] is well-known and basic
in many applications. In [3,4], F. Browder firstly used a continuous selection the-
orem to prove Fan-Browder fixed point theorem. Later, N. C. Yannelis and N. D.
Prabhakar [21], H. Ben-El-Mechaiekh [1], X. Ding, W. Kim and K.Tan [6], C.Horvath
[9], T. Husain and E. Taradfar [10], S.Park [12],[13], X. Wu [19], X. Wu and S. Shen
[20], Z. Yu and L. Lin [22] and many others established several continuous selection
theorems with applications.

In this paper, we show that an equilibrium for an abstract economy exists without
continuity assumptions. By using a tehnique based on a continuous selection, we
prove the new equilibrium existence theorem for an abstract economy.

The paper is organized in the following way: Section 2 contains preliminaries and
notations. The fixed point and the selection theorem are presented in Section 3. The
equilibrium theorems are stated in Section 4.

2. Preliminaries and notations

Throughout this paper, we shall use the following notations and definitions:
Let A be a subset of a topological space X.
1. 2A denotes the family of all subsets of A.
2. cl A denotes the closure of A in X.
3. If A is a subset of a vector space, coA denotes the convex hull of A.
4. If F , T : A → 2X are correspondences, then coT , cl T , T ∩ F : A → 2X are

correspondences defined by (coT )(x) =coT (x), (clT )(x) =clT (x) and (T ∩ F )(x) =
T (x) ∩ F (x) for each x ∈ A, respectively.

5. The graph of T : X → 2Y is the set Gr(T ) = {(x, y) ∈ X × Y | y ∈ T (x)}
6. The correspondence T is defined by T (x) = {y ∈ Y : (x, y) ∈clX×Y GrT} (the

set clX×Y Gr(T ) is called the adherence of the graph of T).
It is easy to see that clT (x) ⊂ T (x) for each x ∈ X.

Lemma 2.1. (see [23]) Let X be a topological space, Y be a non-empty subset of a
topological vector space E, ß be a base of the neighborhoods of 0 in E and A : X → 2Y .
For each V ∈ß, let AV : X → 2Y be defined by AV (x) = (A(x) + V ) ∩ Y for each
x ∈ X. If x̂ ∈ X and ŷ ∈ Y are such that ŷ ∈ ∩V ∈ßAV (x̂), then ŷ ∈ A(x̂).

Definition 2.2. Let X, Y be topological spaces and T : X → 2Y be a correspondence
1. T is said to be upper semicontinuous if for each x ∈ X and each open set V in

Y with T (x) ⊂ V , there exists an open neighborhood U of x in X such that T (y) ⊂ V
for each y ∈ U .
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2. T is said to be lower semicontinuous if for each x∈ X and each open set V
in Y with T (x) ∩ V 6= ∅, there exists an open neighborhood U of x in X such that
T (y) ∩ V 6= ∅ for each y ∈ U .

3. T is said to have open lower sections if T−1(y) := {x ∈ X : y ∈ T (x)} is open
in X for each y ∈ Y.

Lemma 2.3. (see [24]).Let X be a topological space, Y be a topological linear space,
and let A : X → 2Y be an upper semicontinuous correspondence with compact values.
Assume that the sets C ⊂ Y and K ⊂ Y are closed and respectively compact. Then
T : X → 2Y defined by T (x) = (A(x)+C)∩K for all x ∈ X is upper semicontinuous.

We present the following types of generalized convex functions and correspon-
dences.

Definition 2.4. (see [15]) Let X be a convex set in a real vector space, and let Z be
an ordered t.v.s, with a pointed convex cone C. A vector-valued f : X → Z is said to
be natural quasi C−convex on X if f(λx1+(1−λ)x2) ∈co{f(x1), f(x2)}−C for every
x1, x2 ∈ X and λ ∈ [0, 1]. This condition is equivalent with the following condition:
there exists µ ∈ [0, 1] such that f(λx1 + (1− λ)x2) ≤C µf(x1) + (1− µ)f(x2), where
x ≤C y ⇔ y − x ∈ C.

A vector-valued function f is said to be natural quasi C−concave on X if −f is
natural quasi C−convex on X.

Definition 2.5. (see [26]) Let E1, E2 and Z be real Hausdorff topological vector
spaces, C ⊂ Z be a closed convex pointed cone with intS 6= ∅; let X be a nonempty
convex subset of E1, T : X → 2Z be a correspondence. T is said to be naturally C-
quasi-concave on X, if for any x1,x2 ∈ X and λ ∈ [0, 1], co(T (x1), T (x2)) ⊂ T (λx1 +
(1− λ)x2)− C.

Let ∆n−1 =

{
(λ1, λ2, ..., λn) ∈ Rn :

n∑
i=1

λi = 1 and λi > 0, i = 1, 2, ..., n

}
be the

standard (n-1)-dimensional simplex in Rn.
Definition 2.6. (see [5]) Let X be a non-empty convex subset of a topological vector
space E and Y be a non-empty subset of E. The correspondence T : X −→ 2Y is
said to have weakly convex graph (in short, it is a WCG correspondence) if for each
finite set {x1, x2, ..., xn} ⊂ X, there exists yi ∈ T (xi), (i = 1, 2, ..., n) such that

co({(x1, y1), (x2, y2), ..., (xn, yn)}) ⊂ Gr(T ) (2.1)

The relation (2.1) is equivalent to

n∑
i=1

λiyi ∈ T (

n∑
i=1

λixi) (∀(λ1, λ2, ..., λn) ∈ ∆n−1). (2.2)

We introduce the concept of weakly naturally quasi-concave correspondence.
Definition 2.7. Let X be a nonempty convex subset of a topological vector space
E and Y be a nonempty subset of a topological vector space F . The correspondence
T : X −→ 2Y is said to be weakly naturally quasi-concave (WNQ) if for each n and
for each finite set {x1, x2, ..., xn} ⊂ X, there exists yi ∈ T (xi), (i = 1, 2, ..., n) and
g = (g1, g2, ..., gn) : ∆n−1 → ∆n−1 a function with gi continuous, gi(1) = 1 and
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gi(0) = 0 for each i = 1, 2, ..., n, such that for every (λ1, λ2, ..., λn) ∈ ∆n−1, there

exists y =
n∑
i=1

gi(λi)yi ∈ T (
n∑
i=1

λixi).

Remark 2.8. If gi(λi) = λi for each i ∈ (1, 2, ..., n) and (λ1, λ2, ..., λn) ∈ ∆n−1, we
get a correspondence with weakly convex graph, as it is defined by Ding and He Yiran
in [5]. In the same time, the weakly naturally quasi-concavity is a weakening of the
notion of naturally C-quasi-concavity with C = {0}.
Remark 2.9. If T is a single valued mapping, then it must be natural quasi C-
concave for C = {0}.

Example 2.10. Let T : [0, 4]→ 2[−2,2] be defined by T (x) =

 [0, 2] if x ∈ [0, 2);
[−2, 0] if x = 2;
(0, 2] if x ∈ (2, 4].

T is neither upper semicontinuous, nor lower semicontinuous in 2. T also has not
weakly convex graph, since if we consider n = 2, x1 = 1 and x2 = 3, we have that
co{(1, y1), (3, y2)} *GrT for every y1 ∈ T (x1), y2 ∈ T (x2).

We shall prove that T is a weakly naturally quasi-concave correspondence.
1) Let’s consider first n = 2.
a) If x1, x2 ∈ [0, 2) and x1, x2 ∈ (2, 4], there exists y1 = 2 ∈ T (x1), y2 = 2 ∈ T (x2)

and gi(λi) = λi, i = 1, 2 such that for each (λ1, λ2) with the property that λ1 ≥ 0,

λ2 ≥ 0, λ1 + λ2 = 1, there exists y =
2∑
i=1

gi(λi)yi ∈ T (
2∑
i=1

λixi).

b) If x1 ∈ [0, 2) and x2 ∈ (2, 4], there exists λ∗1 6= 0 such that λ∗1x1 +(1−λ∗2)x2 = 2.
Let’s consider gi : [0, 1]→ [0, 1] continuous functions such that gi(1) = 1, gi(0) = 0

for each i = 1, 2 and g1(λ1) + g2(λ2) = 1 if λ1 + λ2 = 1, defined by

g1(λ1) =

{ 1
λ∗1
λ1 if λ1 ∈ [0, λ∗1);

1 if λ1 ∈ [λ∗1, 1]

and

g2(λ2) =

{
0 if λ2 ∈ [0, 1− λ∗1];
1− 1

λ∗1
+ 1

λ∗1
λ2 if λ2 ∈ (1− λ∗1, 1].

There exists y1 = 0 and y2 = 2 such that
b1) for λ1 ∈ [0, λ∗1) and λ2 = 1− λ1, x = λ1x1 + λ2x2 ∈ (2, x2], then T (x) = (0, 2]

and

y = g1(λ1)y1 + g2(λ2)y2 =
1

λ∗1
λ1y1 + (1− 1

λ∗1
λ1)y2

= (1− 1

λ∗1
λ1)2 ∈ (0, 2] = T (λ1x1 + λ2x2);

b2) for λ1 ∈ (λ∗1, 1], and λ2 = 1− λ1, x = λ1x1 + λ2x2 ∈ [x1, 2), then T (x) = [0, 2]
and

y = g1(λ1)y1 + g2(λ2)y2 = 1× 0 + 0× 2 = 0 ∈∈ T (λ1x1 + λ2x2);

b3) If λ1 = λ∗1, λ2 = 1− λ∗1, x = λ1x1 + λ2x2 = 2, then T (x) = [−2, 0] and

y = g1(λ1)y1 + g2(λ2)y2 = 1× 0 + 0× 2 = 0 ∈ T (2);
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c) If x1 ∈ [0, 2) and x2 = 2, there exists y1 = 2, y2 = 0 and the continuous functions
gi : [0, 1] → [0, 1] with gi(1) = 1, gi(0) = 0 for each i = 1, 2 and g1(λ1) + g2(λ2) = 1
if λ1 + λ2 = 1 such that

c1) for λ1 ∈ (0, 1] and λ2 = 1−λ1, x = λ1x1 +λ2x2 ∈ [x1, x2), then T (x) = [−2, 0]
and

y = g1(λ1)y1 + g2(λ2)y2 = g1(λ1)× 2 + g2(λ2)× 0 = g1(λ1)× 2 ∈ T (x);

c2) for λ1 = 0 and λ2 = 1, x = 2, then T (2) = [−2.0] and

y = g1(0)y1 + g2(1)y2 = 0× 2 + 1× 0 = 0 ∈ T (2);

d) If x1 = 2 and x2 ∈ (2, 4], there exists y1 = 0, y2 = 2 and the continuous functions
gi : [0, 1]→ [0, 1] with gi(1) = 1, gi(0) = 0 for each i = 1, 2 and g1(λ1) + g2(λ2) = 1 if
λ1 + λ2 = 1 such that

d1) for λ1 = 1 and λ2 = 0, x = 2, then T (2) = [−2.0] and

y = g1(1)y1 + g2(0)y2 = 1× 0 + 0× 2 = 0 ∈ T (2);

d2) for λ1 ∈ [0, 1) and λ2 = 1− λ1, x = λ1x1 + λ2x2 ∈ (x1, x2], then T (x) = (0, 2]
and

y = g1(λ1)y1 + g2(λ2)y2 = g1(λ1)× 0 + g2(λ2)× 2 = g2(λ2)× 2 ∈ (0, 2] = T (x).

2) The case n > 2 can be reduced to the case 1).

Now, we introduce the following definitions.

Let I be an index set. For each i ∈ I, let Xi be a non-empty convex subset of a
topological linear space Ei and denote X =

∏
i∈I
Xi.

Definition 2.11. Let Ki be a subset of X. The correspondence Ai : X → 2Xi is
said to have the WNQS property on Ki, if there is a weakly naturally quasi-concave
correspondence Ti : Ki → 2Xi such that xi /∈ Ti(x) and Ti(x) ⊂ Ai(x) for all x ∈ Ki.

Definition 2.12. Let Ki be a subset of X. The correspondence Ai : X → 2Xi is said
to have the e-WNQS property on Ki if for each convex neighborhood V of 0 in Xi,
there is a weakly naturally quasi-concave correspondence TVi : Ki → 2Xi such that
xi /∈ TVi (x) and TVi (x) ⊂ Ai(x) + V for all x ∈ Ki.

Definition 2.13. Let X be a nonempty convex subset of a topological vector space
E and Y be a nonempty subset of a topological vector space F . The correspondence
T : X −→ 2Y is said to be weakly *-concave if for each n and for each finite set
{x1, x2, ..., xn} ⊂ X, there exists yi ∈ T (xi), (i = 1, 2, ..., n), such that for every

(λ1, λ2, ..., λn) ∈ ∆n−1,
n∑
i=1

λiyi ⊂ T (x), for each x ∈ X.

To prove our theorems of equilibrium existence, we need the following:

Theorem 2.14. (Wu’s fixed point theorem [19]) Let I be an index set. For each
i ∈ I, let Xi be a nonempty convex subset of a Hausdorff locally convex topological
vector space Ei, Di a non-empty compact metrizable subset of Xi and Si, Ti : X :=∏
i∈I
Xi → 2Di two correspondences with the following conditions:

(i) for each x ∈ X, clcoSi(x) ⊂ Ti(x) and Si(x) 6= ∅,
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(ii) Si is lower semicontinuous.
Then, there exists a point x =

∏
i∈I
xi ∈ D =

∏
i∈I
Di such that xi ∈ Ti(x) for each

i ∈ I.

The extension of Kakutani’s theorem on locally convex spaces is due to Ky Fan.
Theorem 2.15. (Ky-Fan, [7]) Let Y be a locally convex space, X ⊂ Y be a compact
and convex subset and T : X → 2X be an upper semicontinuous correspondence with
non-empty compact convex values. Then, T has a fixed point.

For the case when X is not compact, Himmelberg got the following result.
Theorem 2.16. (Himmelberg, [8]) Let X be a non-empty convex subset of a separated
locally convex space Y . Let T : X → 2X be an upper semicontinuous correspondence
such that T (x) is closed and convex for each x ∈ X, and T (X) is contained in a
compact subset C of X. Then, T has a fixed point.

3. Fixed point theorems

We formulate the following fixed point theorem for weakly naturally quasi-concave
correspondences.

Theorem 3.1. (selection theorem) Let Y be a non-empty subset of a topological
vector space E and K be a (n− 1)- dimensional simplex in a topological vector space
F. Let T : K → 2Y be a weakly naturally quasi-concave correspondence. Then, T
has a continuous selection on K.

Proof. Let a1, a2, ..., an be the vertices of K. Since T is weakly naturally quasi-
concave, there exist bi ∈ T (ai), (i = 1, 2, ..., n) and g = (g1, g2, ..., gn) : ∆n−1 → ∆n−1

a function with gi continuous, gi(1) = 1 and gi(0) = 0 for each i = 1, 2, ...n, such that

for every (λ1, λ2, ..., λn) ∈ ∆n−1, there exists y ∈ T (
n∑
i=1

λiai) with y =
n∑
i=1

gi(λi)yi.

Since K is a (n − 1)-dimensional simplex with the vertices a1, ..., an, there exists
unique continuous functions λi : K → R, i = 1, 2, ..., n such that for each x ∈ K, we

have (λ1(x), λ2(x), ..., λn(x)) ∈ ∆n−1 and x =
n∑
i=1

λi(x)ai.

Let’s define f : K → 2Y by f(ai) = bi (i = 1, ..., n) and

f(

n∑
i=1

λiai) =

n∑
i=1

gi(λi)bi ∈ T (x).

We show that f is continuous.

Let (xm)m∈N be a sequence which converges to x0 ∈ K, where xm =
n∑
i=1

λi(xm)ai

and x0 =
n∑
i=1

λi(x0)ai. By the continuity of λi, it follows that for each i = 1, 2, ..., n,

λi(xm) → λi(x0) as m → ∞. Since g1, ..., gn are continuous, we have gi(λi(xm)) →
gi(λi(x0)) as m→∞. Hence f(xm)→ f(x0) as m→∞, i.e. f is continuous. �
Theorem 3.2. Let Y be a non-empty subset of a topological vector space E and K
be a (n − 1)- dimensional simplex in E. Let T : K → 2Y be an weakly naturally
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quasi-concave correspondence and s : Y → K be a continuous function. Then, there
exists x∗ ∈ K such that x∗ ∈ s ◦ T (x∗).

Proof. By Theorem 3.1, T has a continuous selection theorem on K. Since s : Y → K
is continuous, we obtain that s ◦ f : K → K is continuous. By Brouwer’s fixed
point theorem, there exists a point x∗ ∈ K such that x∗ = s ◦ f(x∗) and then,
x∗ ∈ s ◦ T (x∗). �
Theorem 3.3. (selection theorem). Let Y be a non-empty subset of a topological
vector space E and K be a (n− 1)- dimensional simplex in a topological vector space
F. Let T : K → 2Y be a weakly *-concave correspondence. Then, T has a continuous
selection on K.

Proof. Let a1, a2, ..., an be the vertices of K. Since T is weakly *-concave, there exist

bi ∈ T (ai), (i = 1, 2, ..., n) such that for every (λ
1
, λ

2
, ..., λn) ∈ ∆n−1,

n∑
i=1

λibi ⊂ T (x),

for each x ∈ X.
Since K is a (n − 1)-dimensional simplex with the vertices a1, ..., an, there exists

unique continuous functions λi : K → R, i = 1, 2, ..., n such that for each x ∈ K, we

have (λ1(x), λ2(x), ..., λn(x)) ∈ ∆n−1 and x =
n∑
i=1

λi(x)ai.

Let’s define f : K → 2Y by
f(ai) = bi (i = 1, ..., n) and

f(
n∑
i=1

λiai) =
n∑
i=1

λibi ∈ T (x).

We show that f is continuous.

Let (xm)m∈N be a sequence which converges to x0 ∈ K where xm =
n∑
i=1

λi(xm)ai

and x0 =
n∑
i=1

λi(x0)ai. By the continuity of λi, it follows that for each i = 1, 2, ..., n,

λi(xm)→ λi(x0) as m→∞. Hence we must have f(xm)→ f(x0) as m→∞, i.e. f
is continuous. �
Theorem 3.4. Let Y be a non-empty subset of a topological vector space E and
K be a (n − 1)- dimensional simplex in E. Let T : K → 2Y be a weakly *-concave
correspondence and s : Y → K be a continuous function. Then, there exists x∗ ∈ K
such that x∗ ∈ s ◦ T (x∗).

Proof. By Theorem 3.3, T has a continuous selection theorem on K. Since s : Y → K
is continuous, we obtain that s ◦ f : K → K is continuous. By Brouwer’s fixed
point theorem, there exists a point x∗ ∈ K such that x∗ = s ◦ f(x∗) and then,
x∗ ∈ s ◦ T (x∗). �

4. Equilibrium theorems

First, we present the model of an abstract economy and the definition of an equi-
librium.

Let I be a non-empty set (the set of agents). For each i ∈ I, let Xi be a non-empty
topological vector space representing the set of actions and define X :=

∏
i∈I
Xi; let Ai,
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Bi : X → 2Xi be the constraint correspondences and Pi the preference correspon-
dence.
Definition 4.1. The family Γ = (Xi, Ai, Pi, Bi)i∈I is said to be an abstract economy.
Definition 4.2. An equilibrium for Γ is defined as a point x ∈ X such that for each
i ∈ I, xi ∈ Bi(x) and Ai(x, ) ∩ Pi(x) = ∅.
Remark 4.3. When for each i ∈ I, Ai(x) = Bi(x) for all x ∈ X, this abstract
economy model coincides with the classical one introduced by Borglin and Keiding
in [2]. If in addition, Bi(x) =clXi

Bi(x) for each x ∈ X, which is the case if Bi has a
closed graph in X ×Xi, the definition of an equilibrium coincides with the one used
by Yannelis and Prabhakar [21].

To prove the following theorems we use the selection theorem mentioned in Section
3. We show the existence of equilibrium for an abstract economy without assuming
the continuity of the constraint and the preference correspondences Ai and Pi.

First, we prove a new equilibrium existence theorem for a noncompact abstract
economy with constraint and preference correspondences Ai and Pi, which have the
property that their intersection Ai ∩ Pi contains a WNQ selector on the domain Wi

of Ai∩Pi and Wi must be a simplex. To find the equilibrium point, we use Wu’s fixed
point theorem [19].

Since the constraint correspondence Bi is lower semicontinuous for each i ∈ I, the
next theorem can be compared with Theorem 5 of Wu [19]. The proofs of these results
are based on similar methods.

Theorem 4.4. Let Γ = (Xi, Ai, Pi, Bi)i∈I be an abstract economy, where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty convex set in a locally convex space Ei and there exists a
compact subset Di of Xi containing all the values of the correspondences Ai, Pi and
Bi such that D =

∏
i∈I

Di is metrizable;

(2) clBi is lower semicontinuous, has non-empty convex values and for each x ∈ X,
Ai(x) ⊂ Bi(x);

(3) Wi = {x ∈ X / (Ai ∩ Pi) (x) 6= ∅} is a (ni − 1)-dimensional simplex in X
such that Wi ⊂coD;

(4) there exists a weakly naturally quasi-concave correspondence Si : Wi → 2Di

such that Si(x) ⊂ (Ai ∩ Pi) (x) for each x ∈Wi;
(5) for each x ∈Wi, xi /∈ (Ai ∩ Pi)(x).
Then, there exists an equilibrium point x ∈ D for Γ, i.e., for each i ∈ I,

xi ∈clBi(x) and Ai(x) ∩ Pi(x) = ∅.
Proof. Let be i ∈ I. From the assumption (4) and the selection theorem (Theorem
3.1), it follows that there exists a continuous function fi : Wi → Di such that for each
x ∈Wi, fi(x) ∈ Si(x) ⊂ Ai(x) ∩ Pi(x) ⊂ Bi(x).

Define the correspondence Ti : X → 2Di , by Ti(x) :=

{
{fi(x)}, if x ∈Wi,
clBi(x), if x /∈Wi.

Ti is lower semicontinuous on X.
Let V be a closed subset of Xi, then
U := {x ∈ X | Ti(x) ⊂ V } ={x ∈Wi | Ti(x) ⊂ V } ∪ {x ∈ X \Wi | Ti(x) ⊂ V }
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={x ∈Wi | fi(x) ∈ V } ∪ {x ∈ X | clBi(x) ⊂ V }
=(f−1

i (V ) ∩Wi) ∪ {x ∈ X | clBi(x) ⊂ V } .
U is a closed set, because Wi is closed, fi is a continuous function on intXKi and

the set {x ∈ X | clBi(x) ⊂ V } is closed since clBi is l.s.c. Let D =
∏
i∈I

Di. Then, by

Tychonoff’s Theorem, D is compact in the convex set X.
By Theorem 2.14 (Wu’s fixed-point theorem), applied for the correspondences Si =

Ti and Ti : X → 2Di , there exists x ∈ D such that for each i ∈ I, xi ∈ Ti(x). If
x ∈Wi for some i ∈ I, then xi = fi(x), which is a contradiction.

Therefore, x /∈ Wi, and hence, (Ai ∩ Pi)(x) = ∅. Also, for each i ∈ I, we have
xi ∈ Ti(x), and then, xi ∈clBi(x). �
Remark 4.5. In this theorem, the correspondences Ai ∩ Pi, i ∈ I, may not verify
continuity assumptions and may not have convex or compact values.

Remark 4.6. In assumption (3), Wi must be a proper subset of X. In fact, if
Wi = Xi, then, by applying Himmelberg’s fixed point theorem ([8]) to

∏
i∈I
fi(x), where

fi is a continuous selection of Si ⊂ Ai∩Pi, we can get a fixed point x ∈
∏
i∈I

(Ai∩Pi)(x),

which contradicts assumption (5).

Since a correspondence T : X → 2Y having the property that ∩{T (x) : x ∈ X} is
nonempty and convex, is a WNQ correspondence, we obtain the following corollary.

Corollary 4.7. Let Γ = (Xi, Ai, Pi, Bi)i∈I be an abstract economy, where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty convex set in a locally convex space Ei and there exists a
compact subset Di of Xi containing all the values of the correspondences Ai, Pi and
Bi such that D =

∏
i∈I

Di is metrizable;

(2) clBi is lower semicontinuous, has non-empty convex values and for each x ∈ X,
Ai(x) ⊂ Bi(x);

(3) Wi = {x ∈ X / (Ai ∩ Pi) (x) 6= ∅} is a (ni − 1)-dimensional simplex in X
such that Wi ⊂coD;

(4) there exists a correspondence Si : Wi → 2Di such that Si has the property that
∩{T (x) : x ∈ X} is nonempty and convex, and Si(x) ⊂ (Ai ∩ Pi) (x) for each x ∈Wi;

(5) for each x ∈Wi, xi /∈ (Ai ∩ Pi)(x).
Then there exists an equilibrium point x ∈ D for Γ, i.e., for each i ∈ I, xi ∈clBi(x)

and Ai(x) ∩ Pi(x) = ∅.

A correspondence T : X → 2Y with convex graph is a WNQ correspondence, and
then we have:
Corollary 4.8. Let Γ = (Xi, Ai, Pi, Bi)i∈I be an abstract economy, where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty compact convex set in a locally convex space Ei;
(2) clBi is lower semicontinuous, has non-empty convex values and for each x ∈ X,

Ai(x) ⊂ Bi(x);
(3) Wi = {x ∈ X / (Ai ∩ Pi) (x) 6= ∅} is a (ni − 1)-dimensional simplex in X;
(4) there exists a correspondence Si : Wi → 2Xi with convex graph such that Si(x)
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⊂ (Ai ∩ Pi) (x) for each x ∈Wi;
(5) for each x ∈Wi, xi /∈ (Ai ∩ Pi)(x).
Then, there exists an equilibrium point x ∈ X for Γ, i.e., for each i ∈ I,

xi ∈clBi(x) and Ai(x) ∩ Pi(x) = ∅.

For Theorem 4.9, we use an approximation method, in the meaning that we obtain,
for each i ∈ I, a continuous selection fVi

i of (Ai + Vi) ∩ Pi, where Vi is a convex
neighborhood of 0 in Xi. For every V =

∏
i∈I

Vi, we obtain an equilibrium point for

the associated approximate abstract economy ΓV = (Xi, Ai, Pi, BVi)i∈I , i.e., a point
x ∈ X such that Ai(x) ∩ Pi(x) = ∅ and xi ∈ BVi(x), where the correspondence
BVi : X → 2Xi is defined by BVi(x) =cl(Bi(x) + Vi) ∩ Xi for each x ∈ X and for
each i ∈ I. Finally, we use Lemma 2.1 to get an equilibrium point for Γ in X. The
compactness assumption for Xi is essential in the proof.

Examples of results which use an approximation method are Theorem 3.1 pg. 37
or Theorem 1.2, pg. 41 in [23]. This method is usually used in relation with abstract
economies which have lower semicontinuous constraint correspondences.

Theorem 4.9. Let Γ = (Xi, Ai, Pi, Bi)i∈I be an abstract economy, where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty compact convex set in a locally convex space Ei;
(2) clBi is upper semicontinuous, has non-empty convex values and for each x ∈ X,

Ai(x) ⊂ Bi(x);
(3) the set Wi := {x ∈ X/ (Ai ∩ Pi) (x) 6= ∅} is non-empty, open and Ki =clWi is

a (ni − 1)-dimensional simplex in X ;
(4) For each convex neighbourhood V of 0 in Xi, (Ai + V ) ∩ Pi : Ki → 2Xi is a

weakly naturally quasi-concave correspondence;
(5) for each x ∈ Ki, xi /∈ Pi(x).
Then there exists an equilibrium point x ∈ X for Γ, i.e., for each i ∈ I, xi ∈ Bi(x)

and Ai(x) ∩ Pi(x) = ∅.

Proof. For each i ∈ I, let ßi denote the family of all open convex neighborhoods of
zero in Ei. Let V = (Vi)i∈I ∈

∏
i∈I

ßi. Since (Ai + Vi) ∩ Pi is a weakly concave like

correspondence on Ki, then, from the selection theorem (Theorem 3.1), there exists

a continuous function fVi
i : Ki → Xi such that for each x ∈ Ki,

fVi
i (x) ∈ (Ai(x) + Vi) ∩ Pi(x) ⊂ (Ai(x) + Vi) ∩Xi.

It follows that fVi
i (x) ∈cl(Bi(x) + Vi) for x ∈ Ki. Since Xi is compact, we have

that clBi(x) is compact for every x ∈ X and cl(Bi(x) +Vi) =cl(Bi(x))+clVi for every
Vi ⊂ Ei.

Define the correspondence TVi
i : X → 2Xi , by

TVi
i (x) :=

{
{fVi
i (x)}, if x ∈ intXK = Wi,

cl(Bi(x) + Vi) ∩Xi, if x ∈ X r intXKi;

The correspondence BVi : X → 2Xi , defined by BVi(x) :=cl(Bi(x) + Vi) ∩ Xi is
u.s.c. by Lemma 2.3. Then following the same line as in Theorem 4.4, we can prove
that TVi

i is upper semicontinuous on X and has closed convex values.
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Define TV : X → 2X by TV (x) :=
∏
i∈I
TVi
i (x) for each x ∈ X.

TV is an upper semicontinuous correspondence and it also has non-empty convex
closed values.

Since X is a compact convex set, by Fan’s fixed-point theorem [7], there exists

xV ∈ X such that xV ∈ TV (xV ), i.e., for each i ∈ I, (xV )i ∈ TVi
i (xV ).

We state that xV ∈ X \
⋃
i∈I

intXKi.

If xV ∈intXKi, (xV )i ∈ TVi
i (xV ) = fi(xV ) ∈ ((Ai(xV ) + Vi) ∩ Pi)(xV ) ⊂ Pi(xV ),

which contradicts assumption (5).
Hence (xV )i ∈cl(Bi(xV ) + Vi) ∩Xi and (Ai ∩ Pi)(xV ) = ∅, i.e. xV ∈ QV where
QV = ∩i∈I{x ∈ X : xi ∈cl(Bi(x) + Vi) ∩Xi and (Ai ∩ Pi)(x) = ∅}.
Since Wi is open, QV is the intersection of non-empty closed sets, then it is non-

empty, closed in X.
We prove that the family {QV : V ∈

∏
i∈I

ßi} has the finite intersection property.

Let {V (1), V (2), ..., V (n)} be any finite set of
∏
i∈I

ßi and let V (k) = (V
(k)
i )i∈I , k =

1, ..., n. For each i ∈ I, let Vi =
n
∩
k=1

V
(k)
i , then Vi ∈ ßi; thus V = (Vi)i∈I ∈

∏
i∈I

ßi.

Clearly QV ⊂
n
∩
k=1

QV (k) so that
n
∩
k=1

QV (k) 6= ∅.
Since X is compact and the family {QV : V ∈

∏
i∈I

ßi} has the finite intersection

property, we have that ∩{QV : V ∈
∏
i∈I

ßi} 6= ∅. Take any x ∈ ∩{QV : V ∈
∏

ßi
i∈I
},

then for each i ∈ I and each Vi ∈ ßi, xi ∈cl(Bi(x) + Vi) ∩Xi and (Ai ∩ Pi)(x) = ∅;
but then xi ∈cl(Bi(x)) by Lemma 2.1 and (Ai ∩ Pi)(x) = ∅ for each i ∈ I so that x
is an equilibrium point of Γ in X. �

The last two theorems can be compared with Zheng’s theorems 3.1 and 3.2 in
[24] and Zhou’s theorems 5 and 6 in [25] where the constraint correspondences
have continuous selections on a closed subset Ci ⊂ X which contains the set
{x ∈ X : (Ai ∩ Pi) (x) 6= ∅} .

To find the equilibrium point in Theorem 4.10, we use Wu’s fixed point theorem
for correspondences clBi which are lower semicontinuous and we need a non-empty
compact metrizable set Di in Xi for each i ∈ I. The spaces Xi are not compact.

Theorem 4.10. Let Γ = (Xi, Ai, Pi, Bi)i∈I be an abstract economy, where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty convex set in a Hausdorff locally convex space Ei and there
exists a nonempty compact metrizable subset Di of Xi containing all values of the
correspondences Ai, Pi and Bi;

(2) clBi is lower semicontinuous with non-empty convex values;
(3) there exists a (ni − 1)-dimensional simplex Ki in X and

Wi : = {x ∈ X / (Ai ∩ Pi) (x) 6= ∅} ⊂intX(Ki);
(4) clBi has the (WNQS)-property on Ki;
Then there exists an equilibrium point x ∈ D for Γ, i.e., for each i ∈ I, xi ∈clBi(x)

and Ai(x) ∩ Pi(x) = ∅.
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Proof. Since clBi has the WNQS property on Ki, it follows that there exists a weakly
concave like correspondence Fi : X → 2Di such that Fi(x) ⊂clBi(x) and xi /∈ Fi(x)
for each x ∈ Ki.
Ki is a (ni−1)- dimensional simplex, then, from the selection theorem, there exists

a continuous function fi : Ki → Di such that fi(x) ∈ Fi(x) for each x ∈ Ki. Because
xi /∈ Fi(x) for each x ∈ Ki, we have that xi 6= fi(x) for each x ∈ Ki.

Define the correspondence Ti : X → 2Di , by Ti(x) :=

{
{fi(x)}, if x ∈ Ki,
clBi(x), if x /∈ Ki.

Ti is lower semicontinuous on X and has closed convex values.
Let U be a closed subset of Xi, then
U
′

:= {x ∈ X | Ti(x) ⊂ U} ={x ∈ Ki | Ti(x) ⊂ U} ∪ {x ∈ X \Ki | Ti(x) ⊂ U}
={x ∈ Ki | fi(x, y) ∈ U} ∪ {x ∈ X | clBi(x) ⊂ U}
=((fi)

−1(U) ∩Ki)∪.{x ∈ X | clBi(x) ⊂ U} .
U
′

is a closed set, because Ki is closed, fi is a continuous function on Ki and the set
{x ∈ X | clBi(x) ⊂ U} is closed since clBi(x) is l.s.c. Then Ti is lower semicontinuous
on X and has non-empty closed convex values.

By Theorem 2.14 (Wu’s fixed-point theorem) applied for the correspondences Si =
Ti and Ti : X → 2Di , there exists x ∈ D such that for each i ∈ I, xi ∈ Ti(x). If
x ∈Wi for some i ∈ I, then xi = fi(x), which is a contradiction.

Therefore, x /∈ Wi, and hence (Ai ∩ Pi)(x) = ∅. Also, for each i ∈ I, we have
xi ∈ Ti(x), and then xi ∈clBi(x). �

In Theorem 4.11 the sets Xi are non-empty compact convex in locally convex spaces
Ei. As in Theorem 4.9, we first obtain equilibria for ΓV , and then, the proof coincides
with the proof of Theorem 4.9.

Theorem 4.11. Let Γ = (Xi, Ai, Pi, Bi)i∈I be an abstract economy, where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty compact convex set in a locally convex space Ei;
(2) clBi is upper semicontinuous with non-empty convex values;
(3) the set Wi : = {x ∈ X / (Ai ∩ Pi) (x) 6= ∅} is open and there exists a
(ni − 1)-dimensional simplex Ki in X such that Wi ⊂intX(Ki).
(3) clBi has the (e-WNQS) property on Ki.
Then there exists an equilibrium point x ∈ X for Γ, i.e., for each i ∈ I, xi ∈ Bi(x)

and Ai(x) ∩ Pi(x) = ∅.

Proof. For each i ∈ I, let ßi denote the family of all open convex neighborhoods of
zero in Ei.Let V = (Vi)i∈I ∈

∏
i∈I

ßi. Since clBi has the e-WNQS property on Ki, it

follows that there exists a weakly concave like correspondence FVi
i : X → 2Xi such

that FVi
i (x) ⊂ clBi(x) + Vi and xi /∈ FVi

i (x) for each x ∈ Ki.
Ki is a (ni − 1)- dimensional simplex, then, from the selection theorem, there

exists a continuous function fVi
i : Ki → Xi such that fVi

i (x) ∈ FVi
i (x) for each

x ∈ Ki. Because xi /∈ FVi
i (x) for each x ∈ Ki, we have that xi 6= fVi

i (x) for each
x ∈ Ki.

Define the correspondence TVi
i : X → 2Xi , by



FIXED POINT THEOREMS AND APPLICATIONS 211

TVi
i (x) :=

{
{fVi
i (x)}, if x ∈ intXKi,

cl(Bi(x) + Vi) ∩Xi, if x ∈ X r intXKi;

BVi
: X → 2Xi , BVi

(x) =cl(Bi(x) + Vi) ∩ Xi = (clBi(x)+clVi) ∩ Xi is upper
semicontinuous by Lemma 2.3.

Let U be an open subset of Xi, then
U
′

:= {x ∈ X | TVi
i (x) ⊂ U}

={x ∈intXKi | TVi
i (x) ⊂ U} ∪ {x ∈ X\intXKi | TVi

i (x) ⊂ U}
=
{
x ∈ intXKi | fVi

i (x, y) ∈ U
}
∪
{
x ∈ X | (clBi(x) + Vi) ∩Xi ⊂ U

}
=((fVi

i )−1(U)∩intKKi)∪.
{
x ∈ X | (clBi(x) + Vi) ∩Xi ⊂ U

}
.

U
′

is an open set, because intXKi is open, fVi
i is a continuous function on Ki and

the set {x ∈ X | (clBi(x) + clVi) ∩Xi ⊂ U} is open since (clBi(x)+clVi)∩Xi is u.s.c.

Then, TVi
i is upper semicontinuous on X and has closed convex values.

Define TV : X → 2X by TV (x) :=
∏
i∈I
TVi
i (x) for each x ∈ X.

TV is an upper semicontinuous correspondence and it has also non-empty convex
closed values.

Since X is a compact convex set, by Fan’s fixed-point theorem [7], there exists

xV ∈ X such that xV ∈ TV (xV ), i.e., for each i ∈ I, (xV )i ∈ TVi
i (xV ). If xV ∈intXKi,

(xV )i = fVi
i (xV ), which is a contradiction.

Hence (xV )i ∈cl(Bi(xV ) + Vi) ∩Xi and (Ai ∩ Pi)(xV ) = ∅, i.e. xV ∈ QV where
QV = ∩i∈I{x ∈ X : xi ∈cl(Bi(x) + Vi) ∩Xi and (Ai ∩ Pi)(x) = ∅}.
Since Wi is open, QV is the intersection of non-empty closed sets, then it is non-

empty, closed in X.
We prove that the family {QV : V ∈

∏
i∈I

ßi} has the finite intersection property.

Let {V (1), V (2), ..., V (n)} be any finite set of
∏

ßi
i∈I

and let V (k) = (V
(k)
i )i∈I , k =

1, ..., n. For each i ∈ I, let Vi =
n
∩
k=1

V
(k)
i , then Vi ∈ ßi; thus V = (Vi)i∈I ∈

∏
i∈I

ßi.

Clearly QV ⊂
n
∩
k=1

QV (k) so that
n
∩
k=1

QV (k) 6= ∅.Since X is compact and the family

{QV : V ∈
∏
i∈I

ßi} has the finite intersection property, we have that ∩{QV : V ∈∏
i∈I

ßi} 6= ∅. Take any x ∈ ∩{QV : V ∈
∏
i∈I

ßi}, then for each i ∈ I and each Vi ∈ ßi,

xi ∈cl(Bi(x) +Vi)∩Xi and (Ai ∩Pi)(x) = ∅; but then xi ∈cl(Bi(x)) from Lemma 2.1
and (Ai ∩ Pi)(x) = ∅ for each i ∈ I so that x is an equilibrium point of Γ in X. �

Acknowledgement. This work was supported by the strategic grant POS-
DRU/89/1.5/S/58852, Project ”Postdoctoral programme for training scientific re-
searchers” cofinanced by the European Social Found within the Sectorial Operational
Program Human Resources Development 2007-2013.

References

[1] H. Ben-El-Mechaiekh, Fixed points for compact set-valued maps, Questions Answers Gen. Topol-

ogy, 10(1992), 153-156.



212 MONICA PATRICHE

[2] A. Borglin, H. Keiding, Existence of equilibrium action and of equilibrium:A note on the ’new’
existence theorem, J. Math. Econom., 3(1976), 313-316.

[3] F.E. Browder, A new generation of the Schauder fixed point theorems, Math. Ann., 174(1967),

285-290.
[4] F.E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces,

Math. Ann., 177(1968), 283-301.

[5] X. Ding, H. Yiran, Best Approximation Theorem for Set-valued Mappings without Convex
Values and Continuity, Appl Math. Mech. English Edition, 19(9)(1998), 831-836.

[6] X.P. Ding, W.K. Kim, K.K. Tan, A selection theorem and its applications, Bull. Austral. Math.
Soc., 46(1992), 205-212.

[7] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc.

Nat. Acad. Sci. U.S.A., 38(1952), 121-126.
[8] C.J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl., 38(1972),

205-207.

[9] C.D. Horvath, Extension and selection theorems in topological vector spaces with a generalized
convexity structure, Ann. Fac. Sci., Toulouse, 2(1993), 253-269.

[10] T. Husain, E. Taradfar, A selection theorem and a fixed point theorem and an equilibrium point

of an abstract economy, Internat. J. Math. Math. Sci., 18(1995), 179-184.
[11] E. Michael, Continuous selection, Annals of Mathematics, 63(2)(1956), 361-382.

[12] S. Park, Continuous selection theorems in generalized convex spaces, Numer. Funct. Anal. Op-

tim., 25(1999), 567-583.
[13] S. Park, The Knaster-Kuratowski-Mazurkiewicz Theorem and almost fixed points, Topol. Meth.

Nonlinear Anal., 16(2000), 195-200.

[14] W. Shafer, H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, J.
Math. Economics, 2(1975), 345-348.

[15] T. Tanaka, Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorem for
Vector-Valued Functions, J. Optim. Theory Appl., 81(2)(1994), 355-377.

[16] G. Tian, Fixed points theorems for mappings with noncompact and nonconvex domains, J.

Math. Anal. Appl., 158(1991), 161-167.
[17] K. Wlodarczyk, D. Klim, Fixed point and coincidence theorems for set-valued maps with non-

convex or noncompact domains in topological vector spaces, Abstr. Appl. Anal., 1(2003), 1-18.

[18] K. Wlodarczyk, D. Klim, Equilibria and fixed points of sets-valued maps with nonconvex and
noncompact domains and ranges, Nonlinear Anal., 65(2006), 918-932.

[19] X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc., 125(1997),

1779-1783.
[20] X. Wu, S. Shen, A further generalization of Yannelis-Prabhakar’s continuous selection theorem

and its applications, J. Math. Anal. Appl., 197(1996), 61-74.

[21] N.C. Yannelis and N.D. Prabhakar, Existence of maximal elements and equilibrium in linear
topological spaces, J. Math. Econom., 12(1983), 233-245.

[22] Z.T. Yu, L.J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal., 52(2003),
445-455.

[23] X.Z. Yuan, The Study of Minimax Inequalities and Applications to Economies and Variational

Inequalities, Memoirs Amer. Math. Soc., 625(1988).
[24] X. Zheng, Approximate selection theorems and their applications, J. Math. Anal. Appl.,

212(1997), 88-97.

[25] J. Zhou, On the Existence of equilibrium for abstract economies. J. Math. Anal. Appl.,
193(1992), 839-857.

[26] Q. Zhang, C. Cheng, X. Li, Generalized minimax theorems for two set-valued mappings, J.

Indust. Managem. Optimization, 9(1)(2013), 1-12.

Received: January 19, 2012; Accepted: January 17, 2013.


