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1. INTRODUCTION

In this paper we investigate the solution set of a map F and in particular we
present conditions on F' which guarantee that the solution set contains a connected
component. These bifurcation results rely on the notion of an essential map [1 ,7].
We refer the reader to [2, 3, 4] for other approaches in the literature.

Let X and Y be Hausdorff topological spaces. Given a class X of maps, X(X,Y)
denotes the set of maps F : X — 2Y (nonempty subsets of Y) belonging to X, and
X, the set of finite compositions of maps in X. We let

FX)={Z: FixF#0 forall FeX(Z,2)}

where Fixz F' denotes the set of fixed points of F.

The class U of maps is defined by the following properties:
(i) U contains the class C of single valued continuous functions;
(ii) each F' € U, is upper semicontinuous and compact valued; and
(iii) B™ € F(U,) for all n € {1,2,....}; here B"={z e R": |z| < 1}.

We say F € U¥(X,Y) if for any compact subset K of X thereisa G € U.(K,Y)
with G(x) C F(z) for each z € K.

Recall U* is closed under compositions. The class U¥ contains almost all the well
known maps in the literature (see [8] and the references therein). It is also possible
to consider more general maps (see [6, 7]) and in this paper we will consider a class
of maps which we will call A.
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2. CONTINUA OF SOLUTIONS
Let E be a completely regular topological space and U an open subset of E.

We will consider a class A of maps (see [5]).
Definition 2.1. We say F € A(U,E) if F € A(U,E) and F : U — K(E) is an
upper semicontinuous map; here U denotes the closure of U in E and K(E) denotes
the family of nonempty compact subsets of F.

Definition 2.2. Wesay F € Ayy(U,E) if F € A(U,E) with 2 ¢ F(x) for x € 9U;
here 9U denotes the boundary of U in E.

Definition 2.3. Let F € Ay (U, E). Wesay F is essential in Agy (U, E) if for every
map J € Agy (U, E) with J]|gr = F|sy there exists x € U with z € J(z).

Recall a compact connected set is called a continuum. For our results in this paper
we will use Whyburn’s lemma from topology which we state here for convenience.

Theorem 2.1. Let A and B be disjoint closed subsets of a compact Hausdorff topo-
logical space K such that mo connected component of K intersects both A and B.
Then there exists a partition K = K1 U Ky where Ky and Ko are disjoint compact
sets containing A and B respectively.

An easy consequence of Theorem 2.1 was established by Martelli in [3].

Theorem 2.2. Let X be a metric space and K a compact subset of X. Assume that
A and B are two disjoint closed subsets of K such that no connected component of K
intersects both. Then there exists an open bounded set U such that

ACU UNB=0 and OUNK = (.

For our next results we assume F is a metric space and U an open subset of
E x [0,1]. We will also assume the following condition:

for Hausdorff topogical spaces X; and Xo, if F € A(X;,Xs),
v e C(X1,[0,1]) and if ®(y) = (F(y),v(y)) for y € X3, (2.1)
then ® € A(Xl,XQ X [0, 1})

Our first result was motivated by ideas in [7].
Theorem 2.3. Suppose N € A(U, E) with
x ¢ N(z,\) for (x,A) € oU. (2.2)
Let H : Ux[0,1] — K(Ex[0,1]) be given by H(x,\, 1) = (N(x,\),u) for (x,\) € U
1

and [ € [0,1]. In addition assume the following two conditions hold:
Hy s essential in Apy (U, E x [0,1]); here B (2.3)
Hy(xz,\) = H(z,\,0) = (N(z,A),0) for (x,\)eU '

and
Q={(z,\) €eU: x € N(x,\)} is compact and 2 # 0; (2.4)
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here Qy = {x € E : (z,t) € Q} for each t € [0,1]. Then Q contains a continuum
intersecting Qo x {0} and Qq x {1}.

Remark 2.1. Conditions to guarantee that €; # ) for maps in A(U, E) can be found
in [5, Theorem 2.5].

Proof. Note A = Q¢ x {0} CQ and B = Q1 x {1} C Q are closed (and compact).
If there is no continuum intersecting A and B then from Theorem 2.1, 2 can be
represented as 2 = Q*UQ** where Q* and Q** are disjoint compact sets with A C Q*
and B C Q**. Notice Q* and Q**UQU are closed and disjoint (note Q*NOU = ( since
if there exists a (z,A) € OU and (z, A) € 2* then (note (z,A) € Q* C Q) z € N(z, )
which contradicts (2.2)). Now there exists a continuous map p : U — [0,1] with
w(*UdU) =0 and pu(2*) =1. Let

T(x,A) = (N(z, A), p(z,A)) for (z,A) € U
Notice (2.1) guarantees that T € A(U,E x [0,1]) and in fact T € Apy (U, E x
[0,1]) since if there exists a (z,A) € OU with (x,A) € T(x,A) then (z,\) €
(N(z,\), p(z,N)) = (N(z,A),0) so z € N(x,0) which contradicts (2.2). Notice as
well (here Ho(z, A\) = H(z,A,0) = (N(z,A),0)) that
Tlou = Holov

since if (z,A) € U then T(xz,\) = (N(z,\), u(xz,\)) = (N(x,),0) (note p(Q™* U
oU) = 0). Now (2.3) guarantees that there exists a (z,\) € U with (x,A) € T(x, \)
ie. z € N(z,\) and A = p(z, A). Note (z,) € Q since (z,\) € U and z € N(x, ).
Now either (z,\) € Q* or (z,\) € Q**.
Case 1. Suppose (z,\) € Q*.

Then p(x,\) = 1. Thus A = p(xz,\) =1 and x € N(z,\) = N(z,1) ie. (z,1) €
B C O** which contradicts (x,1) = (x,\) € Q*.
Case 2. Suppose (z, A) € **.

Then p(x,\) = 0. Thus A = p(x,\) =0 and x € N(z,\) = N(z,0) i.e. (2,0) €
A C Q* which contradicts (z,0) = (z,A) € Q**. O

In our next result (2.2) is not assumed.
Theorem 2.4. Suppose N € A(U, E) with

x ¢ N(z,0) for (z,0) € 0U. (2.5)

Let H :Ux[0,1] = K(Ex[0,1]) be given by H(z,\, ) = (N(z,\),p) for (z,\) € U
and p € [0,1] and assume (2.3) and (2.4) hold. In addition for open subsets W of
U with Qo x {0} CW C U (sox ¢ N(z,0) for (,0) € U\W), OW N Q = 0 and
WnNOUNQ) =0 assume N € A(W,E) and the following conditions holds:

Hy is essential in Apw (W, E x [0,1]); here (2.6)
Ho(z,A) = H(x,X,0) = (N(z,),0) for (z,A) €W '

and

Y1 # 0 (2.7)
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here & = {(z,\) e W: z€ N(z,\)} and X, = {z € E : (
t €10,1]. Then Q contains a continuum intersecting Qox{0} and
here Q ={x € E: (z,t) € Q} for each t € [0,1].

Proof. There are two cases to consider, namely Q N 9U = @ or QN OU # 0. If
QN oU = ) then (2.2) holds so the result follows from Theorem 2.3. Now suppose
QNAU # 0. Let A= Qo x{0}, B=Q; x{1}and C = QNaU (# 0). Notice C C Qis
closed and (2.5) guarantees that C is disjoint from A. Now from Theorem 2.1 either
(1). there exists a continuum of € which intersects A and C (and we are finished),
or (2). Q=Q*UQ™ where Q* and O** are disjoint compact sets with A C Q* and
B C Q**. Suppose (2) occurs. Now from Theorem 2.2 there exists an open set V
with

x,t) € X} for each
(OUNQ)U(Q x{1});

QCV, VNQ* =0 and oVNQ=0. (2.8)
Let W =UNV. We claim
ACWCU, oWNQ =0 and WnN(OUNQ) = 0. (2.9)

Note clearly A C W since A C Q* C V and A C U from (2.5). To see that OWNQ = ()
first notice that

ow UNnVN\UNV)CUNV)\(UNV)
(\U)NV)u((V\V)NT)
@EUNV)u @V NU)C(OUNV)UIV.

If we show OV NQ =0 and (OU NV)NQ = then OW NQ = ). Clearly 9V NQ = ()
from (2.8). Also from (2.8) we have V N Q** = () so since C = QNOU C O** we have
VNQNoU = . Thus OW NN = (. Next note WNY* = @ since W CUNV CV and
VN =0 from (2.8). Now WNQ* =0 and C C Q** implies W N (0U N Q) = 0.
Consequently (2.9) holds [Note also that Q* C W since Q* C V from (2.8), Q* C U
and OU NQ* =@ sinceif € U NQ* thenz € U NQ = C C Q** so x € QO N Q**,
which is a contradiction since Q* N Q** = (. Of course if there exists (z,0) € U\W
with € N(z,0) then (z,0) € Q¢ x {0} = A C W, a contradiction since (x,0) € U\W.
Thus = ¢ N(x,0) for (z,0) € U\W.] Let

S={(@\NeW: zeN(=\}.

Note W N'E = @ from (2.9) since ¥ C 2. Now Theorem 2.3 implies that 3 contains
a continuum intersecting Yo x {0} (C Qo x {0}) and £; x {1} (C Q1 x {1}) and our
result follows. O

Remark 2.2. From the proof above we see that that one could replace (2.4) with the
assumption that Q; # 0 and {(x,\) € W : z € N(x,\)} is compact for open subsets
W of U described in the statement of Theorem 2.4. We note also that (2.7) guarantees
Q1 # 0 and (2.6) guarantees (2.3) if we remove OW NQ = and W N (U N Q) = 0
in the statement of Theorem 2.4.

In our next result {(x,A\) € U : = € N(x,\)} is compact is not assumed. For
convenience we assume F is a normed space (basically the same proof below works if
E is a metric space), U is an open subset of F x [0,1] and (2.1) holds.
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Theorem 2.5. Suppose N € A(U,E) with

x ¢ N(z,0) for (x,0) € 0U (2.10)

and
Qo is compact; (2.11)
here Qo = {z (z,0) € Q) where Q = {(x,\) € U : = € N(z,\)}. Let

x [0,1] — K(E x [0,1]) be given by H(z,\, pu) = (N(z,\),p) for (x,\) € U
and w € [0,1]. In addition for open bounded subsets W of U with Q¢ x {0} CW C U
(sox ¢ N(x,0) for (z,0) € U\W ) assume N € A(W, E) and the following conditions
hold:

Hy is essential in Apw (W, E x [0,1]); here (2.12)
Ho(z,\) = H(x,\,0) = (N(x,)),0) for (z,)\) e W '
and
S ={(z,\) e W: x€ N(x,\)} is compact and i # 0; (2.13)

here ¥, = {x € E : (x,t) € &} for each t € [0,1]. Then Q contains a connected
component intersecting Qo x {0} and which either intersects (OU N Q) U (1 x {1})
or is unbounded; here Q4 = {x € E: (x,t) € Q} for each t € [0,1].

Proof. Since Q) is compact there exists ng € N with Qg C B(0,ng). For n > ng let
U =UnN(B(0,n) x[0,1]) and Q" = {(z,\) € U": z € N(z,\)}.

Now Q¢ C B(0,n0) and (2.10) implies Qo x {0} C U so Qg x {0} C U™. Of course
if there exists (z,0) € U\U"™ with x € N(z,0) then (x,0) € Q¢ x {0} C U™, a
contradiction. Thus z ¢ N(x,0) for (x,0) € U\U™. For each n > ng, Theorem
2.4 implies there exists (z,,0) € Qo x {0} and a connected component C,, of Q"
containing (x,,0) and intersecting (U™ N Q™) U (QF x {1}) (here Q} = {x € E :
(z,1) € Q"}). Since Qg is compact the sequence (z,) has an accumulation point
xo € Qp. Assume that there is NO connected component of €2 intersecting Qg x {0}
and (OUNN)U(Q1 x {1}). Let Cy be the connected component containing x¢ (and not
intersecting (OU N Q) U (21 x {1})). Our result follows if we show Cy is unbounded.
Assume C is bounded. Note Cop € U and Cy N U = ) (since Cy does not intersect
OUNQ)U (1 x {1})) so Cy C U, and note Cy , o x {0} are closed and bounded
and as a result we can choose an open bounded set V' with

C()U(Q()X{O})ngU

We claim 9V N Q # 0. Suppose OV N Q = (. Of course if there exists (z,0) € U\V
with € N(z,0) then (x,0) € Qg x {0} C V, a contradiction. Thus = ¢ N(x,0) for
(z,0) € U\V. Now Theorem 2.3 (note Qp x {0} €V C U and 9V NQ = § since
Q C Q) implies that Q = {(x,\) € V : & € N(z,\)} has a connected component
intersecting Qo x {0} (€ Qo x {0}) and ©; x {1} (€ ©; x {1}), which contradicts
the assumption that there is no connected component of 2 intersecting 2 x {0} and
OUNQ)U(Q x {1}); here Q;, = {z € E: (x,t) € Q} for t € [0,1]. Thus oV NQ # 0.
Note (z0,0) € Qo x {0} CV so (20,0) and OV N Q are closed disjoint subsets of the
compact set € and the connected component of € containing (20,0) does not intersect
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AV N Q (since Cy C V). Now from Theorem 2.2 there exists an open neighborhood
Vo of (z9,0) with

(20,0) € Vo, VoN(QNAV) =0 and aVoNQ =0. (2.14)
Let W =V NV,. Now W C V with
(20,0) €W and OWNQ =10 (2.15)

since AW C (OV NVy) U (8VoNV) and note (OV NVy)NQ =V, N (OV N Q) = P from
(2.14) and (OVoNV)NQ =3V N(VNQ) = Vo NQ = () from (2.14).
Now V is bounded and W is an open neighborhood of (xg,0) so there exists a
ni > no with
(%p,,0) €W and V C B(0,n1) x [0, 1].

Note (zp,,0) € WNCy, so WNC,, # 0. Also note that C,, meets (E x [0, 1])\W since
Cn, intersects (QU™ NOQ™" )U(QT* x{1}) (and does not intersect (AUNQ)U(21 x{1})).
Now C,, is connected so C,, N OW # (. This is a contradiction since C,, N OW C
QUNOW CQNOW = from (2.15). O

We now show that the ideas in this section can be applied to other natural situa-
tions. First let E be a completely regular topological vector space, Y a topological
vector space, and U an open subset of F. Also let L : domL C E — Y be a
linear (not necessarily continuous) single valued map; here dom L is a vector sub-
space of E. Finally T : E — Y will be a linear, continuous single valued map with
L+T:domL —Y an isomorphism (i.e. a linear homeomorphism); for convenience
wesay T € HL(E,Y).

Definition 2.4. Let F:U — 2Y. Wesay F € A(U,Y;L,T) if (L+T) ' (F+T) ¢
A(U,E).

Definition 2.5. Wesay F € Agy(U,Y;L,T) if F € A(U,Y;L,T) with Lx ¢ F(z)
for x € OU Ndom L.

Definition 2.6. Let F' € Apy(U,Y; L, T). We say F is essential in Ay (U,Y; L, T)
if for every map J € Apy(U,Y; L, T) with J]|gu = F|ay there exists € U Ndom L
with Lz € J(z).

For our next results we assume FE is a metric vector space, Y a topological vector
space, and U an open subset of E x [0,1]. Alsolet L:dom L C E —Y be a linear
(not necessarily continuous) single valued map; here dom L is a vector subspace of
E. Now let £ : dom L = dom L x[0,1] = Y x[0,1] be given by L(y,\) = (Ly, \). Let
T : E — Y be a linear, continuous single valued map with L+ T : domL — Y an
isomorphism (i.e. a linear homeomorphism) and let 7 : Ex[0,1] — Y x [0, 1] be given
by T(y,\) = (T'y,0). Notice (L+T) " 1(y,\) = (L+T) "y, \) for (y,\) € Y x [0,1].

We will also assume

if FeAU,Y;L,T),veCU,[0,1])

and if @(y) = (F(y),v(y)) for y € U, (2.16)
then ® € A(U,Y x [0,1; L, 7).
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Theorem 2.6. Suppose N € A(U,Y;L,T) with
Lx ¢ N(xz,\) for (x,A\) € 0UNdom L. (2.17)

Let H : U x [0,1] — 2Y*0U pe given by H(x, N\, pu) = (N(z,\),p) for (z,\) € U
and p € 10,1]. In addition assume the following two conditions hold:

Hy s essential in Apy(U,Y x [0,1];£,T); here (2.18)
and
Q={(x,\)eUnNdomL: Lz € N(z,\)} is compact and Q # 0; (2.19)

here Q. = {x € E : (x,t) € Q} for each t € [0,1]. Then Q contains a continuum
intersecting Qo x {0} and Qq x {1}.

Remark 2.3. Conditions to guarantee that € # () for maps in A(U,Y; L, T) can be
found in [5, Theorem 2.12].

Proof. Note A = Qo x {0} CQ and B = x {1} C Q are closed (and compact).
If there is no continuum intersecting A and B then from Theorem 2.1, 2 can be
represented as 2 = Q*UQ** where Q* and ** are disjoint compact sets with A C Q*
and B C Q**. Notice Q* and Q**UQU are closed and disjoint (note Q*NAU = O since
if there exists a (z, A\) € OU and (z, A) € * then (note (z,\) € Q* C Q) Lz € N(z,\)
which contradicts (2.17)). Now there exists a continuous map p : U — [0, 1] with
w(*UoU) =0 and pu(2*) = 1. Let
To(z, A) = (N(z,A), pu(z, A)) for (x,)) € U.

Notice (2.16) guarantees that Ty € A(U,Y x [0,1]; £,7) and in fact Ty € Apy (U, Y x
[0,1]; £,T) since if there exists a (z,A) € OU with L(z,\) = (L, A) € To(x, ) then
(Lz,\) € (N(z,\), u(z,N)) = (N(z,A),0) so Lz € N(x,0) which contradicts (2.17).
Notice as well (here Ho(xz,A) = H(x, A\,0) = (N(z,\),0)) that

Tolov = Holou

since if (xz,\) € OU then Ty(x,\) = (N(z, A), u(z, \)) = (N(z,A),0) (note p(X*U
0U) = 0). Now (2.18) guarantees that there exists a (z, A) € UNdom £ with L(x, \) €
To(xz,A) i.e. Lz € N(z,A) and A = p(z, A). Note (z,A) € Q since (z,\) € UNdom L
and Lz € N(z,\). Now either (z,\) € Q* or (z,\) € Q**.
Case 1. Suppose (z,A) € Q*.

Then p(z,A\) = 1. Thus A = p(z,A) = 1 and Lz € N(z,A) = N(z,1) ie.
(z,1) € B C Q** which contradicts (z,1) = (z,A) € Q*.
Case 2. Suppose (z, A) € 1**.

Then p(z,A\) = 0. Thus A = p(r,\) = 0 and Lz € N(z,\) = N(z,0) ie.
(z,0) € A C Q* which contradicts (z,0) = (z,\) € Q**. O

In our next result (2.17) is not assumed.
Theorem 2.7. Suppose N € A(U,Y;L,T) with

Lx ¢ N(z,0) for (z,\) € 0UNdomCL. (2.20)
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Let H : U x[0,1] — 2% be given by H(z,\,u) = (N(2,\), 1) for (x,\) €U and
w € 10,1] and assume (2.18) and (2.19) hold. In addition for open subsets W of U with
Qx{0}CWCU,WNQ=0, and WN(OUNQ) =0 assume N € AW,Y;L,T)
and the following conditions hold:

if Fe€AW,Y;L,T),ve C(W,[0,1])

and if ®(y) = (F(y),v(y)) for y € W, (2.21)

then ® € AW,Y x [0,1];L£,7)

{ Hy s essential in Agw (W,Y x [0,1]; £, T); here. (2.22)
Hy(z,\) = H(z,\,0) = (N(x,)),0) for (z,\)eW ’
and

2y # 0; (2.23)

here ¥ = {(z,A\) e WNndomL: Lz e N(z,\)} and ¥y = {x € E: (x,t) € T} for
each t € [0,1]. Then Q contains a continuum intersecting Qo x {0} and (U NQ) U
(Q1 x {1}); here @y ={xz € E: (x,t) € Q} for each t € [0,1].

Proof. There are two cases to consider, namely QNOU = 0§ or QN OU # (. If
QN OU = then (2.17) holds so the result follows from Theorem 2.6. Now suppose
QNoU # . Let A =Qyx{0}, B=Q; x{1} and C = QNAoU (# (). Notice C C Q is
closed and (2.20) guarantees that C is disjoint from A. Now from Theorem 2.1 either
(1). there exists a continuum of € which intersects A and C (and we are finished),
or (2). =Q*UQ™ where Q* and Q** are disjoint compact sets with A C O* and
B C **. Suppose (2) occurs. Now from Theorem 2.2 there exists an open set V'
with
QCV, VNn*=0 and 9V NQ = 0.

Let W =U NV and the same reasoning as in Theorem 2.4 establishes that

ACWCU, oWNQ=0 and WnN(OUNQ) = 0. (2.24)

Let

S={(z,\)) e WndomL: LxecN(xz\)}.
Note OW NYE = () from (2.24) since ¥ C 2. Now Theorem 2.6 implies that ¥ contains
a continuum intersecting %o x {0} (C Qg x {0}) and X1 x {1} (C 2y x {1}) and our
result follows. O

Remark 2.4. From the proof above we see that that one could replace (2.19) with
the assumption that Q; # 0 and {(z,\) € W Ndom L : Lx € N(z,)\)} is compact
for open subsets W of U described in the statement of Theorem 2.4. We note also
that (2.23) guarantees 1 # () and (2.22) guarantees (2.18) if we remove OW NQ =0
and W N (0U N Q) = () in the statement of Theorem 2.7.

In our next result {(x,\) € UNdom L : Lx € N(z,\)} is compact is not assumed.
For convenience we assume E is a normed space, U is an open subset of E x [0,1] and
(2.16) holds.

Theorem 2.8. Suppose N € A(U,Y; L, T) with
Lz ¢ N(z,0) for (z,\) € 0UNdom L (2.25)
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and and
Qo s compact; (2.26)

here Qo = {x € E: (x,0) € Q} where Q = {(x,\) € UNdom L : Lz € N(x,\)}.
Let H : U x [0,1] — 2V*0U pe given by H(x,\, pu) = (N(z,\),p) for (z,\) € U
and p € [0,1]. In addition for open bounded subsets W of U with Qg x {0} CW CU
assume N € A(W,Y; L, T) and the following conditions hold:

if FeAW,Y;L,T),veC(W,0,1])
and if @(y) = (F(y),v(y)) for ye W, (2:27)
then ® € AW,Y x [0,1];L£,7)

{ Hy s essential in Agw (W,Y x [0,1]; £, T); here (2.28)
0) )

Ho(z,\) = H(x,\,0) = (N(x,)),0) for (z,\) e W

and
YS={(z,\) e WNndomL: Lz e N(x,\)} iscompact and %1 # 0; (2.29)

here ¥, = {x € E : (x,t) € &} for each t € [0,1]. Then Q contains a connected
component intersecting Qo x {0} and which either intersects (OU N Q) U (1 x {1})
or is unbounded; here QO = {x € E: (x,t) € Q} for each t € [0,1].

Proof. Since Qg is compact there exists ng € N with Qg C B(0,ng). For n > ng let
U"=UnN(B(0,n) x[0,1]) and Q" = {(z,\) e U"NdomL: Lz € N(z,\)}.

Now g C B(0,n9) and Qg x {0} C U so Qy x {0} CU™. For each n > ng, Theorem
2.7 implies there exists (z,,0) € Qo x {0} and a connected component C,, of Q"
containing (z,,0) and intersecting (U™ N Q™) U (QF x {1}) (here QFf = {x € E :
(z,1) € Q"}). Since Qg is compact the sequence (z,) has an accumulation point
xg € Qp. Assume that there is NO connected component of € intersecting Qg x {0}
and (QUNN)U(Qy x {1}). Let Cy be the connected component containing x¢ (and not
intersecting (OU N ) U (Q1 x {1})). Our result follows if we show Cy is unbounded.
Assume Cp is bounded. Note Co € U and Cy N U = ) (since Cy does not intersect
U NQ) U (1 x {1})) so Cy C U, and note Cy , o x {0} are closed and bounded
and as a result we can choose an open bounded set V' with

COU(QOX{O})QVQU

We claim 9V N$Q # 0. Suppose 0V N = §. Now Theorem 2.6 (note Qox{0}CVCU
and OV NQ = 0 since Q C Q) implies that Q = {(z,\) € VNdom L : Lz € N(z,\)}
has a connected component intersecting Qg x {0} (C Qp x {0}) and Q1 x {1} (C
Q1 x {1}), which contradicts the assumption that there is no connected component
of Q intersecting Qg x {0} and (AU NQ) U (2 x {1}); here Q; = {z € E: (z,t) € Q}
for t € [0,1]. Thus 9V NQ # (. Note (x0,0) € Qo x {0} CV so (zg,0) and IV NQ
are closed disjoint subsets of the compact set Q and the connected component of Q
containing (zo,0) does not intersect 9V N Q (since Cyp C V). Now from Theorem 2.2
there exists an open neighborhood Vj of (z,0) with

(20,0) € Vo, VoN(QNAV) =0 and aVoNQ =0.
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Let W =U NV and the same reasoning as in Theorem 2.5 establishes that
(20,0) € W and W NQ = 0. (2.30)

Now V is bounded and W is an open neighborhood of (xg,0) so there exists a ny > ng
with

(%n,,0) €W and V C B(0,n1) x [0, 1].
Note (2,,,0) € WNC,, so WNC,, # 0. Also note that C,,, meets (E x [0, 1])\W since
Cr, intersects (OU™ NOQ™" )U(QT* x{1}) (and does not intersect (QUNQ)U(21 x{1})).
Now C,, is connected so C,, N OW = (. This is a contradiction since C,, N IW C
QUNOW CQNOW = from (2.30). O
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