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1. Introduction

In this paper we investigate the solution set of a map F and in particular we
present conditions on F which guarantee that the solution set contains a connected
component. These bifurcation results rely on the notion of an essential map [1 ,7].
We refer the reader to [2, 3, 4] for other approaches in the literature.

Let X and Y be Hausdorff topological spaces. Given a class X of maps, X(X,Y )
denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X, and
Xc the set of finite compositions of maps in X. We let

F(X) = {Z : FixF 6= ∅ for all F ∈ X(Z,Z)}

where FixF denotes the set of fixed points of F .
The class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;

(ii) each F ∈ Uc is upper semicontinuous and compact valued; and

(iii) Bn ∈ F(Uc) for all n ∈ {1, 2, ....}; here Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

We say F ∈ Uk
c (X,Y ) if for any compact subset K of X there is a G ∈ Uc(K,Y )

with G(x) ⊆ F (x) for each x ∈ K.

Recall Uk
c is closed under compositions. The class Uk

c contains almost all the well
known maps in the literature (see [8] and the references therein). It is also possible
to consider more general maps (see [6, 7]) and in this paper we will consider a class
of maps which we will call A.
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2. Continua of solutions

Let E be a completely regular topological space and U an open subset of E.

We will consider a class A of maps (see [5]).

Definition 2.1. We say F ∈ A(U,E) if F ∈ A(U,E) and F : U → K(E) is an
upper semicontinuous map; here U denotes the closure of U in E and K(E) denotes
the family of nonempty compact subsets of E.

Definition 2.2. We say F ∈ A∂U (U,E) if F ∈ A(U,E) with x /∈ F (x) for x ∈ ∂U ;
here ∂U denotes the boundary of U in E.

Definition 2.3. Let F ∈ A∂U (U,E). We say F is essential in A∂U (U,E) if for every
map J ∈ A∂U (U,E) with J |∂U = F |∂U there exists x ∈ U with x ∈ J(x).

Recall a compact connected set is called a continuum. For our results in this paper
we will use Whyburn’s lemma from topology which we state here for convenience.

Theorem 2.1. Let A and B be disjoint closed subsets of a compact Hausdorff topo-
logical space K such that no connected component of K intersects both A and B.
Then there exists a partition K = K1 ∪ K2 where K1 and K2 are disjoint compact
sets containing A and B respectively.

An easy consequence of Theorem 2.1 was established by Martelli in [3].

Theorem 2.2. Let X be a metric space and K a compact subset of X. Assume that
A and B are two disjoint closed subsets of K such that no connected component of K
intersects both. Then there exists an open bounded set U such that

A ⊂ U, U ∩B = ∅ and ∂U ∩K = ∅.

For our next results we assume E is a metric space and U an open subset of
E × [0, 1]. We will also assume the following condition: for Hausdorff topogical spaces X1 and X2, if F ∈ A(X1, X2),

v ∈ C(X1, [0, 1]) and if Φ(y) = (F (y), v(y)) for y ∈ X1,
then Φ ∈ A(X1, X2 × [0, 1]).

(2.1)

Our first result was motivated by ideas in [7].

Theorem 2.3. Suppose N ∈ A(U,E) with

x /∈ N(x, λ) for (x, λ) ∈ ∂U. (2.2)

Let H : U×[0, 1]→ K(E×[0, 1]) be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U
and µ ∈ [0, 1]. In addition assume the following two conditions hold:{

H0 is essential in A∂U (U,E × [0, 1]); here
H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈ U (2.3)

and

Ω = {(x, λ) ∈ U : x ∈ N(x, λ)} is compact and Ω1 6= ∅; (2.4)
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here Ωt = {x ∈ E : (x, t) ∈ Ω} for each t ∈ [0, 1]. Then Ω contains a continuum
intersecting Ω0 × {0} and Ω1 × {1}.

Remark 2.1. Conditions to guarantee that Ω1 6= ∅ for maps in A(U,E) can be found
in [5, Theorem 2.5].

Proof. Note A = Ω0 × {0} ⊆ Ω and B = Ω1 × {1} ⊆ Ω are closed (and compact).
If there is no continuum intersecting A and B then from Theorem 2.1, Ω can be
represented as Ω = Ω?∪Ω?? where Ω? and Ω?? are disjoint compact sets with A ⊆ Ω?

and B ⊆ Ω??. Notice Ω? and Ω??∪∂U are closed and disjoint (note Ω?∩∂U = ∅ since
if there exists a (x, λ) ∈ ∂U and (x, λ) ∈ Ω? then (note (x, λ) ∈ Ω? ⊆ Ω) x ∈ N(x, λ)
which contradicts (2.2)). Now there exists a continuous map µ : U → [0, 1] with
µ(Ω?? ∪ ∂U) = 0 and µ(Ω?) = 1. Let

T (x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.

Notice (2.1) guarantees that T ∈ A(U,E × [0, 1]) and in fact T ∈ A∂U (U,E ×
[0, 1]) since if there exists a (x, λ) ∈ ∂U with (x, λ) ∈ T (x, λ) then (x, λ) ∈
(N(x, λ), µ(x, λ)) = (N(x, λ), 0) so x ∈ N(x, 0) which contradicts (2.2). Notice as
well (here H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0)) that

T |∂U = H0|∂U
since if (x, λ) ∈ ∂U then T (x, λ) = (N(x, λ), µ(x, λ)) = (N(x, λ), 0) (note µ(Ω?? ∪
∂U) = 0). Now (2.3) guarantees that there exists a (x, λ) ∈ U with (x, λ) ∈ T (x, λ)
i.e. x ∈ N(x, λ) and λ = µ(x, λ). Note (x, λ) ∈ Ω since (x, λ) ∈ U and x ∈ N(x, λ).
Now either (x, λ) ∈ Ω? or (x, λ) ∈ Ω??.

Case 1. Suppose (x, λ) ∈ Ω?.

Then µ(x, λ) = 1. Thus λ = µ(x, λ) = 1 and x ∈ N(x, λ) = N(x, 1) i.e. (x, 1) ∈
B ⊆ Ω?? which contradicts (x, 1) = (x, λ) ∈ Ω?.

Case 2. Suppose (x, λ) ∈ Ω??.

Then µ(x, λ) = 0. Thus λ = µ(x, λ) = 0 and x ∈ N(x, λ) = N(x, 0) i.e. (x, 0) ∈
A ⊆ Ω? which contradicts (x, 0) = (x, λ) ∈ Ω??. �

In our next result (2.2) is not assumed.

Theorem 2.4. Suppose N ∈ A(U,E) with

x /∈ N(x, 0) for (x, 0) ∈ ∂U. (2.5)

Let H : U×[0, 1]→ K(E×[0, 1]) be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U
and µ ∈ [0, 1] and assume (2.3) and (2.4) hold. In addition for open subsets W of
U with Ω0 × {0} ⊆ W ⊆ U (so x /∈ N(x, 0) for (x, 0) ∈ U\W ), ∂W ∩ Ω = ∅ and
W ∩ (∂U ∩ Ω) = ∅ assume N ∈ A(W,E) and the following conditions holds:{

H0 is essential in A∂W (W,E × [0, 1]); here
H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈W (2.6)

and

Σ1 6= ∅; (2.7)
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here Σ =
{

(x, λ) ∈W : x ∈ N(x, λ)
}

and Σt = {x ∈ E : (x, t) ∈ Σ} for each
t ∈ [0, 1]. Then Ω contains a continuum intersecting Ω0×{0} and (∂U∩Ω)∪(Ω1×{1});
here Ωt = {x ∈ E : (x, t) ∈ Ω} for each t ∈ [0, 1].

Proof. There are two cases to consider, namely Ω ∩ ∂U = ∅ or Ω ∩ ∂U 6= ∅. If
Ω ∩ ∂U = ∅ then (2.2) holds so the result follows from Theorem 2.3. Now suppose
Ω∩∂U 6= ∅. Let A = Ω0×{0}, B = Ω1×{1} and C = Ω∩∂U (6= ∅). Notice C ⊆ Ω is
closed and (2.5) guarantees that C is disjoint from A. Now from Theorem 2.1 either
(1). there exists a continuum of Ω which intersects A and C (and we are finished),
or (2). Ω = Ω? ∪ Ω?? where Ω? and Ω?? are disjoint compact sets with A ⊆ Ω? and
B ⊆ Ω??. Suppose (2) occurs. Now from Theorem 2.2 there exists an open set V
with

Ω? ⊆ V, V ∩ Ω?? = ∅ and ∂V ∩ Ω = ∅. (2.8)

Let W = U ∩ V . We claim

A ⊆W ⊆ U, ∂W ∩ Ω = ∅ and W ∩ (∂U ∩ Ω) = ∅. (2.9)

Note clearly A ⊆W since A ⊆ Ω? ⊆ V and A ⊆ U from (2.5). To see that ∂W ∩Ω = ∅
first notice that

∂W = (U ∩ V )\(U ∩ V ) ⊆ (U ∩ V )\(U ∩ V )

= ((U\U) ∩ V ) ∪ ((V \V ) ∩ U)

= (∂U ∩ V ) ∪ (∂V ∩ U) ⊆ (∂U ∩ V ) ∪ ∂V.

If we show ∂V ∩Ω = ∅ and (∂U ∩ V ) ∩Ω = ∅ then ∂W ∩Ω = ∅. Clearly ∂V ∩Ω = ∅
from (2.8). Also from (2.8) we have V ∩Ω?? = ∅ so since C = Ω∩ ∂U ⊆ Ω?? we have
V ∩Ω∩∂U = ∅. Thus ∂W ∩Ω = ∅. Next note W ∩Ω?? = ∅ since W ⊆ U ∩V ⊆ V and
V ∩ Ω?? = ∅ from (2.8). Now W ∩ Ω?? = ∅ and C ⊆ Ω?? implies W ∩ (∂U ∩ Ω) = ∅.
Consequently (2.9) holds [Note also that Ω? ⊆ W since Ω? ⊆ V from (2.8), Ω? ⊆ U
and ∂U ∩ Ω? = ∅ since if x ∈ ∂U ∩ Ω? then x ∈ ∂U ∩ Ω = C ⊆ Ω?? so x ∈ Ω? ∩ Ω??,
which is a contradiction since Ω? ∩ Ω?? = ∅. Of course if there exists (x, 0) ∈ U\W
with x ∈ N(x, 0) then (x, 0) ∈ Ω0×{0} = A ⊆W , a contradiction since (x, 0) ∈ U\W .
Thus x /∈ N(x, 0) for (x, 0) ∈ U\W .] Let

Σ =
{

(x, λ) ∈W : x ∈ N(x, λ)
}
.

Note ∂W ∩Σ = ∅ from (2.9) since Σ ⊆ Ω. Now Theorem 2.3 implies that Σ contains
a continuum intersecting Σ0 × {0} (⊆ Ω0 × {0}) and Σ1 × {1} (⊆ Ω1 × {1}) and our
result follows. �

Remark 2.2. From the proof above we see that that one could replace (2.4) with the
assumption that Ω1 6= ∅ and {(x, λ) ∈W : x ∈ N(x, λ)} is compact for open subsets
W of U described in the statement of Theorem 2.4. We note also that (2.7) guarantees
Ω1 6= ∅ and (2.6) guarantees (2.3) if we remove ∂W ∩ Ω = ∅ and W ∩ (∂U ∩ Ω) = ∅
in the statement of Theorem 2.4.

In our next result {(x, λ) ∈ U : x ∈ N(x, λ)} is compact is not assumed. For
convenience we assume E is a normed space (basically the same proof below works if
E is a metric space), U is an open subset of E × [0, 1] and (2.1) holds.
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Theorem 2.5. Suppose N ∈ A(U,E) with

x /∈ N(x, 0) for (x, 0) ∈ ∂U (2.10)

and

Ω0 is compact; (2.11)

here Ω0 = {x ∈ E : (x, 0) ∈ Ω} where Ω = {(x, λ) ∈ U : x ∈ N(x, λ)}. Let
H : U × [0, 1] → K(E × [0, 1]) be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U
and µ ∈ [0, 1]. In addition for open bounded subsets W of U with Ω0×{0} ⊆W ⊆ U
(so x /∈ N(x, 0) for (x, 0) ∈ U\W ) assume N ∈ A(W,E) and the following conditions
hold: {

H0 is essential in A∂W (W,E × [0, 1]); here
H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈W (2.12)

and

Σ = {(x, λ) ∈W : x ∈ N(x, λ)} is compact and Σ1 6= ∅; (2.13)

here Σt = {x ∈ E : (x, t) ∈ Σ} for each t ∈ [0, 1]. Then Ω contains a connected
component intersecting Ω0 × {0} and which either intersects (∂U ∩ Ω) ∪ (Ω1 × {1})
or is unbounded; here Ωt = {x ∈ E : (x, t) ∈ Ω} for each t ∈ [0, 1].

Proof. Since Ω0 is compact there exists n0 ∈ N with Ω0 ⊆ B(0, n0). For n ≥ n0 let

Un = U ∩ (B(0, n)× [0, 1]) and Ωn = {(x, λ) ∈ Un : x ∈ N(x, λ)}.

Now Ω0 ⊆ B(0, n0) and (2.10) implies Ω0 × {0} ⊆ U so Ω0 × {0} ⊆ Un. Of course
if there exists (x, 0) ∈ U\Un with x ∈ N(x, 0) then (x, 0) ∈ Ω0 × {0} ⊆ Un, a
contradiction. Thus x /∈ N(x, 0) for (x, 0) ∈ U\Un. For each n ≥ n0, Theorem
2.4 implies there exists (xn, 0) ∈ Ω0 × {0} and a connected component Cn of Ωn

containing (xn, 0) and intersecting (∂Un ∩ Ωn) ∪ (Ωn
1 × {1}) (here Ωn

1 = {x ∈ E :
(x, 1) ∈ Ωn}). Since Ω0 is compact the sequence (xn) has an accumulation point
x0 ∈ Ω0. Assume that there is NO connected component of Ω intersecting Ω0 × {0}
and (∂U ∩Ω)∪(Ω1×{1}). Let C0 be the connected component containing x0 (and not
intersecting (∂U ∩ Ω) ∪ (Ω1 × {1})). Our result follows if we show C0 is unbounded.
Assume C0 is bounded. Note C0 ⊆ U and C0 ∩ ∂U = ∅ (since C0 does not intersect
(∂U ∩ Ω) ∪ (Ω1 × {1})) so C0 ⊆ U , and note C0 , Ω0 × {0} are closed and bounded
and as a result we can choose an open bounded set V with

C0 ∪ (Ω0 × {0}) ⊆ V ⊆ U.

We claim ∂V ∩ Ω 6= ∅. Suppose ∂V ∩ Ω = ∅. Of course if there exists (x, 0) ∈ U\V
with x ∈ N(x, 0) then (x, 0) ∈ Ω0 × {0} ⊆ V , a contradiction. Thus x /∈ N(x, 0) for

(x, 0) ∈ U\V . Now Theorem 2.3 (note Ω̃0 × {0} ⊆ V ⊆ U and ∂V ∩ Ω̃ = ∅ since

Ω̃ ⊆ Ω) implies that Ω̃ = {(x, λ) ∈ V : x ∈ N(x, λ)} has a connected component

intersecting Ω̃0 × {0} (⊆ Ω0 × {0}) and Ω̃1 × {1} (⊆ Ω1 × {1}), which contradicts
the assumption that there is no connected component of Ω intersecting Ω0×{0} and

(∂U ∩Ω)∪ (Ω1×{1}); here Ω̃t = {x ∈ E : (x, t) ∈ Ω̃} for t ∈ [0, 1]. Thus ∂V ∩Ω 6= ∅.
Note (x0, 0) ∈ Ω0 × {0} ⊆ V so (x0, 0) and ∂V ∩ Ω are closed disjoint subsets of the

compact set Ω̃ and the connected component of Ω̃ containing (x0, 0) does not intersect
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∂V ∩ Ω (since C0 ⊆ V ). Now from Theorem 2.2 there exists an open neighborhood
V0 of (x0, 0) with

(x0, 0) ∈ V0, V0 ∩ (Ω ∩ ∂V ) = ∅ and ∂V0 ∩ Ω̃ = ∅. (2.14)

Let W = V ∩ V0. Now W ⊆ V with

(x0, 0) ∈W and ∂W ∩ Ω = ∅ (2.15)

since ∂W ⊆ (∂V ∩ V0)∪ (∂V0 ∩ V ) and note (∂V ∩ V0)∩Ω = V0 ∩ (∂V ∩Ω) = ∅ from

(2.14) and (∂V0 ∩ V ) ∩ Ω = ∂V0 ∩ (V ∩ Ω) = ∂V0 ∩ Ω̃ = ∅ from (2.14).
Now V is bounded and W is an open neighborhood of (x0, 0) so there exists a

n1 ≥ n0 with

(xn1
, 0) ∈W and V ⊆ B(0, n1)× [0, 1].

Note (xn1
, 0) ∈W ∩Cn1

so W ∩Cn1
6= ∅. Also note that Cn1

meets (E× [0, 1])\W since
Cn1

intersects (∂Un1∩Ωn1)∪(Ωn1
1 ×{1}) (and does not intersect (∂U∩Ω)∪(Ω1×{1})).

Now Cn1
is connected so Cn1

∩ ∂W 6= ∅. This is a contradiction since Cn1
∩ ∂W ⊆

Ωn1 ∩ ∂W ⊆ Ω ∩ ∂W = ∅ from (2.15). �

We now show that the ideas in this section can be applied to other natural situa-
tions. First let E be a completely regular topological vector space, Y a topological
vector space, and U an open subset of E. Also let L : domL ⊆ E → Y be a
linear (not necessarily continuous) single valued map; here domL is a vector sub-
space of E. Finally T : E → Y will be a linear, continuous single valued map with
L+ T : domL→ Y an isomorphism (i.e. a linear homeomorphism); for convenience
we say T ∈ HL(E, Y ).

Definition 2.4. Let F : U → 2Y . We say F ∈ A(U, Y ;L, T ) if (L+T )−1 (F +T ) ∈
A(U,E).

Definition 2.5. We say F ∈ A∂U (U, Y ;L, T ) if F ∈ A(U, Y ;L, T ) with Lx /∈ F (x)
for x ∈ ∂U ∩ domL.

Definition 2.6. Let F ∈ A∂U (U, Y ;L, T ). We say F is essential in A∂U (U, Y ;L, T )
if for every map J ∈ A∂U (U, Y ;L, T ) with J |∂U = F |∂U there exists x ∈ U ∩ domL
with Lx ∈ J(x).

For our next results we assume E is a metric vector space, Y a topological vector
space, and U an open subset of E × [0, 1]. Also let L : domL ⊆ E → Y be a linear
(not necessarily continuous) single valued map; here domL is a vector subspace of
E. Now let L : domL = domL× [0, 1]→ Y × [0, 1] be given by L(y, λ) = (Ly, λ). Let
T : E → Y be a linear, continuous single valued map with L + T : domL → Y an
isomorphism (i.e. a linear homeomorphism) and let T : E× [0, 1]→ Y × [0, 1] be given
by T (y, λ) = (T y, 0). Notice (L+T )−1(y, λ) = ((L+T )−1y, λ) for (y, λ) ∈ Y × [0, 1].

We will also assume
if F ∈ A(U, Y ;L, T ), v ∈ C(U, [0, 1])
and if Φ(y) = (F (y), v(y)) for y ∈ U,
then Φ ∈ A(U, Y × [0, 1];L, T ).

(2.16)
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Theorem 2.6. Suppose N ∈ A(U, Y ;L, T ) with

Lx /∈ N(x, λ) for (x, λ) ∈ ∂U ∩ domL. (2.17)

Let H : U × [0, 1] → 2Y×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U
and µ ∈ [0, 1]. In addition assume the following two conditions hold:{

H0 is essential in A∂U (U, Y × [0, 1];L, T ); here
H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈ U (2.18)

and

Ω = {(x, λ) ∈ U ∩ domL : Lx ∈ N(x, λ)} is compact and Ω1 6= ∅; (2.19)

here Ωt = {x ∈ E : (x, t) ∈ Ω} for each t ∈ [0, 1]. Then Ω contains a continuum
intersecting Ω0 × {0} and Ω1 × {1}.

Remark 2.3. Conditions to guarantee that Ω1 6= ∅ for maps in A(U, Y ;L, T ) can be
found in [5, Theorem 2.12].

Proof. Note A = Ω0 × {0} ⊆ Ω and B = Ω1 × {1} ⊆ Ω are closed (and compact).
If there is no continuum intersecting A and B then from Theorem 2.1, Ω can be
represented as Ω = Ω?∪Ω?? where Ω? and Ω?? are disjoint compact sets with A ⊆ Ω?

and B ⊆ Ω??. Notice Ω? and Ω??∪∂U are closed and disjoint (note Ω?∩∂U = ∅ since
if there exists a (x, λ) ∈ ∂U and (x, λ) ∈ Ω? then (note (x, λ) ∈ Ω? ⊆ Ω) Lx ∈ N(x, λ)
which contradicts (2.17)). Now there exists a continuous map µ : U → [0, 1] with
µ(Ω?? ∪ ∂U) = 0 and µ(Ω?) = 1. Let

T0(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.
Notice (2.16) guarantees that T0 ∈ A(U, Y × [0, 1];L, T ) and in fact T0 ∈ A∂U (U, Y ×
[0, 1];L, T ) since if there exists a (x, λ) ∈ ∂U with L(x, λ) = (Lx, λ) ∈ T0(x, λ) then
(Lx, λ) ∈ (N(x, λ), µ(x, λ)) = (N(x, λ), 0) so Lx ∈ N(x, 0) which contradicts (2.17).
Notice as well (here H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0)) that

T0|∂U = H0|∂U
since if (x, λ) ∈ ∂U then T0(x, λ) = (N(x, λ), µ(x, λ)) = (N(x, λ), 0) (note µ(Ω?? ∪
∂U) = 0). Now (2.18) guarantees that there exists a (x, λ) ∈ U∩domL with L(x, λ) ∈
T0(x, λ) i.e. Lx ∈ N(x, λ) and λ = µ(x, λ). Note (x, λ) ∈ Ω since (x, λ) ∈ U ∩ domL
and Lx ∈ N(x, λ). Now either (x, λ) ∈ Ω? or (x, λ) ∈ Ω??.

Case 1. Suppose (x, λ) ∈ Ω?.

Then µ(x, λ) = 1. Thus λ = µ(x, λ) = 1 and Lx ∈ N(x, λ) = N(x, 1) i.e.
(x, 1) ∈ B ⊆ Ω?? which contradicts (x, 1) = (x, λ) ∈ Ω?.

Case 2. Suppose (x, λ) ∈ Ω??.

Then µ(x, λ) = 0. Thus λ = µ(x, λ) = 0 and Lx ∈ N(x, λ) = N(x, 0) i.e.
(x, 0) ∈ A ⊆ Ω? which contradicts (x, 0) = (x, λ) ∈ Ω??. �

In our next result (2.17) is not assumed.

Theorem 2.7. Suppose N ∈ A(U, Y ;L, T ) with

Lx /∈ N(x, 0) for (x, λ) ∈ ∂U ∩ domL. (2.20)
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Let H : U× [0, 1]→ 2Y×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and
µ ∈ [0, 1] and assume (2.18) and (2.19) hold. In addition for open subsets W of U with
Ω0 × {0} ⊆W ⊆ U , ∂W ∩Ω = ∅, and W ∩ (∂U ∩Ω) = ∅ assume N ∈ A(W,Y ;L, T )
and the following conditions hold:

if F ∈ A(W,Y ;L, T ), v ∈ C(W, [0, 1])
and if Φ(y) = (F (y), v(y)) for y ∈W,
then Φ ∈ A(W,Y × [0, 1];L, T )

(2.21)

{
H0 is essential in A∂W (W,Y × [0, 1];L, T ); here
H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈W (2.22)

and
Σ1 6= ∅; (2.23)

here Σ =
{

(x, λ) ∈W ∩ domL : Lx ∈ N(x, λ)
}

and Σt = {x ∈ E : (x, t) ∈ Σ} for
each t ∈ [0, 1]. Then Ω contains a continuum intersecting Ω0 × {0} and (∂U ∩ Ω) ∪
(Ω1 × {1}); here Ωt = {x ∈ E : (x, t) ∈ Ω} for each t ∈ [0, 1].

Proof. There are two cases to consider, namely Ω ∩ ∂U = ∅ or Ω ∩ ∂U 6= ∅. If
Ω ∩ ∂U = ∅ then (2.17) holds so the result follows from Theorem 2.6. Now suppose
Ω∩∂U 6= ∅. Let A = Ω0×{0}, B = Ω1×{1} and C = Ω∩∂U (6= ∅). Notice C ⊆ Ω is
closed and (2.20) guarantees that C is disjoint from A. Now from Theorem 2.1 either
(1). there exists a continuum of Ω which intersects A and C (and we are finished),
or (2). Ω = Ω? ∪ Ω?? where Ω? and Ω?? are disjoint compact sets with A ⊆ Ω? and
B ⊆ Ω??. Suppose (2) occurs. Now from Theorem 2.2 there exists an open set V
with

Ω? ⊆ V, V ∩ Ω?? = ∅ and ∂V ∩ Ω = ∅.
Let W = U ∩ V and the same reasoning as in Theorem 2.4 establishes that

A ⊆W ⊆ U, ∂W ∩ Ω = ∅ and W ∩ (∂U ∩ Ω) = ∅. (2.24)

Let
Σ =

{
(x, λ) ∈W ∩ domL : Lx ∈ N(x, λ)

}
.

Note ∂W ∩Σ = ∅ from (2.24) since Σ ⊆ Ω. Now Theorem 2.6 implies that Σ contains
a continuum intersecting Σ0 × {0} (⊆ Ω0 × {0}) and Σ1 × {1} (⊆ Ω1 × {1}) and our
result follows. �

Remark 2.4. From the proof above we see that that one could replace (2.19) with
the assumption that Ω1 6= ∅ and {(x, λ) ∈ W ∩ domL : Lx ∈ N(x, λ)} is compact
for open subsets W of U described in the statement of Theorem 2.4. We note also
that (2.23) guarantees Ω1 6= ∅ and (2.22) guarantees (2.18) if we remove ∂W ∩Ω = ∅
and W ∩ (∂U ∩ Ω) = ∅ in the statement of Theorem 2.7.

In our next result {(x, λ) ∈ U∩domL : Lx ∈ N(x, λ)} is compact is not assumed.
For convenience we assume E is a normed space, U is an open subset of E× [0, 1] and
(2.16) holds.

Theorem 2.8. Suppose N ∈ A(U, Y ;L, T ) with

Lx /∈ N(x, 0) for (x, λ) ∈ ∂U ∩ domL (2.25)
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and and

Ω0 is compact; (2.26)

here Ω0 = {x ∈ E : (x, 0) ∈ Ω} where Ω = {(x, λ) ∈ U ∩ domL : Lx ∈ N(x, λ)}.
Let H : U × [0, 1] → 2Y×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U
and µ ∈ [0, 1]. In addition for open bounded subsets W of U with Ω0×{0} ⊆W ⊆ U
assume N ∈ A(W,Y ;L, T ) and the following conditions hold:

if F ∈ A(W,Y ;L, T ), v ∈ C(W, [0, 1])
and if Φ(y) = (F (y), v(y)) for y ∈W,
then Φ ∈ A(W,Y × [0, 1];L, T )

(2.27)

{
H0 is essential in A∂W (W,Y × [0, 1];L, T ); here
H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈W (2.28)

and

Σ = {(x, λ) ∈W ∩ domL : Lx ∈ N(x, λ)} is compact and Σ1 6= ∅; (2.29)

here Σt = {x ∈ E : (x, t) ∈ Σ} for each t ∈ [0, 1]. Then Ω contains a connected
component intersecting Ω0 × {0} and which either intersects (∂U ∩ Ω) ∪ (Ω1 × {1})
or is unbounded; here Ωt = {x ∈ E : (x, t) ∈ Ω} for each t ∈ [0, 1].

Proof. Since Ω0 is compact there exists n0 ∈ N with Ω0 ⊆ B(0, n0). For n ≥ n0 let

Un = U ∩ (B(0, n)× [0, 1]) and Ωn = {(x, λ) ∈ Un ∩ domL : Lx ∈ N(x, λ)}.

Now Ω0 ⊆ B(0, n0) and Ω0 × {0} ⊆ U so Ω0 × {0} ⊆ Un. For each n ≥ n0, Theorem
2.7 implies there exists (xn, 0) ∈ Ω0 × {0} and a connected component Cn of Ωn

containing (xn, 0) and intersecting (∂Un ∩ Ωn) ∪ (Ωn
1 × {1}) (here Ωn

1 = {x ∈ E :
(x, 1) ∈ Ωn}). Since Ω0 is compact the sequence (xn) has an accumulation point
x0 ∈ Ω0. Assume that there is NO connected component of Ω intersecting Ω0 × {0}
and (∂U ∩Ω)∪(Ω1×{1}). Let C0 be the connected component containing x0 (and not
intersecting (∂U ∩ Ω) ∪ (Ω1 × {1})). Our result follows if we show C0 is unbounded.
Assume C0 is bounded. Note C0 ⊆ U and C0 ∩ ∂U = ∅ (since C0 does not intersect
(∂U ∩ Ω) ∪ (Ω1 × {1})) so C0 ⊆ U , and note C0 , Ω0 × {0} are closed and bounded
and as a result we can choose an open bounded set V with

C0 ∪ (Ω0 × {0}) ⊆ V ⊆ U.

We claim ∂V ∩Ω 6= ∅. Suppose ∂V ∩Ω = ∅. Now Theorem 2.6 (note Ω̃0×{0} ⊆ V ⊆ U
and ∂V ∩ Ω̃ = ∅ since Ω̃ ⊆ Ω) implies that Ω̃ = {(x, λ) ∈ V ∩ domL : Lx ∈ N(x, λ)}
has a connected component intersecting Ω̃0 × {0} (⊆ Ω0 × {0}) and Ω̃1 × {1} (⊆
Ω1 × {1}), which contradicts the assumption that there is no connected component

of Ω intersecting Ω0×{0} and (∂U ∩Ω)∪ (Ω1×{1}); here Ω̃t = {x ∈ E : (x, t) ∈ Ω̃}
for t ∈ [0, 1]. Thus ∂V ∩ Ω 6= ∅. Note (x0, 0) ∈ Ω0 × {0} ⊆ V so (x0, 0) and ∂V ∩ Ω

are closed disjoint subsets of the compact set Ω̃ and the connected component of Ω̃
containing (x0, 0) does not intersect ∂V ∩ Ω (since C0 ⊆ V ). Now from Theorem 2.2
there exists an open neighborhood V0 of (x0, 0) with

(x0, 0) ∈ V0, V0 ∩ (Ω ∩ ∂V ) = ∅ and ∂V0 ∩ Ω̃ = ∅.
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Let W = U ∩ V and the same reasoning as in Theorem 2.5 establishes that

(x0, 0) ∈W and ∂W ∩ Ω = ∅. (2.30)

Now V is bounded and W is an open neighborhood of (x0, 0) so there exists a n1 ≥ n0
with

(xn1
, 0) ∈W and V ⊆ B(0, n1)× [0, 1].

Note (xn1
, 0) ∈W ∩Cn1

so W ∩Cn1
6= ∅. Also note that Cn1

meets (E× [0, 1])\W since
Cn1 intersects (∂Un1∩Ωn1)∪(Ωn1

1 ×{1}) (and does not intersect (∂U∩Ω)∪(Ω1×{1})).
Now Cn1 is connected so Cn1 ∩ ∂W 6= ∅. This is a contradiction since Cn1 ∩ ∂W ⊆
Ωn1 ∩ ∂W ⊆ Ω ∩ ∂W = ∅ from (2.30). �
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