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1. Introduction

Given measurable set-valued mappings F : [0, T ]× Rm → Cl(Rm) and H : Rm →
Cl(Rm) by a backward stochastic differential inclusion BSDI(F,H) we mean rela-
tions of the form xs ∈ E

[
xt +

∫ t
s
F (τ, xτ )dτ |Fs

]
a.s. for 0 ≤ t ≤ T

xT ∈ H(xT ) a.s.
(1.1)

that have to be satisfied by a càdlág process x = (xt)0≤t≤T defined on a com-
plete filtered probability space PIF = (Ω,F , P, IF) with a filtration IF = (Ft)0≤t≤T

satisfying the usual hypothesis (see [9]). E[xt +
∫ t
s
F (τ, xτ )dτ |Fs] denotes the set-

valued conditional expectation (see [3], [4]) of the set-valued mapping Ω 3 ω −→
xt(ω) +

∫ t
s
F (τ, xτ (ω))dτ ⊂ Rm relative to Fs. A pair (x,PIF) satisfying conditions

(1.1) is said to be a weak solutions of BSDI(F,H). If PIF is given then x, satisfying
conditions presented above, is said to be a strong solution of BSDI(F,H). Existence
of strong solutions of BSDI(F,H) has been considered in the author’s paper [6].
In particular case, BSDI(F,H) generalizes a backward stochastic differential equa-
tion considered in [2]. If a filtered probability space PIF has a ”constant” filtration
IF = (F) then a strong solution x for such BSDI(F,H) is a solution to a backward
random inclusion −x′t ∈ coF (t, xt) with a terminal condition xT ∈ H(xT ).
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The present paper is devoted to the existence of strong solutions of the following
viability problem BSDI(F,K): xs ∈ E

[
xt +

∫ t
s
F (τ, xτ )dτ |Fs

]
a.s. for 0 ≤ t ≤ T

xt ∈ K(t) a.s. for 0 ≤ t ≤ T,
(1.2)

where K : [0, T ] × Ω → Cl(IRm) is a given set-valued process. Throughout the
paper we assume that PIF = (Ω,F , P, IF) is a given complete filtered probability
space with a filtration IF = (Ft)0≤t≤T satisfying the usual hypotheses. By ID(IF,Rd)
we denote the space of all m - dimensional IF - adapted càdlág processes on PIF

and by S(IF,Rm) the set of all m - dimensional IF - semimartingales x such that
||x||S = E[sups∈[0,T ]|xs|2] < ∞. We have S(IF,Rd) ⊂ ID(IF,Rm). It can be proved

(see [9], Th.IV2.1.,Th.V.2.2.) that (S(IF,Rm), || · ||S) is a Banach space.
The paper is organized as follows. Section 2 contains some properties of set-valued

conditional expectation of Aumann’s set-valued integrals. In Section 3 some mea-
surable selection theorem is given. Section 4 contains some viable approximation
theorem. Existence of strong viable solutions for BSDI(F,K) is proved in Section 5.

2. Conditional expectation of set-valued integrals

Let (Ω,F , P ) be a probability space, G a sub-σ-algebra of F and Φ : Ω→ Cl(Rm)
be an F-measurable set-valued mapping with a nonempty subtrajectory integrals
S(Φ) containing all its integrable selectors. By properties of S(Φ) there exists (see
[4]) a unique (in the a.s. sense) G-measurable set-valued mapping E[Φ|G] satisfying

S(E[Φ|G]) = clL{E[ϕ|G] : ϕ ∈ S(Φ)} (2.1)

where clL denotes the closure operation in IL(Ω,G,Rm). We call E[Φ|G] the multival-
ued conditional expectation of Φ relative to G. The multivalued conditional expec-
tation possesses properties similar to those of the usual ones. For example, we have∫
A
E[Φ|G]dP =

∫
A

ΦdP for every A ∈ G, where integrals are understood in the Au-
mann’s sense (see [4], Prop.6.8). It can be proved (see [4], Prop. 6.2.) that for given
measurable and integrably bounded set-valued mappings Φ,Ψ : Ω→ Cl(Rm) one has
Eh{E[Φ|G], E[Ψ|G]} ≤ E[h(Φ,Ψ)], where h is the Hausdorff metric on Cl(Rm).

Let G : [0, T ]×Ω→ Cl(Rm) be measurable and integrably bounded, i.e., such that
there is m ∈ IL([0, T ]× Ω, βT ⊗ FT ,R+) satisfying an inequality ‖G(t, x)‖ ≤ m(t, ω)
a.e. In what follows we shall denote such set-valued mappings as measurable set-
valued processes F = (Ft)0≤t≤T with Ft = G(t, ·). The space of all such de-
fined set-valued processes satisfying conditions mentioned above will be denoted by
L(T,Ω, IRm). As usual by S(G) we denote subtrajectory integrals of G, i.e., a set of
all integrable selectors of G. It is easy to verify (see [5]) that S(G) is nonempty
closed and decomposable, i.e., that for every f, g ∈ S(G) and E ∈ βT ⊗ FT
one has 1Ef + 1E∼g ∈ S(G), where βT denotes the Borel σ-algebra of [0, T ]
and E∼ is the complement of E. In particular, if G(t, ω) are convex subsets
of Rm for (t, ω) ∈ [0, T ] × Ω, then S(G) is a convex weakly compact subset of
IL([0, T ]×Ω, βT ⊗FT ,Rm). For a given above G we can define an Aumann integral

Φ(ω) =
∫ T

0
G(t, ω)dt depending on a parameter ω ∈ Ω.
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Proposition 2.1. For every F ∈ L(T,Ω, IRm) a set-valued mapping
∫ T

0
Ft(· )dt

defined by Ω 3 ω →
∫ T

0
Ft(ω)dt ∈ Cl(IRm) is FT -measurable with compact convex

values.
Proof. By virtue of Aumann theorem (see [5],Th.II.3.20)

∫ T
0
Ft(ω)dt is a nonempty

compact convex subset of IRm for every ω ∈ Ω and
∫ T

0
Ft(ω)dt =

∫ T
0

coFt(ω)dt.

Therefore, to verify that the set-valued mapping Ω 3 ω →
∫ T

0
Ft(ω)dt ∈ Cl(IRd) is

FT -measurability (see [5], Th.II.3.8) it is enough to show that the function Ω 3 ω →
σ(p,

∫ T
0
Ft(ω)dt) ∈ IR is FT -measurable for every p ∈ IRd, where σ(·, A) is a support

function of a set A ∈ Cl(IRm). By measurability of F and its integrably boundedness
the function [0, T ] × Ω 3 (t, ω) → σ(p, coFt(ω)) ⊂ IR is measurable for every p ∈
IRd. By virtue of ([5], Th II.3.21) for every p ∈ IRm one has σ(p,

∫ T
0
Ft(ω)dt)) =∫ T

0
σ(p, coFt(ω))dt for every ω ∈ Ω. Hence, by Fubini’s theorem, FT -measurability

of the function Ω 3 ω → σ(p,
∫ T

0
Ft(ω)dt) ∈ IR follows for every p ∈ IRd. Therefore,∫ T

0
Ft(· )dt is FT -measurable. �

Proposition 2.2. Let F ∈ L(T,Ω, IRm). Subtrajectory integrals S[
∫ T

0
Ft(· )

dt] of
∫ T

0
Ft(· )dt is a nonempty convex weakly compact subset of the space

IL(Ω,FT , IRm) and S[
∫ T

0
Ft(· )dt] = J [S(coF )], where J : IL([0, T ] × Ω, βT ⊗

FT , IRm) → IL(Ω,FT , IRm) is defined by J(f) =
∫ T

0
f(t, ·)dt for f ∈ IL([0, T ] ×

Ω, βT ⊗FT , IRm).

Proof. By the properties of the mapping Ω 3 ω →
∫ T

0
coFt(ω)dt ∈ Cl(IRm) it

follows that S[
∫ T

0
coFt(· )dt] is a nonempty convex weakly compact subset of the

space IL(Ω,FT , IRm). Hence, by the equality
∫ T

0
Ft(ω)dt =

∫ T
0

coFt(ω)dt for a.e.

ω ∈ Ω it follows that S[
∫ T

0
Ft(· )dt] is also a nonempty convex weakly compact

subset of the space IL(Ω,FT , IRm). By the definition of J [S(coF )] it follows that the
set J [S(coF )] is a nonempty convex weakly compact subset of IL(Ω,FT , IRm) such

that J [S(coF )] ⊂ S[
∫ T

0
coFt(· )dt] = ST [

∫ T
0
Ft(· )dt].

Assume ϕ ∈ S[
∫ T

0
F (t, · )dt]. Then for every A ∈ FT one has EAϕ ∈ EAΦ, where

Φ =
∫ T

0
Ft(· )dt, EAϕ =

∫
A
ϕdP and EAΦ =

∫
A

ΦdP . Let ε > 0 be given and select

an FT -measurable partition (Aεn)Nε
n=1 of Ω such that EAε

n

∫ T
0
||Ft(·)||dt < ε/2n+1.

For every n = 1, ..., Nε there is an fεn ∈ S(F ) such that EAε
n
ϕ = EAε

n

∫ T
0
fεn(t, ·)dt.

Let fε =
∑Nε

n=1 1IAε
n
fεn. By decomposability of S(F ) one has fε ∈ S(F ). We

have fε ∈ S(coF ) because S(F ) ⊂ S(coF ). Taking a sequence (εk)∞k=1 of positive
numbers εk > 0 such that εk → 0 as k → ∞ we can select a subsequence, denoted
again by (fεk)∞k=1, of (fεk)∞k=1 weakly converging to f ∈ S(coF ), because S(coF )
is a weakly compact subset of IL([0, T ] × Ω, βT ⊗ FT , IRm). For every A ∈ F and
k = 1, 2, . . . there is a subset {n1, ..., np} of {1, ..., Nεk} such that A ∩ Aεkni

6= ∅ for
i = 1, 2, ..., p and A ∩Ar = ∅ for r ∈ {1, 2, ..., Nεk} \ {n1, ..., np}. Therefore,∣∣∣∣EAϕ− EA ∫ T

0

fεk(t, · )dt
∣∣∣∣ ≤ Nεk∑

n=1

∣∣∣∣EA∩Aεk
n
ϕ− EA∩Aεk

n

∫ T

0

fεkn (t, · )dt
∣∣∣∣
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=

p∑
i=1

∣∣∣∣EA∩Aεk
ni
ϕ− EA∩Aεk

ni

∫ T

0

fεkn (t, · )dt
∣∣∣∣ ≤ 2

p∑
i=1

EAεk
ni

∫ T

0

||Ft(· )||dt ≤ εk

for every k = 1, 2, .... On the other hand for every A ∈ F we also have∣∣∣∣EAϕ− EA ∫ T

0

f(t, · )dt
∣∣∣∣ ≤ ∣∣∣∣EAϕ− EA ∫ T

0

fεk(t, · )dt
∣∣∣∣

+

∣∣∣∣EA ∫ T

0

fεk(t, · )dt− EA
∫ T

0

f(t, · )dt
∣∣∣∣

≤ εk +

∣∣∣∣EA ∫ T

0

fεk(t, · )dt− EA
∫ T

0

f(t, · )dt
∣∣∣∣

for k = 1, 2, .... Hence it follows that EAϕ = EA
∫ T

0
f(t, · )dt for every A ∈ F , because

εk → 0 and |EA
∫ T

0
fεk(t, · )dt − EA

∫ T
0
f(t, · )dt| → 0 as k → ∞. Therefore, ϕ(ω) =∫ T

0
f(t, ω)dt for a.e. ω ∈ Ω. Then ϕ ∈ J [S(coF )] and S[

∫ T
0
Ft(· )dt] = J [S(coF )]. �

Corollary 2.1. If G : [0, T ]×Ω→ Cl(Rm) is measurable and integrably bounded and
G is a sub-σ-algebra of F then

S

(
E

[ ∫ T

0

G(t, ·)dt|G
])

=

{
E

[∫ T

0

g(t, ·)dt|G

]
: g ∈ S(coG)

}
.

Proof. It is enough only to see that the set H = {E[
∫ T

0
g(t, ·)dt|G] : g ∈ S(co G)}

is a closed subset of IL(Ω,G,Rm). By properties of the conditional expectations and
properties of the set S(coG) it follows that H is a convex weakly compact subset of
IL(Ω,G,Rm). Therefore, H is a closed subset of IL(Ω,G,Rm). �

3. Measurable selection theorems

Let x = (xt)0≤t≤T be an measurable m-dimensional cádlág process on PIF. Given a
measurable and uniformly integrably bounded multivalued mapping F : [0, T ]×Rm →
Cl(IRm) let F ◦ x be a set-valued process defined by (F ◦ x)(t, ω) = F (t, xt(ω)) for
(t, ω) ∈ [0, T ]× Ω. It is clear that F ◦ x is measurable. In what follows by S(F ◦ x)
we denote subtrajectory integrals of F ◦ x. Immediately from Kuratowski and Ryll-
Nardzewski measurable selection theorem (see [7], Th.1) it follows that for a given
above F and x the set S(coF ◦ x) is a nonempty convex weakly compact subset of
IL([0, T ]× Ω, βT ⊗FT , IRm).
Theorem 3.1. Assume F : [0, T ] × IRm → Cl(IRm) is measurable and uniformly
integrably bounded and let x = (xt)0≤t≤T and z = (zt)0≤t≤T be m-dimensional
measurable stochastic processes on a filtred probability space PIF = (Ω,F , IF, P ) with
a filtration IF = (Ft)t≥0 satisfying the usual conditions and let E|xT | <∞. If x is
IF-adapted then

xs ∈ E
[
xt +

∫ t

s

F (τ, zτ )dτ |Fs
]

a.s. (3.1)
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for every 0 ≤ s ≤ t ≤ T if and only if there is f ∈ S(coF ◦ z) such that

xt = E

[
xT +

∫ T

t

f(τ, ·)dτ |Ft

]
a.s. (3.2)

for every 0 ≤ t ≤ T .
Proof. Suppose there is f ∈ S(coF ◦ z) such that (3.2) is satisfied. For every 0 ≤ s ≤
t ≤ T one has

xs = E

[
xT +

∫ T

s

f(τ, · )dτ |Fs
]

= E

[∫ t

s

f(τ, · )dτ |Fs
]

+ E

[
xT +

∫ T

t

f(τ, · )dτ |Fs

]
and E[xt|Fs] = E[xT +

∫ T
t
f(τ, · )dτ |Fs] a.s. Then xs = E[xt +

∫ t
s
f(τ, · )dτ |Fs],

a.s. for 0 ≤ s ≤ t ≤ T . Hence by Corollary 2.1 it follows that xs ∈ S(E[xt +∫ t
s
F (τ, zτ )dτ |Fs]) for 0 ≤ s ≤ t ≤ T . Therefore (3.1) is satisfied a.s. for 0 ≤ s ≤

t ≤ T .
Assume (3.1) is satisfied a.s. for every 0 ≤ s ≤ t ≤ T and let m ∈ IL([0, T ], IR+)

be such that ‖F (t, x‖ ≤ m(t) for a.e. t ∈ [0, T ] and x ∈ IRm. For every 0 ≤
t ≤ T one has E|xt| ≤ E|xT | + E

∫ T
0
m(t)dt < ∞. Let η > 0 be fixed and select

δ ∈ (0, T ) such that sup0≤t≤T−δ
∫ t+δ
t

m(τ)dτ < η/2. For fixed t ∈ [0, T − δ] and

t ≤ τ ≤ t+δ we have xt ∈ E[xτ +
∫ τ
t
F (s, zs)ds|Ft] a.s. Therefore, for every A ∈ Ft

we get EA(xt − xτ ) ∈ EA
∫ τ
t
F (s, zs)ds, where EA(xt − xτ ) = E[1IA(xt − xτ )] and

EA
∫ τ
t
F (s, zs)ds = E[1IA

∫ τ
t
F (s, zs)ds] for A ∈ Ft. Then

|EA(xt − xτ )| ≤ EA
∫ τ

t

‖F (s, zs)‖ds ≤ E
∫ t+δ

t

m(s)ds < η/2

for every 0 ≤ t ≤ T − δ and A ∈ Ft. Therefore, supt≤τ≤t+δ |EA(xt − xτ )| ≤ η/2 for
every A ∈ Ft and fixed 0 ≤ t ≤ T − δ.

Let τ0 = 0, τ1 = δ, ..., τN−1 = (N − 1)δ < T ≤ Nδ. Immediately from (3.1) and
Corollary 2.1 it follows that for every i = 1, 2, ..., N −1 there is fηi ∈ S(coF ◦ z) such
that

E

∣∣∣∣xτi−1
− E

[
xτi +

∫ τi

τi−1

fηi (s, ·)ds|Fτi−1

] ∣∣∣∣ = 0.

Furthermore, there is fηN ∈ S(coF ◦ z) such that

E

∣∣∣∣xτN−1
− E

[
xT +

∫ T

τN−1

fηN (s, ·)ds|FτN−1

]∣∣∣∣ = 0.

Define fη(t, ω) =
∑N−1
i=1 1I[τi−1,τi)(t)f

η
i (t, ω)+1I[τN−1,T ](t)f

η
N (t, ω) for (t, ω) ∈ [0, T ]×

Ω. By decomposability of S(coF ◦ z) we have fη ∈ S(coF ◦ z). For fixed t ∈ [0, T ]
there is p ∈ {1, 2, ..., N − 1} or p = N such that t ∈ [τp−1, τp) or t ∈ [τN−1, T ]. Let
t ∈ [τp−1, τp) with 1 ≤ p ≤ N − 1. For every A ∈ Ft one has∣∣∣∣EA(xt − E[xT +

∫ T

t

fη(s, ·)ds|Ft
])∣∣∣∣ ≤ |EA(xt − xτp)|+ E

∣∣∣∣xτp − E[xτp+1
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+

∫ τp+1

τp

fη(s, ·)dτ |Fτp
]∣∣∣∣+ |EA(E[xτp+1

|Fτp ]− xτp+1
)|+ E

∣∣∣∣ ∫ τp

t

fη(s, ·)ds
∣∣∣∣

+

∣∣∣∣EA(E[ ∫ τp+1

τp

fη(s, ·)ds|Fτp
]
− E

[ ∫ τp+1

τp

fη(s, ·)dτ |Ft
])∣∣∣∣+ ...

+E

∣∣∣∣xτN−1
− E

[
xT +

∫ T

τN−1

fη(s, ·)dτ |FτN−1

]∣∣∣∣+

∣∣∣∣EA(E[xτN−1
|FτN−1

]− xτN−1
)

∣∣∣∣
+EA

(
E

[ ∫ T

τN−1

fη(s, ·)ds|FτN−1

]
− E

[ ∫ T

τN−1

fη(s, ·)ds|Ft
])∣∣∣∣

≤ sup
t≤τ≤t+δ

|EA(xt − xτ )|+
∫ t+δ

t

m(s)ds+

N−2∑
i=p

E

∣∣∣∣xτi−E[xτi+1 +

∫ τi+1

τi

fη(s, ·)ds|Fτi
]∣∣∣∣

+E

∣∣∣∣xτN−1
− E

[
xT +

∫ T

τN−1

fη(s, ·)dτ |FτN−1

]∣∣∣∣+

N−2∑
i=p

|EA(E[xτi+1
|Fτi ]− xτi+1

)|

+

N−2∑
i=p

∣∣∣∣EA(E[ ∫ τi+1

τi

fη(s, ·)ds|Fτi
]
− E

[ ∫ τi+1

τi

fη(s, ·)ds|Ft
])∣∣∣∣

+

∣∣∣∣EA(E[ ∫ T

τN−1

fη(s, ·)ds|FτN−1

]
− E

[ ∫ T

τN−1

fη(s, ·)ds|Ft
])∣∣∣∣.

But Ft ⊂ Fτi for i = p, p+ 1, ..., N − 1. Then for A ∈ Ft one has

N−2∑
i=p

|EA(E[xτi+1 |Fτi ]− xτi+1)| = 0,

N−2∑
i=p

∣∣∣∣EA(E [∫ τi+1

τi

fη(s, ·)ds|Fτi
]
− E

[∫ τi+1

τi

fη(s, ·)ds|Ft
])∣∣∣∣ = 0

and ∣∣∣∣EA(E[ ∫ T

τN−1

fη(s, ·)ds|FτN−1

]
− E

[ ∫ T

τN−1

fη(s, ·)ds|Ft
])∣∣∣∣ = 0.

With this and the definition of fη it follows∣∣∣∣∣EA
(
xt − E

[
xT +

∫ T

t

fη(s, ·)ds|Ft

])∣∣∣∣∣ ≤ η (3.3)

for fixed 0 ≤ t ≤ T and A ∈ Ft. Let (ηj)
∞
j=1 be a sequence of positive numbers

converging to zero. For every j = 1, 2, ... we can select fηj ∈ S(coF ◦ z) such
that (3.3) is satisfied with η = ηj . By weak compactness of S(coF ◦ z) there is a
subsequence (fηk)∞k=1 of (fηj )∞j=1 weakly converging to f ∈ S(coF ◦ z). Then for
every A ∈ Ft ⊂ FT one has

lim
k→∞

EA

∫ T

t

fηk(s, ·)ds = EA

∫ T

t

f(s, ·)ds.
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On the other hand for every fixed t ∈ [0, T ] and A ∈ Ft we have∣∣∣∣EA(xt − E[xT +

∫ T

t

f(s, ·)ds|Ft
])∣∣∣∣ ≤ ∣∣∣∣EA(xt − E[xT +

∫ T

t

fηk(s, ·)ds|Ft
])∣∣∣∣

+

∣∣∣∣EA(E[ ∫ T

t

fηk(s, ·)ds|Ft
]
− E

[ ∫ T

t

f(s, ·)ds|Ft
])∣∣∣∣

≤ ηk +

∣∣∣∣EA ∫ T

t

fηk(s, ·)ds− EA
∫ T

t

f(s, ·)ds
∣∣∣∣

for k = 1, 2, ... Therefore, EA(xt − E[xT +
∫ T
t
f(s, ·)ds|Ft]) = 0 for every A ∈ Ft

and fixed 0 ≤ t ≤ T . But xt and E[xT +
∫ T
t
f(s, ·)ds|Ft] are Ft-measurable. Then

xt = E[xT +
∫ T
t
f(s, ·)ds|Ft] a.s. for 0 ≤ t ≤ T . Then there exists f ∈ S(coF ◦ z)

such that (3.2) is satisfied. �
For a measurable process Z on PIF by [Z]IF we shall denote the ”conditional

expectation” with respect to a measure µ⊗P and an IF-optional σ-algerbra O, i.e.,
[Z]IF = Eµ⊗P [Z|O], where µ denotes the Lebesgue measure on [0, T ].
Corollary 3.1. If the assumptions of Theorem 3.1 are satisfied then a process

x = (xt)0≤t≤T defined by xt = E[xT +
∫ T
t
f(τ, ·)dτ |Ft] a.s. for 0 ≤ t ≤ T

with f ∈ S(coF ◦ z) belongs to S(IF, IRm) and has a supermartingale representa-

tion xt = x0 + Mt + At, where x0 = E[xT +
∫ T

0
fτdτ |F0], At = −

∫ t
0
[f ]IFτ dτ and

Mt = E[xT +
∫ T

0
fτdτ |Ft]−E[xT +

∫ T
0
f(τdτ |F0]−E[

∫ t
0
{f(τ, ·)− [f ]IFτ }dτ |Ft]. Pro-

cess x is continuous if and only if (Mt)0≤t≤T is a continuous martingale.
Proof. It is clear that xt = x0 + Mt + At a.s. for 0 ≤ t ≤ T, where x0, Mt and
At are for every 0 ≤ t ≤ T such as above. To see that (At)0≤t≤T is IF-adapted
absolutely continuous process and (Mt)0≤t≤T is IF-martingale let us observe that
[f ]IFt is Ft -measurable for every f ∈ S(coF ◦ z) and t ∈ [0, T ], which implies that
also At is Ft-measurable for every f ∈ S(coF ◦ z) and t ∈ [0, T ]. Furthermore, the
process (At)0≤t≤T is absolutely continuous because |[f ]IFt | ≤ |ft| ≤ ‖F (t, zt)‖ a.s.
for a.e. t ∈ [0, T ]. To verify that (Mt)0≤t≤T is an IF- martingale let us observe first

that E[
∫ t
s
fτdτ |Ft] =

∫ t
s
E[fτ |Ft]dτ a.s. for every s ≤< t ≤ T . Indeed, for every

C ∈ Ft and 0 ≤ s < t ≤ T one has∫
C

{
E

[∫ t

s

fτdτ |Ft
]}

dP =

∫
C

{∫ t

s

fτdτ

}
}dP =

∫
C

∫ t

s

fτdPdτ

=

∫ t

s

∫
C

{E[fτ |Ft]} dPdτ =

∫
C

{∫ t

s

E[fτ |Ft]dτ
}
dP.

Then E[
∫ t
s
fτdτ |Ft] =

∫ t
s
E[fτ |Ft]dτ a.s. for every s ≤< t ≤ T . Let Nt = E[

∫ t
0
(fτ −

[f ]IFτ )dτ |Ft] a.s. for 0 ≤ s < t ≤ T . It is clear that (Mt)0≤t≤T is an IF-martingale
if and only if the process (Nt)0≤t≤T is an IF- martingale. We have E|Nt| < ∞ for
every 0 ≤ t ≤ T . Furthermore, for every 0 ≤ s < t ≤ T one has

E[Nt −Ns|Fs]

= E

[(
E

[∫ t

0

(fτ − [f ]IFτ )dτ |Ft
]
− E

[∫ s

0

(fτ − [f ]IFτ )dτ |Fs
]) ∣∣∣∣Fs]
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= E

[∫ t

0

E[(fτ − [f ]IFτ )|Ft]
∣∣∣∣Fs]− E [∫ s

0

E[(fτ − [f ]IFτ )|Fs]
∣∣∣∣Fs]

=

∫ t

0

E[(fτ − [f ]IFτ )|Fs]dτ −
∫ s

0

E[(fτ − [f ]IFτ )|Fs]dτ =

∫ t

s

E[(fτ − [f ]IFτ )|Fs]dτ.

But for every C ∈ Fs one has (s, t]× C ∈ O. Therefore, for every C ∈ Fs one gets∫
C

[∫ t

s

E[(fτ − [f ]IFτ )|Fs]dτ
]

=

∫ ∫
(s,t]×C

fτdτdP −
∫ ∫

(s,t]×C
[f ]IFτ dτdP

=

∫ ∫
(s,t]×C

fτdτdP −
∫ ∫

(s,t]×C
fτdτdP = 0.

Hence it follows
∫ t
s
E[(fτ − [f ]IFτ )|Fs]dτ = 0 a.s. for every 0 ≤ s < t ≤ T , which

implies that E[Nt−Ns|Fs] = 0 a.s. for every 0 ≤ s < t ≤ T . Finally, by the equality
xt = x0 +Mt+At and continuity of the process (At)0≤t≤T it follows that the process
x is continuous if and only if (Mt)0≤t≤T is a continuous martingale. �
Remark 3.1. If the assumptions of Theorem 3.1 are satisfied and a filtratrion IF is
continuous then an IF-martingale (Mt)t≥0 defined in Corollary 3.1 is continuous.

4. Viable approximation theorem

Existence of solutions of the viability problem (1.2) follows from some viable ap-
proximation theorem by applying the standard methods presented in the proofs of the
existence of strong solutions for BSDI(F,H) (see [2], [6]). We shall present now such
type approximation theorem. Its proof is similar to the proof of viable approximation
theorem presented in [1]. To begin with let us assume that K : [0, T ]×Ω→ Cl(IRm)
is a given set-valued process and let us define a set-valued mapping K(t) by set-
ting K(t) = {u ∈ IL(Ω,Ft, IRm) : u ∈ K(t), a.s.}. Furthermore, assume that
F : [0, T ]× Rm → Cl(Rm) satisfies the following conditions (A):

(i) F is measurable and uniformly square integrably bounded by a function m ∈
L2([0, T ],R+),

(ii) F (t, ·) is square Lipschitz continuous, i.e., there is k ∈ L2([0, T ],R+) such that
h(F (t, x1), F (t, x2)) ≤ k(t)|x1 − x2| for a.e. t ∈ [0, T ] and x1, x2 ∈ Rm, where h is
the Hausdorff metric on Cl(Rm).

Throughout this Section D denotes the Hausdorff subdistance defined on the space
Cl(IL(Ω,FT , IRm)) of all nonempty closed subsets of IL(Ω,FT , IRm), whereas D de-
notes the Hausdorff distance defined on this space. The distance function dist(·, ·)
on IL(Ω,FT , IRm)× Cl(IL(Ω,FT , IRm)) is denoted simply by d(·, ·).
Theorem 4.1. Assume F satisfies conditions (A) and let PIF = (Ω,F , IF, P ) be a
complete filtered probability space with a continuous filtration IF = (Ft)0≤t≤T such
that FT = F . Suppose K : [0, T ] × Ω → Cl(IRm) is IF-adapted set-valued process
such that K(t) 6= ∅ for every 0 ≤ t ≤ T and such that the set-valued mapping
K : [0, T ]→ Cl(IL(Ω,FT , IRm) is continuous. If

lim inf
h→0+

1

h
D

[
S

(
E

[
x+

∫ t

t−h
F (τ, x)dτ |Ft−h

])
,K(t− h)

]
= 0 (4.1)
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is satisfied for every (t, x) ∈ Graph(K), where S(E[x +
∫ t
t−h F (τ, x)dτ |Ft−h]) =

{E[x +
∫ t
t−h fτdτ |Ft−h] : f ∈ S(coF ◦ x)}, then for every ε ∈ (0, 1), xT ∈ K(xT ),

a ∈ (0, T ) and a measurable process φ = (φ)0≤t≤T such that φt ∈ IL(Ω,FT , IRm) for
0 ≤ t ≤ T and φT ∈ F (T, xT ) a.s. there exist a partition a = tp < tp−1 < ... < t1 <
t0 = T of the interval [a, T ], a step function θε : [a, T ] → [a, T ], a step stochastic
process zε = (zεt )a≤t≤T and a measurable process fε = (fεt )a≤t≤T on PIF such that

(i) tj − tj+1 ≤ δ, where δ ∈ (0, ε) is such that max{
∫ t+δ
t

k(τ)dτ,
∫ t+δ
t
m(τ)dτ}

≤ ε2/24 and D(K(t+ δ),K(t)) ≤ ε/2 for t ∈ [0, T ],
(ii) ‖zεt ‖ ≤ ε/2 for every a ≤ t ≤ T , where ‖zεt ‖ = E|zεt |,

(iii) θε(t) = tj−1 for tj < t ≤ tj−1 and θε(tj) = tj with j = 1, ..., p − 1 and
θε(t) = tp−1 for a ≤ t ≤ tp−1,

(iv) fε ∈ S(coF ◦ (xε ◦ θε)), |φt(ω) − fεt (ω)| = dist(φt, coF (t, (xε ◦ θε)(t))) for

(t, ω) ∈ [a, T ] × Ω, where xε(t) = E[xT +
∫ T
t
fετ dτ |Ft] +

∫ T
t
zετdτ a.s. for

a ≤ t ≤ T and S(co F ◦ (xε ◦ θε))={f ∈ L2([a, T ] × Ω, βT ⊗ FT , IRd) : ft ∈
co F (t, xε(θε(t))) a.s. for a.e. a ≤ t ≤ T},

(v) E[dist(xε(s), E[xε(t)+
∫ t
s
F (τ, (xε ◦ θε)(τ)dτ |Fs])] ≤ ε for a ≤ s ≤ t ≤ T ,

(vi) d(xε(θε(t)),K(θε(t))) = 0 for a ≤ t ≤ T .

Proof. Let ε ∈ (0, 1), a ∈ (0, T ), xT ∈ K(T ) and a measurable process φ = (φ)0≤t≤T
be given. By virtue of (4.1) there exists h0 ∈ (0,min(δ, T )) such that

D

[
S

(
E

[
xT +

∫ T

T−h0

F (τ, xT )dτ |FT−h0

])
,K(T − h0)

]
≤ εh0/2.

Let t1 = T − h0. By virtue of ([5], Th.II.3.13) there exists f0 ∈ S(coF ◦ xT )
such that |φt(ω) − f0

t (ω)| = dist(φt(ω), coF (t, xT (ω)) for (t, ω) ∈ [t1, T ] × Ω. Let

y0 = E[xT+
∫ T
t1
f0
τ dτ |Ft1 ] a.s. We have y0 ∈ E[xT+

∫ T
t1
F (τ, xT )dτ |Ft1 ] a.s., i.e., y0 ∈

S(E[xT +
∫ T
t1
F (τ, xT )dτ |Ft1 ]). Therefore, d(y0,K(t1)) ≤ εh0/2. Similarly as above

we can see that there exists x1 ∈ K(t1) such that E|y0 − x1| = E[dist(y0,K(t1))] =
d(y0,K(t1)) ≤ εh0/2. Then ‖y0 − x1‖ ≤ εh0/2. Let zεt = 1/h0(x1 − y0) a.s. for
t1 ≤ t ≤ T . We have ‖zεt ‖ ≤ (1/h0)‖y0−x1‖ ≤ ε/2. Define θε(t) = T for t1 < t ≤ T
and θ(t1) = t1. One has f0

t ∈ coF (t, xT ) a.s. for t1 < t ≤ T . Let

xε(t) = E

[
xT +

∫ T

t

f0
τ dτ |Ft

]
+

∫ T

t

zετdτ

for t1 < t ≤ T . We have xε(T ) = xT and xε(t1) = y0 + h0(1/h0)(x1 −
y0) = x1. Therefore, d(xε(θ(t)),K(θ(t))) = 0 for t1 ≤ t ≤ T and |φt(ω) −
f0
t (ω)| = dist(φt(ω), coF (t, xε(θε(t)(ω))) for (t, ω) ∈ [t1, T ] × Ω. Furthermore, by

the definition of xε and properties of f0 and xε one gets E[dist(xε(s), E[xT +∫ t
s
F (τ, xε(θ(τ)))dτ |Fs] ≤ ε/2 for t1 < s < t ≤ T .
If t1 > a we can repeat the above procedure starting with (t1, x1) ∈ Graph(K).

Immediately from (4.1) it follows that there exists an h1 ∈ (0, δ) such that

D

[
S(E[x1 +

∫ t1

t1−h1

F (τ, x1)dτ |Ft1−h1
]),K(t1 − h1)

]
≤ εh1/2 .
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Similarly as above we can select f1 ∈ S(coF ◦ x1) and x2 ∈ K(t1 − h1) such that
|φt(ω) − f1

t (ω))| = dist(φt(ω), co (F ◦ x1)(t, ω) for (t, ω) ∈ [t1 − h1, t1] × Ω and

‖y1 − x2‖ ≤ εh1/2
2, where y1 = E[x1 +

∫ t1
t1−h1

f1
τ dτ |Ft1−h1 ] and t2 = t1 − h1. We

can extend now the step function θε and the step process zε on the interval [t2, T ]
by taking θε(t2) = t2, θε(t) = t1 for t2 < t ≤ t1 and zεt = (1/h1)(x2 − y1) for
t2 ≤ t < t1. We have f1

t ∈ coF (t, x1) a.s. for t2 ≤ t ≤ t1. We can also extend the
process xε on the interval (t2, T ] by taking

xε(t) = E

[
x1 +

∫ t1

t

f1
τ dτ |Ft

]
+

∫ t1

t

zετdτ

a.s. for t2 < t ≤ t1. We have d(xε(θε(t)),K(θ(t))) = 0 for t2 ≤ t ≤ T
because xε(t2) = x2. Let fε = 1I(t2,t1]f

1 + 1I(t1,T ]f
0 . We have xε(t) =

E[xT +
∫ T
t
fετ dτ |Ft] +

∫ T
t
zετdτ a.s. for t2 < t ≤ T . Similarly as above we

can verify that fεt ∈ coF (t, xε(θε(t))) a.s. for t2 < t ≤ T and |φt − fεt )| =
dist(φt, coF (t, xε(θ(t))) a.s. for t2 < t ≤ T. Furthermore, d(xε(θε(t)),K(θε(t))) = 0

and E[dist(xε(s), E[
∫ t
s
F (τ, xε(θ(τ)))dτ |Fs] ≤ ε/2 for t2 ≤ t ≤ T and t2 < s < t ≤

T , respectively.
Suppose that for some i ≥ 1 the inductive procedure is realized. Then there

exist ti−1 ∈ [a, T ), such that we can extend a step function θε, a step process zε

a process xε and fεt ∈ coF (t, xε(θε(t)) for ti−1 ≤ t ≤ T such that |φt − fεt | =
dist(φt, coF (t, xε(θε(t))), where

xεi−1(t) = E[xT +

∫ T

t

fετ dτ |Ft] +

∫ T

t

zετdτ

a.s. for ti−1 < t ≤ T . Furthermore, d(xε(θε(t)),K(θε(t))) = 0 and

E[dist(xε(s), E[xε(t) +

∫ t

s

F (τ, (xεi−1 ◦ θε)(τ))dτ |Fs])] ≤ ε/2

for ti−1 < s < t ≤ T . Define now a process xε by setting

xε(t) = E[xT +

∫ T

t

fετ dτ |Ft] +

∫ T

t

zετdτ

a.s. for ti−1 < t ≤ T . Denote by Si the set of all positive numbers h ∈
(0,min(δ, ti−1)) such that

D

[
S(E[xε(ti−1) +

∫ ti−1

ti−1−h
F (τ, xεi−1(ti−1))dτ |Fti−1−h]),K(ti−1)

]
≤ εh/2.

By the properties of xε we have (ti−1, x
ε(ti−1)) ∈ Graph(K). Therefore, by virtue

of (4.1), we have Si 6= ∅ and supSi > 0. Choose hi−1 ∈ Si such that (1/2) supSi ≤
hi−1. Put ti = ti−1−hi−1. We can extend again the step function θε, the step process
zε, processes fε and xε on the interval (ti, T ] such that d(xε(θε(t)),K(θ(t)))) = 0,
fεt ∈ coF (t, xε(θε(t)) and |φt − fεt | = dist(φt, coF (t, xε(θε(t)) a.s. for ti < t ≤ T .
Furthermore

E[dist(xε(s), E[xε(t) +

∫ t

s

F (τ, (xεi−1 ◦ θε)(τ))dτ |Fs])] ≤ ε/2
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for ti < s < t ≤ T . We can continue the above procedure up to n ≥ 1 such that
0 < tn ≤ a < tn−1. Suppose to the contrary that there does not exist such n ≥ 1,
i.e., that for every n ≥ 1 one has a < tn < T . Then we can extend the step function
θε, the step process zε and stochastic processes fε and xε on the interval (tn, T ]
for every n ≥ 1 such that xε(tn) ∈ K(tn) a.s. for every n ≥ 1 and that the above
properties are satisfied on (tn, T ] for every n ≥ 1. By the boundedness of a sequence
(tn)∞n=1 we can select its decreasing subsequence (ti)

∞
i=1 converging to t∗ ∈ [a, T ].

Let (xi)
∞
i=1 be a sequence define by xi = xε(ti) a.s. for every i ≥ 0. In particular,

we have xi ∈ K(ti) a.s. for every i ≥ 1. For every j > k ≥ 0 we obtain

E|xk − xj | ≤ E|E[xT |Ftk ]− E[xT |Ftj ]|+
∫ tk

t∗
m(t)dt+

∫ tj

t∗
m(t)dt

+(tk − tj)E|zεt |+ E

∣∣∣∣∣E
[∫ T

t∗
fεt dt|Ftk

]
− E

[∫ T

t∗
fεt dt|Ft∗

]∣∣∣∣∣
+E

∣∣∣∣∣E
[∫ T

t∗
fεt dt|Ftj

]
− E

[∫ T

t∗
fεt dt|Ft∗

]∣∣∣∣∣ .
By continuity of the filtration IF it follows that limj,k→∞E|xk − xj | = 0. Then
(xi)

∞
i=1 is a Cauchy sequence of IL(Ω,FT , IRm). Therefore, there is x∗ ∈ IL(Ω,FT , IRm

such that ‖xi − x∗‖ → 0 as i→∞. We have xi ∈ K(ti)) for every i ≥ 1, which by
continuity of K implies that (t∗, x∗) ∈ Graph(K). Therefore, by virtue of (4.1) we
can select h∗ ∈ (0,min(δ, t∗)) such that

D

[
S(E[x∗ +

∫ t∗

t∗−h∗
F (τ, x)dτ |Ft∗−h∗ ]),K(t∗ − h∗)

]
≤ εh∗/25.

Similarly as above, for every i ≥ 1, and any φi ∈ S(coF ◦ xi) we can select f∗ ∈
S(coF ◦ x∗) such that |φit − f∗t )| = dist(φit, F (t, x∗)) a.s. for every t∗ − h∗ < t ≤ t∗.
By continuiuty of the filtratin IF we obtain ‖E[x∗|Fti−h∗ ]−E[x∗|Ft∗−h∗ ]‖ → 0 and

E

∣∣∣∣∣E
[∫ t∗

t∗−h∗
f∗τ dτ |Fti−h∗

]
− E

[∫ t∗

t∗−h∗
f∗τ dτ |Ft∗−h∗

]∣∣∣∣∣→ 0

as i→∞. Let N ≥ 1 be such that for every i ≥ N we have 0 < ti− t∗ < min(h∗, δ),
‖xi − x∗‖ < εh∗/(25 · A), D(K(ti − h∗),K(t∗ − h∗)) ≤ εh∗/25, ‖E[x∗|Fti−h∗ ] −
E[x∗|Ft∗−h∗ ]‖ ≤ εh∗/25, E

∫ t∗−h∗

ti−h∗ |φiτ |dτ ≤ εh∗/25, E
∫ ti
t∗
|φiτ |dt ≤ εh∗/25 and

E|E[
∫ t∗
t∗−h∗ f

∗
τ dτ |Fti−h∗ ]−E[

∫ t∗
t∗−h∗ f

∗
τ dτ |Ft∗−h∗]| ≤ εh∗/25, where A = 1+

∫ T
0
k(t)dt.

By the properties of the multifinction F (t, · ) and the selector f∗ of F ◦x∗ it follows
that

‖1I[t∗−h∗,t∗](φ
i − f∗)‖ = E

∫ t∗

t∗−h∗
|φiτ − f∗τ |dτ

≤ E
∫ t∗

t∗−h∗
h((F (t, xi), F (t, x∗))]dt ≤ ‖xi − x∗‖

∫ t∗

t∗−h∗
k(t)dt.
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For every i ≥ N one gets

d

(
E[xi +

∫ ti

ti−h∗
φiτdτ |Fti−h∗ ],K(ti − h∗)

)

≤ E

∣∣∣∣∣E[xi +

∫ ti

ti−h∗
φiτdτ |Fti−h∗ ]− E[x∗ +

∫ t∗

t∗−h∗
f∗τ dτ |Ft∗−h∗]

∣∣∣∣∣
+d

(
E[x∗ +

∫ t∗

t∗−h∗
f∗τ dτ |Ft∗−h∗],K(t∗ − h∗)

)
+D(K(t∗ − h∗),K(ti − h∗)).

But for every i ≥ N we have

E

∣∣∣∣∣E
[
xi +

∫ ti

ti−h∗
φiτdτ |Fti−h∗

]
− E

[
x∗ +

∫ t∗

t∗−h∗
f∗τ dτ |Ft∗−h∗

]∣∣∣∣∣
≤ E|E[(xi − x∗)|Fti−h∗]|+ E|E[x∗|Fti−h∗ ]− E[x∗|Ft∗−h∗ ]|

+E

∣∣∣∣∣E
[∫ t∗−h∗

t∗
(φiτ − f∗τ )dτ |Fti−h∗

]∣∣∣∣∣+ E

∫ t∗−h∗

ti−h∗
|φiτ |dτ + E

∫ ti

t∗
|φiτ |dt

+E

∣∣∣∣∣E
[∫ t∗−h∗

t∗
f∗τ dτ |Fti−h∗

]
− E

[∫ t∗

t∗−h∗
f∗τ dτ |Ft∗−h∗

]∣∣∣∣∣ ≤ 6εh∗/25.

Therefore, for every i ≥ N one gets

d

[
E

[
xi +

∫ ti

ti−h∗
φiτdτ |Fti−h∗

]
,K(ti)

]
≤ 8εh∗/25 = εh∗/22,

which implies that

D(S(E[xi +

∫ ti

ti−h∗
F (τ, xi)dτ |Fti−h∗ ],K(ti)) ≤ εh∗/22.

But t∗ ≤ ti for i ≥ 1. Therefore, for every i ≥ N one has h∗ ∈ Si+1 and (1/2)h∗ ≤
supSi+1 ≤ hi = ti− ti+1, which contradicts to the convergence of a sequence (ti)

∞
i=1.

Then there is a p > 1 such that a = tp < tp−1, ..., t1 < t0 = T . Taking fε =

1I[a,tp−1]f
p +

∑0
i=p−2 1I(ti+1,ti]f

i we obtain the desired selector of coF ◦ (xε ◦ θε). �
Remark 4.1. The above results are also true if instead of continuity of a set-valued
mapping K we assume that it is uniformly upper semicontinuous on [0, T ], i.e., that
limδ→0 sup0≤t≤T D(K(t+ δ),K(t)) = 0.

5. Existence of viable solutions

We shall prove now that conditions (A) imply the existence of strong viable so-
lutions for BSDI(F,K). To begin with let us observe that immediately from the
properties of the multivalued conditional expectation the following result follows.
Lemma 5.1. If F satisfies conditions (A), then for every x, y ∈ S(IF, IRm) one has

E

[
h

(
E

[∫ t

s

F (τ, xτ ) dτ |Fs
]
,E

[∫ t

s

F (τ, yτ )dτ |Fs
])]
≤
∫ t

s

k(τ)E|xτ − yτ |dτ

for every 0 ≤ s ≤ t ≤ T , where h is the Hausdorff metric on Cl(IRm).
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We can prove now the main result of the paper.
Theorem 5.2. Let PIF = (Ω,F , IF, IP) be a complete filtered probability space with
a continuous filtration IF = (Ft)0≤t≤T such that FT = F . Assume that F satisfies
conditions (A) and let K : [0, T ] × Ω → Cl(IRm) be IF-adapted set-valued process
such that K(t) 6= ∅ for every 0 ≤ t ≤ T and such that K : [0, T ]→ Cl(IL(Ω,FT , IRm)
is continuous. If PIF, F and K are such that (4.1) is satisfied for every (t, x) ∈
Graph(K) then BSDI(F,K) possesses a strong viable solution.
Proof. Let xT ∈ K(T ) and a ∈ (0, T ) be fixed. Put x0

t = xT a.s. for a ≤ t ≤ T and
let f0 = (f0

t )a≤t≤T be a measurable process on PIF such that f0
t ∈ coF (t, (x0 ◦θ0)(t))

a.s. for a.e. a ≤ t ≤ T , where θ0(t) = T for a ≤ t ≤ T . Let φt = f0
t a.s. for a.e.

a ≤ t ≤ T . By virtue of Theorem 4.1, for ε1 = 1/23/2 and the above measurable
process φ = (φt)a≤t≤T there exist a partition a = t1p1 < t1p1−1 < ... < t11 < t10 = T ,

a step function θ1 : [a, T ] → [a, T ], a step process z1 = (z1
t )a≤t≤T and a measurable

process f1 = (f1
t )a≤t≤T on PIF such that conditions (i) - (vi) of Theorem 4.1 are

satisfied. In particular, f1
t ∈ coF (t, (x1 ◦ θ1)(t)), |f1

t − f0
t | = dist(f0

t , coF (t, (x1 ◦
θ1)(t))) a.s. for a.e. a ≤ t ≤ T and d(x1(t),K(t)) ≤ ε1 for a ≤ t ≤ T , because
d(x1(t),K(t)) ≤ |x1(t)−x1(θ(t))|+d(x1(θ(t)),K(θ(t)))+D(K(θ(t)),K(t)) ≤ ε1, where

x1
t = E[xT +

∫ T
t
f0
τ dτ |Ft] +

∫ T
t
z1
τdτ a.s. for a ≤ t ≤ T . In a similar way for

φ = (f1
t )a≤t≤T and ε2 = 1/23 we can define a partition a = t2p2 < t2p2−1 < ... <

t21 < t20 = T , a step function θ2 : [a, T ] → [a, T ], a step process z2 = (z2
t )a≤t≤T

and a measurable process f2 = (f2
t )a≤t≤T such that f2

t ∈ coF (t, (x2 ◦ θ2)(t)), |f2
t −

f1
t | = dist(f1

t , coF (t, (x2 ◦ θ2)(t))) a.s. for a.e. a ≤ t ≤ T and d(x2(t),K(t)) ≤ ε2

for a ≤ t ≤ T , where x2
t = E[xT +

∫ T
t
f1
τ dτ |Ft] +

∫ T
t
z2
τdτ a.s. for a ≤ t ≤ T .

Furthermore, for i = 1, 2 we have

E

[
dist

(
xi(s), E

[
xi(t) +

∫ t

s

F (τ, (xi ◦ θi)(τ))dτ |Fs
])]

≤ εi

a.s. for a ≤ s ≤ t ≤ T . By the inductive procedure for εk = 1/23k/2 and φk =
(fkt )a≤t≤T we can select for every k ≥ 1 a partition a = tkpk < tkpk−1 < ... < tk1 <

tk0 = T , a step function θk : [a, T ] → [a, T ], a step process zk = (zkt )a≤t≤T and a

measurable process fk = (fkt )a≤t≤T such that fkt ∈ coF (t, (xk◦θk)(t)), |fkt −fk−1
t | =

dist(fkt , coF (t, (xk ◦ θk)(t))) a.s. for a.e. a ≤ t ≤ T and d(xk(t),K(t)) ≤ εk for
a ≤ t ≤ T , where

xkt = E[xT +

∫ T

t

fk−1
τ dτ |Ft] +

∫ T

t

zkτ dτ

a.s. for a ≤ t ≤ T . Furthermore,

E

[
dist

(
xk(s), E

[
xk(t) +

∫ t

s

F (τ, (xk ◦ θk)(τ))dτ |Fs
])]

≤ εk

for a ≤ s ≤ t ≤ T . Of course xk ∈ S(IF, IRm) for k ≥ 1. By Remark 3.1 a process
xk is continuous for every k ≥ 1. Furthermore, by the properties of the sequence
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(fk)∞k=1, one gets

|xk+1(t)− xk(t)| ≤ E

[∫ T

t

|fkτ − fk−1
τ |dτ |Ft

]

+

∫ T

t

E|zk+1
τ − zkτ |dτ ≤ E

[∫ T

t

dist(fk−1
τ ,coF (τ, (xk ◦ θk)(τ)))dτ |Ft

]

+
9

8
Tεk ≤ αεk + E

[∫ T

t

k(τ) sup
τ≤s≤T

|xk(s)− xk−1(s)|dτ |Ft

]
,

a.s. for a ≤ t ≤ T , where α = 9
8T . Therefore,

sup
t≤u≤T

|xk+1(u)− xk(u)|

≤ αεk + sup
t≤u≤T

E

[∫ T

u

k(τ) sup
τ≤s≤T

|xk(s)− xk−1(s)|dτ |Fu

]
≤ αεk

+ sup
t≤u≤T

E

[∫ T

t

k(τ) sup
τ≤s≤T

|xk(s)− xk−1(s)|dτ |Fu

]
a.s. for a ≤ t ≤ T and k = 1, 2, .... By Doob’s inequality we get

E

[
sup

t≤u≤T
E[

∫ T

t

k(τ) sup
τ≤s≤T

|xk(s)− xk−1(s)|dτ |Fu]

]2

≤ 4E

[∫ T

t

k(τ) sup
τ≤s≤T

|xk(s)− xk−1(s)|dτ ]

]2

for a ≤ t ≤ T . Therefore, for every a ≤ t ≤ T and k = 1, 2, ... we have

E[ sup
t≤u≤T

|xk+1(u)− xk(u)|2] ≤ 2α2ε2
k + β

∫ T

t

k2(τ)E[ sup
τ≤s≤T

|xk(s)− xk−1(s)|2]dτ ,

where β = 8T . By the definitions of x1 and x0 we obtain E[supt≤u≤T |x1(u) −
x0(u)|2] ≤ L, where L = 2T (

∫ T
0
m2(t)dt+ T ). Therefore,

E[ sup
t≤u≤T

|x2(u)− x1(u)|2] ≤ 2α2ε2
1 + Lβ

∫ T

t

k2(τ)dτ

for a ≤ t ≤ T . Hence it follows

E[ sup
t≤u≤T

|x3(u)− x2(u)|2] ≤ 2αε2
2 + αβε2

1

∫ T

t

k2(τ)dτ

+2LβT

∫ T

t

k2(τ)

(∫ T

τ

k2(u)du

)
dτ

≤ 2α2ε2
2 + α2βε2

1

∫ T

t

k2(τ)dτ + L
β2

2!

(∫ T

t

k2(τ)dτ

)2
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≤Mε2
2

1 + (8β)

∫ T

t

k2(τ)dτ +
(8β)2

2!

(∫ T

t

k2(τ)dτ

)2
 ,

for a ≤ t ≤ T , where M = max(2α2, L). By the inductive procedure for every
k = 1, 2, ... and a ≤ t ≤ T we obtain

E[ sup
t≤u≤T

|xn+1(u)− xn(u)|2]

≤Mε2
2

[
1 + (8β)

∫ T

t

k2(τ)dτ +
(8β)2

2!

(∫ T

t

k2(τ)dτ

)2

+ ...+
(8β)n

n!

(∫ T

t

k2(τ)dτ

)n]
≤Mε2

nexp

[
8β

∫ T

t

k2(τ)dτ

]
.

Hence, similarly as in the proof of ([12], Th.3.2.5), by Chebyschev’s Inequality and
Boreli-Canalli lemma it follows that a sequence (xk)∞k=1 of stochastic processes
(xk(t))a≤t≤T is for a.e. ω ∈ Ω uniformly converging in [a, T ] to a continuous pro-
cess (x(t))a≤t≤T . We can verify that a sequence (fk)∞k=1 is a Cauchy sequence of
IL([a, T ]× Ω, βT ⊗FT , IRm). Indeed, for every k = 0, 1, 2, ... one has∫ a

0

E[|fk+1
τ − fkτ |]dτ

≤
∫ a

0

E[H(F (τ, (xk ◦ θk)(τ))), F (τ, (xk−1 ◦ θk−1)(τ))))]dτ

≤
∫ a

0

k(τ)E[ sup
0≤u≤τ

|xk(u)− xk−1(u)|]dτ .

Then there is an f ∈ IL([a, T ]×Ω, βT ⊗FT , IRm) such that ‖fk − f | → 0 as k →∞.

Let yt = E[xT +
∫ T
t
fτdτ |Ft] a.s. for a ≤ t ≤ T . For every k ≥ 1 we have

E[ sup
a≤t≤T

|x(t)− yt|] ≤ E[ sup
a≤t≤T

|x(t)− xkt |] + E[ sup
a≤t≤T

|xk(t)− yt|]

≤ E[ sup
a≤t≤T

|x(t)− xkt |] + E

[
sup

a≤t≤T
E[

∫ T

t

|fkτ − fτ |dτ |Ft]

]
+

∫ T

t

E|zkτ |dτ

≤ E[ sup
a≤t≤T

|x(t)− xkt |] + E

[
E[

∫ T

0

|fkτ − fτ |dτ |Ft]

]
+ Tε2

k

≤ E[ sup
a≤t≤T

|x(t)− xkt |] + E

∫ T

0

|fkτ − fτ |dτ + Tε2
k,

which implies that E[supa≤t≤T |x(t)−yt|] = 0. Then x(t) = E[xT +
∫ T
t
fτdτ |Ft] a.s.

for a ≤ t ≤ T . Now, for every a ≤ s ≤ t ≤ T , we get

E

[
dist

(
x(s), E

[
x(t) +

∫ t

s

F (τ, x(τ))dτ |Fs
])]

≤ E
[
|x(s)− xk(s)|

]
+ E

[
dist

(
xk(s), E

[
xk(t) +

∫ t

s

F (τ, xk(θk(τ)))dτ |Fs
])]
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+E

[
H

(
E

[∫ t

s

F (τ, xk(θk(τ)))dτ |Fs
]
, E

[∫ t

s

F (τ, xk(τ))dτ |Fs
])]

+E

[
H

(
E

[∫ t

s

F (τ, xk(τ))dτ |Fs
]
, E

[∫ t

s

F (τ, x(τ))dτ |Fs
])]

≤ ||xk − x||+ εk + E

∫ T

a

k(t)|xk(θk(t))− xk(t)|dt+ E

∫ T

a

k(t)|xk(t)− x(t)|dt .

But

E[|xk(θk(t))− xk(t)|] ≤ ||xk − x||+ E[ sup
a≤t≤T

|x(θk(t))− xk(t)|]

for every k ≥ 1 and a ≤ t ≤ T . Then

E

[
dist

(
x(s), E

[
x(t) +

∫ t

s

F (τ, x(τ))dτ |Fs
])]

≤

(∫ T

0

k(t)dt

){
E[ sup

a≤t≤T
|x(θk(t))− xk(t)|] + E[ sup

a≤t≤T
|x(t)− xkt |]

}

+‖xk − x‖+ εk ≤ ||xk − x||

(
1 +

∫ T

0

k(t)dt

)
+ εk

for every k ≥ 1 and a ≤ s ≤ t ≤ T . Hence it follows that

E

[
dist

(
x(s), E

[
x(t) +

∫ t

s

F (τ, x(τ))dτ |Fs
])]

= 0

for every a ≤ s ≤ t ≤ T . In a similar way we also get that d(x(t),K(t)) = 0 for every
a ≤ t ≤ T . Then x is a strong solution of BSDI(F,K) on the interval [a, T ].

We can extend now the above solution on the whole interval [0, T ]. Let us denote
by Λx the set of all extensions of the above getting viable solution x of BSDI(F,K).
We have Λx 6= ∅ because we can repeat the above procedure for every interval [α, T ]
with α ∈ (0, a] and get a solution xα of BSDI(F,K) on an interval [α, T ]. A
process z = 1I[α,a]x

α + 1I(a,T ]x is an extension of x on the interval [α, T ]. Let us
introduce in Λx the partial order relation � by setting x � z if and only if az ≤ ax
and x = z|[ax,T ], where ax, az ∈ (0, a) are such that x and z are strong viable
solutions for BSDI(F,K) on [ax, T ] and [az, T ], respectively and z|[ax,T ] denotes

the restriction of the solution z to the interval [ax, T ]. Let ψ : [α, T ] → IRd be an
extension of x on [α, T ] with α ∈ (0, a] and denote by Pψx ⊂ Λx the set containing
ψ and all its restrictions ψ|[β,T ] for every β ∈ (α, a). It is clear that each completely

ordered subset of Λx is of the form Pψx determined by some extension ψ of x. Then
by Kuratowski and Zorn’s Lemma there exists the maximal element γ of Λx . It
has to be aγ = 0, where aγ ∈ [0, T ) is such that γ is a strong viable solution of
BSDI(F,K) on the interval [aγ , T ]. Indeed, if it would be aγ > 0 then we could
repeat the above procedure and extend γ, as a viable strong solution ξ ∈ Λx of
BSFI(F,K), to the interval [b, T ] with 0 ≤ b < aγ . It would be imply that γ � ξ.
A contradiction to the assumption that γ is a maximal element of Λx. Then x can
be extended on the whole interval [0, T ]. �
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Remark 5.1. The above existence theorem is also true if K(t) = {u ∈ IL(Ω,F0, IR
d) :

u ∈ K(t)}. In such a case instead of (4.1) we can assume that lim infh→0+D[S((x+∫ t
t−h F (τ, x)dτ),K(t)] = 0 for every (t, x) ∈ Graph(K).

Proof. For every (t, x) ∈ Graph(K), f ∈ S(coF ◦ x) and u ∈ K(t) we have

E

(∣∣∣∣E[x+

∫ t

t−h
fτdτ |Ft−h]− u

∣∣∣∣)
= E

(∣∣∣∣E[x+

∫ t

t−h
fτdτ |Ft−h]− E[u|Ft−h]

∣∣∣∣)
≤ E

(
E

[∣∣∣∣x+

∫ t

t−h
fτdτ − u

∣∣∣∣ ∣∣∣∣Ft−h]) = E

∣∣∣∣x+

∫ t

t−h
fτdτ − u

∣∣∣∣ .
Therefore, d(E[x +

∫ t
t−h fτdτ |Ft−h],K(t)) ≤ d(x +

∫ t
t−h fτdτ,K(t)) for every f ∈

S(coF ◦ x). Then

D

[
S(E[x+

∫ t

t−h
F (τ, x)dτ |Ft−h]),K(t− h)

]
≤ D

[
x+

∫ t

t−h
F (τ, x)dτ,K(t− h)

]
for every (t, x) ∈ Graph(K). Then lim infh→0+D[S(x+

∫ t
t−h F (τ, x)dτ),K(t−h)] = 0

implies that (4.1) is satisfied. �
It can be verified that the requirement P ({Xt ∈ K(t) }) = 1 for 0 ≤ t ≤ T in

some above viability problems is too strong to be satisfied. For example the stochastic
differential equation dXt = f(Xt) + dBt with Lipschitz continuous and bounded
function f : IR→ IR does not have any solution X = (Xt)0≤t≤T with Xt belonging
to a compact set K ⊂ IR a.s. for every 0 ≤ t ≤ T . It is a consequence (see [10]) of
the following theorem.
Theorem 5.4. Let PIF = (Ω,F , IF, P ) be a filtered probability space and B =
(Bt)t≥0 a real valued IF-Brownian motion on PIF. Assume that ξ = (ξt)0≤t≤T
is an Itô diffusion such that dξt = αt(ξ)dt + dBt, ξ0 = 0 for 0 ≤ t ≤ T .

Then P ({
∫ T

0
α2
t (ξ)dt < ∞}) = 1 and P ({

∫ T
0
α2
t (B)dt < ∞}) = 1 if and only

if ξ and B have the same distributions as CT - random variables on PIF , where
CT = C([0, T ], IR) .
Example 5.1. Let f : IR → IR be bounded and Lipschitz continuous. Let PIF

and B be such as in Theorem 5.4. Put αt(x) = f(et(x)) for x ∈ CT , where
CT = C([0, T ], IR) and et is the evaluation mapping on CT , i.e., et(x) = x(t) for
x ∈ CT and 0 ≤ t ≤ T . Assume that K is a nonempty compact subset of IR such
that 0 ∈ K and consider the viable problem{

dXt = f(Xt)dt+ dBt a.s. for 0 ≤ t ≤ T

Xt ∈ K a.s. for t ∈ [0, T ]
(5.1)

Suppose there is a solution X , an Itô diffusion, of (5.1) such that X0 = 0. By the

properties of f we have
∫ T

0
f2(Xt)dt <∞ and

∫ T
0
f2(Bt)dt <∞ a.s. Therefore, by

virtue of Theorem 5.4, for every A ∈ β(CT ) with PX−1(A) = 1 one has PX−1(A) =



116 MICHA L KISIELEWICZ

PB−1(A). By the properties of the process X one has P ({Xt ∈ K}) = 1. But
P ({Xt ∈ K}) = P ({et(X) ∈ K}) = PX−1(e−1

t (K)). Hence it follows that 1 =
PX−1(e−1

t (K)) = PB−1(e−1
t (K)) = P ({Bt ∈ K}) < 1. A contradiction. Then the

problem (5.1) does not have any K-viable strong solution.
Remark 5.3. It is possible to consider viability problems with weaker viable require-
ments of the form P ({Xt ∈ K(t) }) ∈ (ε, 1) for 0 ≤ t ≤ T and a given sufficiently
large ε ∈ (0, 1) .
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[2] R. Buckdahn, H.J. Engelbert, A. Rǎşcanu, On weak solutions of backward stochastic differential
equations, Theory Probab. Appl., 49(2000), 16-50.

[3] F. Hiai, H. Umegaki H., Integrals, conditional expectations and martingale of multivalued func-

tions, J. Math. Anal., 7(1977), 149-182.
[4] Sh. Hu, N.S. Papageourgiou, Handbook of Multivalued Analysis I, Kluwer Acad. Publ. Dor-

drecht, Boston, 1997.
[5] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., New York,

1991.

[6] M. Kisielewicz, Backward stochastic differential inclusions, Dynamic Systems and Appl.,
16(2007), 121-140.

[7] K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Polon. Acad. Sci.,

13(1965), 397-403.
[8] B. Øksendal, Stochastic Differential Equations, Springer-Verlag Berlin-Heildelberg, 1998.

[9] P.H. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin Heildel-

berg, 1990.
[10] R.S. Lipcer, A.N. Shiryaev, Statistics Stochastic Processes (Polish), PWN, 1981.

Received: March 5, 2012; Accepted: June 16, 2012.


