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1. INTRODUCTION

Given measurable set-valued mappings F' : [0,T] x R™ — CI(R™) and H : R™ —
CI(R™) by a backward stochastic differential inclusion BSDI(F, H) we mean rela-
tions of the form

2, €F {xt + f: F(r, LU-,—)dT|]‘—S} as. for 0<t<T )

xr € H(xp) as.

that have to be satisfied by a cadldg process © = (x;)o<i<r defined on a com-
plete filtered probability space Prp = (2, F, P,TF) with a filtration IF = (F¢)o<i<r
satisfying the usual hypothesis (see [9]). FElx: + fst F(r,x,)dr|Fs] denotes the set-
valued conditional expectation (see [3], [4]) of the set-valued mapping Q > w —
xp(w) + fst F(r,xz;(w))dr C R™ relative to Fs. A pair (z,Pr) satisfying conditions
(1.1) is said to be a weak solutions of BSDI(F, H). If Py is given then z, satisfying
conditions presented above, is said to be a strong solution of BSDI(F, H). Existence
of strong solutions of BSDI(F, H) has been considered in the author’s paper [6].
In particular case, BSDI(F, H) generalizes a backward stochastic differential equa-
tion considered in [2]. If a filtered probability space Pr has a ”constant” filtration
IF = (F) then a strong solution x for such BSDI(F, H) is a solution to a backward
random inclusion —x} € coF'(¢,z;) with a terminal condition xr € H(xT).
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The present paper is devoted to the existence of strong solutions of the following
viability problem BSDI(F, K):

s, € F [zt + f; F(r, :z:T)d7'|]-"s} as. for 0<t<T 12)
€ K(t) as. for 0<t<T,

where K : [0,T] x @ — CI(IR™) is a given set-valued process. Throughout the
paper we assume that Pr = (2, F,P,F) is a given complete filtered probability
space with a filtration IF = (F;)o<;<7 satisfying the usual hypotheses. By ID(IF, R%)
we denote the space of all m - dimensional IF - adapted cadlag processes on Pr
and by S(IF,R™) the set of all m - dimensional IF - semimartingales x such that
|z|ls = Elsupsefomlzs|*] < oo. We have S(IF,R?) ¢ D(IF,R™). It can be proved
(see [9], Th.IV2.1.,Th.V.2.2.) that (S(IF,R™),|| - ||s) is a Banach space.

The paper is organized as follows. Section 2 contains some properties of set-valued
conditional expectation of Aumann’s set-valued integrals. In Section 3 some mea-
surable selection theorem is given. Section 4 contains some viable approximation
theorem. Existence of strong viable solutions for BSDI(F, K) is proved in Section 5.

2. CONDITIONAL EXPECTATION OF SET-VALUED INTEGRALS

Let (Q, F, P) be a probability space, G a sub-g-algebra of 7 and ® : Q — CI(R™)
be an F-measurable set-valued mapping with a nonempty subtrajectory integrals
S(®) containing all its integrable selectors. By properties of S(®) there exists (see
[4]) a unique (in the a.s. sense) G-measurable set-valued mapping E[®|G] satisfying

S(E[@|G]) = cl{E[p|9] : ¢ € S(D)} (2.1)

where clj, denotes the closure operation in IL(€2, G,R™). We call E[®|G] the multival-
ued conditional expectation of ® relative to G. The multivalued conditional expec-
tation possesses properties similar to those of the usual ones. For example, we have
S, E[®|GldP = [, ®dP for every A € G, where integrals are understood in the Au-
mann’s sense (see [4], Prop.6.8). It can be proved (see [4], Prop. 6.2.) that for given
measurable and integrably bounded set-valued mappings ®, ¥ : QO — CI(R™) one has
En{E[®|G], E[¥|G]} < E[h(®, ¥)], where h is the Hausdorff metric on CI(R™).

Let G : [0,T] x 2 — CI(R™) be measurable and integrably bounded, i.e., such that
there is m € IL([0,T] x Q, Br ® Fr,Ry) satisfying an inequality ||G (¢, z)| < m(t,w)
a.e. In what follows we shall denote such set-valued mappings as measurable set-
valued processes F' = (Fy)o<i<r with F; = G(t,-). The space of all such de-
fined set-valued processes satisfying conditions mentioned above will be denoted by
L(T,Q,IR™). As usual by S(G) we denote subtrajectory integrals of G, i.e., a set of
all integrable selectors of G. It is easy to verify (see [5]) that S(G) is nonempty
closed and decomposable, i.e., that for every f,g € S(G) and E € fSr ® Fr
one has 1gf + 1g~g € S(G), where fr denotes the Borel o-algebra of [0,7]
and E~ is the complement of E. In particular, if G(t,w) are convex subsets
of R™ for (t,w) € [0,T] x £, then S(G) is a convex weakly compact subset of
IL([0,T] x Q, Br @ Fr,R™). For a given above G we can define an Aumann integral

P(w) = fOT G(t,w)dt depending on a parameter w € (.
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Proposition 2.1. For every F € L(T,Q,IR™) a set-valued mapping fOT Fi(-)dt

defined by Q> w — fOT Fi(w)dt € CI(IR™) is Fp-measurable with compact convex
values.

Proof. By virtue of Aumann theorem (see [5],Th.I1.3.20) fOT Fi(w)dt is a nonempty
compact convex subset of IR™ for every w €  and fOT Fy(w)dt = fOT co Fy(w)dt.
Therefore, to verify that the set-valued mapping Q > w — fOT Fy(w)dt € CI(IRY) is
Fr-measurability (see [5], Th.I1.3.8) it is enough to show that the function Q> w —

o(p, fOT Fy(w)dt) € R is Fr-measurable for every p € IRY, where o(-, A) is a support
function of a set A € CI(IR™). By measurability of F and its integrably boundedness
the function [0,7] x Q 3 (t,w) — o(p,coF;(w)) C IR is measurable for every p €

IR¢. By virtue of ([5], Th I1.3.21) for every p € IR™ one has o(p, fOT Fi(w)dt)) =
fOTJ(p, coF;(w))dt for every w € €. Hence, by Fubini’s theorem, Fr-measurability
of the function Q > w — o(p, fOT Fy(w)dt) € R follows for every p € IR?. Therefore,
fOT Fy(-)dt is Fr-measurable. O
Proposition 2.2. Let F' € L(T,Q,IR™). Subtrajectory integrals S[fOT F(+)

dt] of fOT Fy(-)dt is a nonempty conver weakly compact subset of the space
L(Q, Fr,R™) and S[f] F(-)dt] = J[S(coF)], where J : IL([0,T] x Q,fBr &
Fr,R™) — IL(Q, Fr,R™) is defined by J(f) = [5 f(t,-)dt for [ € L([0,T) x
Q, fr @ Fr,IR™).

Proof. By the properties of the mapping Q > w — fOT coFi(w)dt € CI(IR™) it
follows that S] fOT coFy(-)dt] is a nonempty convex weakly compact subset of the
space IL(Q), Fr,IR™). Hence, by the equality fOT Fi(w)dt = fOT coF(w)dt for a.e.
w € Q it follows that S| fOT Fy(-)dt] is also a nonempty convex weakly compact

subset of the space IL(2, Fr,IR™). By the definition of J[S(coF')] it follows that the
set J[S(coF')] is a nonempty convex weakly compact subset of IL(€2, Fr,IR™) such

that J[S(coF)] C S[[y coFy(-)dt] = Srlf) Fu(-)dt).

Assume ¢ € S[fOT F(t,-)dt]. Then for every A € Fr one has Esp € E4®, where
® = fOT Fy(-)dt, Exp = [, pdP and Eo® = [, ®dP. Let € > 0 be given and select
an Fr-measurable partition (A4%)Yz, of Q such that Ea: f0T||Ft(~)Hdt < g/2ntl,

n—
For every n =1,..., N. there is an f;; € S(F) such that Ea:¢ = Ea. fOT fe(t,-)dt.
Let f¢ = Zgil T4 f;;- By decomposability of S(F') one has f¢ € S(F). We
have f€ € S(coF) because S(F) C S(coF). Taking a sequence (ex)32, of positive
numbers €, > 0 such that e, — 0 as k — oo we can select a subsequence, denoted
again by (f*)%2,, of (f*)22, weakly converging to f € S(coF), because S(coF')
is a weakly compact subset of IL([0,T] x Q, fr ® Fr,IR™). For every A € F and
k=1,2,... there is a subset {ny,...,n,} of {1,..., N, } such that An Asx # 0 for
i=1,2,...,pand ANA, =0 for r € {1,2,...,N., } \ {n1,...,np}. Therefore,

Ney,

T
]EM B[ >dt] <3

n=1

T
Epnazk o = Eynack / Tor(t, )dt’
0
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Mﬁ

T p T
Banacs# — Banacs / fﬁk(t,»dt\gzzEA;k / 1F()lde < e
=1 0 i1 *Jo

for every k = .... On the other hand for every A € F we also have

‘EAso EA/ 1, dt‘ ‘EAso EA/ fore )dt‘

T T
+‘EA/O fﬁk(t,.)dt—EA/O f(t,~)dt‘

T T
§5k+’EA/ fek(t")dt—EA/ f(t,~)dt’

for k =1,2,.... Hence it follows that EAcp E4 fo -)dt for every A € F, because
e — 0 and |EA fo fer(t,-)dt — Ey fo S)dt] — 0 as k — oo. Therefore, p(w) =
fo f(t,w)dt for a.e. wEQ Then ngJ[S’(coF)] and Sfo Fy(-)dt] = J[S(coF)]. O

Corollary 2.1. If G:[0,T] x Q — CI(R™) is measurable and mtegmbly bounded and

G is a sub-c-algebra of F then
T
/ g(t, o)dt|Q1 :g € S(co G)} .
0

(o] [ cwms]) -

Proof. Tt is enough only to see that the set H = {E[fOTg(t, )dt|G] : g € S(co G)}
is a closed subset of IL(£2,G,R™). By properties of the conditional expectations and
properties of the set S(coG) it follows that H is a convex weakly compact subset of
L(Q2, G,R™). Therefore, H is a closed subset of IL(Q2, G,R™). O

3. MEASURABLE SELECTION THEOREMS

Let © = (x¢)o<t<T be an measurable m-dimensional cddldg process on Pp. Given a

measurable and uniformly integrably bounded multivalued mapping F : [0, T]x R™ —
CI(R™) let F ox be a set-valued process defined by (F o x)(t,w) = F(t,x¢(w)) for
(t,w) € [0,T] x Q. Tt is clear that F' o z is measurable. In what follows by S(F o z)
we denote subtrajectory integrals of F' o z. Immediately from Kuratowski and Ryll-
Nardzewski measurable selection theorem (see [7], Th.1) it follows that for a given
above F' and x the set S(coF o z) is a nonempty convex weakly compact subset of
IL([O, T] X Q, 6’1" X ]:T, IRm)
Theorem 3.1. Assume F : [0,T] x R™ — CI(IR™) is measurable and uniformly
integrably bounded and let © = (x¢)o<i<r and z = (2zt)o<i<T be m-dimensional
measurable stochastic processes on a filtred probability space Py = (Q, F,IF, P) with
a filtration IF = (F;)i>0 satisfying the usual conditions and let E|xr| < co. If x is
IF-adapted then

t
rs € FE [xt —|—/ F(r, Z-,—)dT|]‘—S:| a.s. (3.1)
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for every 0<s<t<T ifand only if there is f € S(coF o z) such that

il't:E

mT-i—/t f(T,~)dT|}'t1 a.s. (3.2)

for every 0 <t <T.
Proof. Suppose there is f € S(coF o z) such that (3.2) is satisfied. For every 0 < s <

t < T one has
—E|:5CT+/ flr dT|.7::|

—E[/f d7|f]+ExT+/f dr|F,

and FElx¢|Fs] = Elzr + ft 7,-)dr|Fs] a.s. Then xs = Elxy + ftf S)dr
as. for 0 < s <t <T. Hence by Corollary 2.1 it follows that z, € S(E[
f; F(7,z;)dr|Fs]) for 0 < s <t < T. Therefore (3.1) is satisfied a.s. for 0 <s
t<T.

Assume (3.1) is satisfied a.s. for every O § s <t<T andlet m e IL([0,T],IRy)

Tl
+
<

be such that |F(¢,z]] < m(¢) for a.e. t € [0,7] and =z € IR™. For every 0 <
t < T one has E|z¢| < Elzr| + Efo t)dt < co. Let n > 0 be fixed and select
6 € (0,T) such that supge,;<7_ 5ft )dT < n/2. For fixed t € [0,T — §] and

t <7 <t+0d wehave x; € E| :cT+ft (s,25)ds|F:] a.s. Therefore, for every A € F;
we get Fa(zy —x,) € Ea ftT F(s,z5)ds, where Eg(xy — x;) = E[ls(x; — x,)] and
Ea [} F(s,z5)ds = E[14 [] F(s,z)ds] for A€ F,. Then

T t+5
|Ea(zy —x7)| < EA/ |1 (s, zs)||ds < E/ m(s)ds < n/2
¢ t

for every 0 <t <T —¢ and A € F;. Therefore, sup;«,<;15|Ea(x; —x,)| < n/2 for
every A € F; and fixed 0 <t <T —§6.

Let 70 =0, 71 =6,...., Tv—1 = (N —1)0 < T < N¢. Immediately from (3.1) and
Corollary 2.1 it follows that for every i = 1,2, ..., N —1 thereis f;' € S(coF oz) such
that

Ti

Elx,, ,—E |z, + 1 (s, ~)ds|.7-'ﬂ._1] ‘ =0.

Ti—1

Furthermore, there is fJ, € S(coF o z) such that

T
Try_, — F {xT —|—/ (s, ~)ds|]:TN1}

N—1

E =0.

Define f7(t,w) = 3203 Tpry_y ) (OF] (6,0) Ty, 21 (8) fr () for (t,w) € [0,T] x
Q. By decomposability of S(coF o z) we have f7 € S(coF o z). For fixed t € [0, 7]
thereis p € {1,2,...,N —1} or p= N such that ¢ € [1,_1,7,) or t € [Ty_1,T]. Let
t € [mp_1,7p) with 1 <p <N —1. For every A € F; one has

‘EA (xt -E {xT + /tT f7(s, -)d5|}'t]>

<|Ba(we —xr,)|+ E

Tr, — F {x%ﬂ
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Tp+1 TP
4 / s, ->d¢|f7p} \ + \Ba(Blry 1| Fr] = #ry0)l +E\ / £7(s, )ds
T, t

P

+‘EA (EUT+ f"(s,-)ds|pr] _EMW f”(s,-)dr|]-}D ‘ +o

p p

T
+E Try_1 — El:xT +/ fﬂ(s’ ')dT-FTN1:| + ‘EA(E[‘rTleTNl] - xTN—l)
TN-—1
T T
+E4 (E {/ (s, ~)ds|]:TN1} — E[/ (s, ~)ds|]-'t}> ’
TN—-1 TN-1
t+4 N-2 Tit1
< sup |Ea(x: —xz)H [ m(s)ds +ZE x.,—E {xnﬁ + (s, -)ds|]:n}
t<7<t+d t i=p Ti
T N-2
#Blony = Blors [ P Fa ][+ X BaBlenal il - )
TN—1 i=p
N-2 Tit1 Ti+1
+ Z EA(E[/ f"(s,~)ds|]-'ﬂ] —E[/ f”(s,-)ds|.7:t]>‘
i=p Ti Ti

+

ol [ e | o[ [ per)

N—-1

But F; C Fy, fori=p,p+1,..,N — 1. Then for A € F; one has

N-2
Z ‘EA(E[]"THJJ:H] - $T1+1)| =0,
i=p

Ex <E [/T” f"(s,-)ds|]—'n] - E UTH f”(s,~)ds|]-'t} )‘ =0

i=p 2 3

([ e ] o[ )]s

N-—1
With this and the definition of f" it follows

T
Ea (a:t —FE |z +/ fn(S, )dS|f,;|>

for fixed 0 <t < T and A € F. Let (n;)52; be a sequence of positive numbers
converging to zero. For every j = 1,2,... we can select f" € S(coF o z) such
that (3.3) is satisfied with = n;. By weak compactness of S(coF o z) there is a
subsequence (f™)72; of (f™)32; weakly converging to f € S(cof' o z). Then for
every A € F; C Fr one has

N-2

and

<n (3.3)

T T
lim EA/ f™(s,-)ds = EA/ f(s,-)ds.
k— o0 t t
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On the other hand for every fixed ¢ € [0,T] and A € F; we have

‘EA <xt - E{xT + /tT £(s, .)dsm])' < ’EA (mt _ E[mT + /T (s, -)dsmm
o ] o] 1)

+

T
<+ EA/ [T (s,-)ds — Ea f(S
t
for k = 1,2,... Therefore, E4(z; — E[zr + ft ds\]-"t}) =0 for every A€ F
and fixed 0 <t <T. But x; and E[zr + ft ds|]-"t] are F;-measurable. Then
xy = Elxr + ft ds|F] as. for 0 <t < T. Then there exists f € S(coF o z)
such that (3.2) is satlsﬁed O

For a measurable process Z on P by [Z]¥ we shall denote the ”conditional
expectation” with respect to a measure p® P and an IF-optional o-algerbra O, i.e.,
[Z)¥ = E,ep[Z|0], where u denotes the Lebesgue measure on [0, 7.

Corollary 3.1. If the assumptions of Theorem 3.1 are satisfied then a process
x = (z)o<i<r defined by ¢ = Elxp + ftTf(T7')dT|]:t] as. for 0 <t < T
with f € S(coF o z) belongs to S(IF,IR™) and has a supermartingale representa-
tion x; = xo + My + As, where xg = Elxr + fo frdr|Fol, At - _fo [f1¥d, and
Mt - xT + fo f‘rd7-|]:t] IT + fo d7|]:0 f(]{f ]]F}dﬂ]:t] Pro-
cess x is continuous if and only if (My)o<i<r 1S a contznumts martmgale

Proof. Tt is clear that z; = xg + My + A; a.s. for 0 < t < T, where xy, M; and
A, are for every 0 <t < T such as above. To see that (A;)o<i<r is IF-adapted
absolutely continuous process and (My)o<¢<r is IF-martingale let us observe that
[f]F is F; -measurable for every f € S(coF oz) and t € [0,T], which implies that
also A; is Fi-measurable for every f € S(coF oz) and t € [0,7]. Furthermore, the
process (A¢)o<i<r is absolutely continuous because |[f]IF| < |fi] < [|[F(t,2)| a.s.
for a.e. t €[0,T]. To verify that (M;)o<i<r is an IF- martingale let us observe first
that E[fst frdr|F) = fst E[f-|Fi]dr as. for every s << t < T. Indeed, for every
CeF; and 0<s<t<T one has

/C{E U:deT|Ft]}dp_/c{/:deT}}dp_/C/:depdT
:/:/C{E[Mft]}deT:/c{/:E[me]dT}dP'

Then E[[’ f,dr|F] = [! Elf-|Fdr as. forevery s <<t <T. Let N, = E[[,(fr—
[f1E)dr|F;] as. for 0 < s <t <T. Itis clear that (M;)o<i<7 is an IF-martingale
if and only if the process (IVi)o<i<r is an IF- martingale. We have E|N;| < oo for
every 0 <t <T. Furthermore, for every 0 < s <t < T one has

E[N; — N,|Fs]

~e[(z]f - 1Esiriz 2| [0 - iz ) |7
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fs] E [ [ B - 7]

- E [/OtE[(fr ~ [FIDIF] fs]

= [ B~ nmFd - [ CE[(fy — )| Fuldr = | Bl - ez
0 0 s

But for every C' € F; one has (s,t] x C € O. Therefore, for every C' € F; one gets

/C[/:E[(fr—[f]tf)fs}dﬂ ://(s,t]XCdeTdP_//(S7t]xc[f]fd7dp
=[] =[] g

Hence it follows fst E[(fr — [f]¥)|FsJdr = 0 as. for every 0 < s < t < T, which
implies that E[N; — N;|Fs] =0 a.s. for every 0 < s < t < T. Finally, by the equality
x¢ = o+ M+ A; and continuity of the process (A¢)o<i<r it follows that the process
x is continuous if and only if (M;)o<i<r is a continuous martingale. O
Remark 3.1. If the assumptions of Theorem 3.1 are satisfied and a filtratrion IF is
continuous then an IF-martingale (M;);>o defined in Corollary 3.1 is continuous.

4. VIABLE APPROXIMATION THEOREM

Existence of solutions of the viability problem (1.2) follows from some viable ap-
proximation theorem by applying the standard methods presented in the proofs of the
existence of strong solutions for BSDI(F, H) (see [2], [6]). We shall present now such
type approximation theorem. Its proof is similar to the proof of viable approximation
theorem presented in [1]. To begin with let us assume that K : [0, 7] x Q@ — CI(R™)
is a given set-valued process and let us define a set-valued mapping K(t) by set-
ting K(t) = {u € L(Q, 7, R™) : u € K(t), a.s.}. Furthermore, assume that
F:[0,T] x R™ — CI(R™) satisfies the following conditions (A):

(i) F is measurable and uniformly square integrably bounded by a function m €
L2([07T]7R+)7

(i) F(t,-) is square Lipschitz continuous, i.e., there is k € L*([0,T],Ry) such that
h(F(t,x1), F(t,22)) < k(t)|x1 — 22| for a.e. t€[0,T] and x1,22 € R™, where h is
the Hausdor(f metric on CI(R™).

Throughout this Section D denotes the Hausdorff subdistance defined on the space

CHIL(Q, Fr,IR™)) of all nonempty closed subsets of IL(Q2, Fr,IR™), whereas D de-
notes the Hausdorff distance defined on this space. The distance function dist(-,-)
on IL(Q, Fr,R™) x CI(IL(?, Fr,IR™)) is denoted simply by d(-,-).
Theorem 4.1. Assume F satisfies conditions (A) and let Pr = (Q,F,IF,P) be a
complete filtered probability space with a continuous filtration I = (Fy)o<i<r Such
that Fr = F. Suppose K :[0,T] x Q — CI(IR™) is IF-adapted set-valued process
such that K(t) # 0 for every 0 < t < T and such that the set-valued mapping
K:[0,T] — CHIL(Q, Fr,R™) is continuous. If

lim inf %E {5 <E [x + /t t F(T,:c)d7|]-'th]> Kt — h)] =0 (4.1)

h—0+ —h



EXISTENCE OF STRONG VIABLE SOLUTIONS 107

is satisfied for every (t,x) € Graph(K), where S(E[x + ft p F(rx)dr|Fip]) =

{Elz + ftt_h frdr|Fi—p) o f € S(coF o x)}, then for every e € (0,1), zr € K(zr),

€ (0,T) and a measurable process ¢ = (Pp)o<i<r such that ¢, € IL(Q, Fp,IR™) for
0<t<T and ¢ € F(T,zr) a.s. there exist a partition a =1, <t,_1 <..<t1 <
to =T of the interval [a,T), a step function 0. : [a,T] — [a,T], a step stochastic
process z° = (2§)a<t<T and a measurable process [ = (ff)a<i<r on Pr such that

(i) t; —tj41 <9, where 6 € (0,¢e) is such that max{fH_ k(7)dr, tt+76n(7')d7'}
<e?/2% and D(K(t+6),K(t)) <e/2 for t €[0,T],
(i) Tl < /2 for every a < t < T, where || = E|2¢],
(i) 6.(t) =tj—1 for t; <t < tj,l and 6-(t;) =t; with j =1,...,p—1 and
Oc(t) =tp—1 for a <t <t,_

(iv) = € S(coF o (2 0 0.)), |¢t w) = fi (W)l = dist(¢r, coP(t, (2 0 6c)(t))) for
(t,w) € [a,T) x Q, where z°(t) = Elxr + ft fedr|F) + ft z2dr a.s. for
a<t<Tand S(coF o(z°06.))={f € L*([a,T] x Q, Br @ Fr,RY) : f; €
coF(t,x%(0:(t))) a.s. for a.e. agth}

(v) Eldist(z*(s), E[z* +fs F(r,(zf 0 0.)(r)dr|Fs))] <e fora<s<t<T,
(vi) d(z(0:(¢)),K(0:(t))) =0 for a S t<T.

Proof. Let ¢ € (0,1), a € (0,T), zp € K(T) and a measurable process ¢ = (¢)o<i<r

be given. By virtue of (4.1) there exists hg € (0, min(d,T)) such that

5<E

Let t; = T — ho. By virtue of ([5], Th.IL.3.13) there exists f° € S(coF o xr)
such that |¢¢(w) — f2(w)] = dist(¢y(w), coF (t,xr(w)) for (t,w) € [t1,T] x Q. Let
Yo = E[a:TJrft]; f2dr|F,] a.s. We have yg € E[:z:T+fg F(r,xr)dr|Fy,] as., ie., yo €

S(Elzr + f: F(r,xr)dr|Fy,]). Therefore, d(yo,KC(t1)) < €hg/2. Similarly as above
we can see that there exists x1 € KC(¢1) such that E|yo — z1] = E[dist(yo, K(t1))] =
d(yo,K(t1)) < eho/2. Then |lyo — x1|| < eho/2. Let zf = 1/ho(z1 — yo) a.s. for
t1 <t <T. Wehave ||zf] < (1/ho)||lyo—1|| < €/2. Define 0.(t) =T for t; <t <T
and 0(t;) =t;. One has fY € coF(t,zr) as. for t; <t <T. Let

T
—|—/ zedr
¢

for t1 < t < T. We have 25(T) = zp and z°(t1) = yo + ho(1/ho)(z1 —
yo) = x1. Therefore, d(z°(0(t)),K(6(t))) = 0 for t; < t < T and |¢t(w) —
Fw)| = dist(¢y(w), coF(t 2%(0:(t)(w))) for (t,w) € [t1,T] x Q. Furthermore, by
the definition of 2° and properties of f° and z° one gets FE[dist(z°(s), Elxr +
f: F(r,z5(0(7)))dr|Fs) <e/2 for t1 <s<t<T.

If ¢; > a we can repeat the above procedure starting with (¢1,21) € Graph(K).
Immediately from (4.1) it follows that there exists an hy € (0,6) such that

D
T—ho

T + / .F(T7 xT>dT|fTh0]> JC(T - h())‘| S €h0/2.

T
z°(t)=F ;z:T+/ fodr|F,
t

t1

D l:S(E[:El +/ F(T,%l)dT|ft1_h1}),K(t1 — hl) < 6h1/2.
t1—h1
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Similarly as above we can select f! € S(coF ox;) and xy € K(t; — hy) such that
|pe(w) — fH(w))| = dist(¢i(w),co(F o x1)(t,w) for (t,w) € [t1 — hi,t1] x Q© and
llyr — 2| < eh1/22, where y; = E[z; + j:iihl frdr|F,,—p,] and ty = t; — hy. We
can extend now the step function 6. and the step process z¢ on the interval [t2, T
by taking 0.(t2) = ta, 0-(t) = t; for to <t < t; and zf = (1/hy)(x2 — y1) for
ty <t < ty. We have f! € coF(t,z1) as. for to <t <t;. We can also extend the
process z¢ on the interval (t3,T] by taking

t1 t1
2*(t)=F [ml —l—/ led7'|]:t} +/ zzdr
t t

a.s. for to < t < t;. We have d(z°(0-(1)),K(6(¢))) = 0 for to < ¢t < T
because z°(t2) = xo. Let f& = ]I(t27t1]f1 + ]I(thT}fO. We have z°(t) =
Elzr + ftT fedr| R + ftT 28dr as. for to < t < T. Similarly as above w
can verify that ff € coF(t,2°(0:(t))) as. for to < t < T and |¢p: — ff)]
dist(¢¢, co F(t x (H(t))) a.s. for to <t <T. Furthermore, d(xe(ﬁg(t)),lC(Qg(t))) =
and E[dist(z® f F(r,z5(0(7)))dr|Fs] <e/2 for t <t <T and to < s <t
T, respectlvely

Suppose that for some i > 1 the inductive procedure is realized. Then there
exist t;_1 € [a,T), such that we can extend a step function 6., a step process z°¢
a process z° and ff € coF(t,a%(0-(t)) for ¢;—1 <t < T such that |¢p; — ff] =
dist(¢s, co F(t,x°(0:(t))), where

T T
zi_1(t) = Elzr —|—/ fedr|Fy —|—/ zzdr
¢
a.s. for t;,_1 <t <T. Furthermore, d(z°(6.(t)), K(0:(t))) = 0 and

Eldist(z° /F 5 00.)())dr|F])] < £/2

for t;_1 < s <t <T. Define now a process z¢ by setting

T T
x%(t) = Elzr +/ frdr|F] —|—/ zedr
t t

a.s. for t;_7 < t < T. Denote by S; the set of all positive numbers h €
(0, min(d,¢;—1)) such that

@

IN <

i—1

S(E[2°(ti_1) + / ’

ti_1—h

D

F(r, "Eg—l(ti—l))dTLFti1—h])7lc(ti—1)‘| <eh/2.

By the properties of ¢ we have (t;—1,2°(t;—1)) € Graph(K). Therefore, by virtue
of (4.1), we have S; # () and supS; > 0. Choose h;_1 € S; such that (1/2)supS; <
hi_1. Put t; =t;_1—h;_1. We can extend again the step function 6., the step process
2%, processes f° and z° on the interval (¢;,T] such that d(x*(0:(t)),K(0(t)))) =0,
f§ € coF(t,z°(0:(t)) and |pr — fF| = dist(¢s, coF (¢, 2°(0:(t)) a.s. for t; <t < T.
Furthermore

E[dist(z°(s), Elx°(t) + / F(r, (2i_1 0 0:)(7))dr|Fs])] < /2
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for t; < s <t <T. We can continue the above procedure up to n > 1 such that
0 <t, <a<t,_1. Suppose to the contrary that there does not exist such n > 1,
i.e., that for every n > 1 one has a < t,, < T. Then we can extend the step function
0., the step process z° and stochastic processes f¢ and z° on the interval (t,,T)
for every m > 1 such that z°(t,,) € K(t,) a.s. for every n > 1 and that the above
properties are satisfied on (t,,T] for every n > 1. By the boundedness of a sequence
(tn)o2, we can select its decreasing subsequence (t;)$2; converging to t* € [a,T].
Let (x;)$°, be a sequence define by z; = x2°(¢;) a.s. for every ¢ > 0. In particular,
we have z; € K(t;) a.s. for every i > 1. For every j >k >0 we obtain

tr t;

m(t)dt + / m(t)dt

*

Bley — 2] < E|Eler|Fo] - ElerlF)| + /

;
T

/ fedt|
;

T
- E V ffdt]—“t*]
-
- F

+(ty —t;)Elzf| + E |E

T
frdt|Fy,
#*

T

t*

By continuity of the filtration IF it follows that lim; oo E|zy — ;] = 0. Then
(x4)$24 is a Cauchy sequence of IL(Q2, Fr,IR™). Therefore, there is * € IL(Q, Fr,IR™
such that ||z; —2*|| = 0 as i — co. We have z; € K(t;)) for every ¢ > 1, which by
continuity of K implies that (t*,2*) € Graph(K). Therefore, by virtue of (4.1) we
can select h* € (0,min(4,¢*)) such that

o

D

S(E[z* +/

F(1,2)dr|Fp_p+]), K(t* — h*)} < eh*/2°.
t*—h*

Similarly as above, for every i > 1, and any ¢; € S(coF o x;) we can select f* €
S(coF ox*) such that |¢i — f;)| = dist(¢l, F(t,2*)) a.s. for every t* —h* <t < t*.
By continuiuty of the filtratin IF we obtain ||E[x*|F;,—p+] — E[z*|Fe—p«]|| — 0 and

.
/ f:dﬂft*h*]
t*—h*

as ¢ — 0o. Let N > 1 be such that for every ¢ > N we have 0 < t; —t* < min(h*,J),
llz; — z*|| < eh*/(25 - A), D(K(t; — h*),K(t* — h*)) < eh* /2%, ||E[x*|Ft,—n<] —
Ela*|Fepe]l| < €h®/2%, B[/ 0 |oildr < eh*/2°, B [/ |gildt < ch*/2° and
E\E[f)_,. f2dr|Fi_n|—=ELlf_,. frdr|Fi_p.)| < h*/2°, where A =1+ [, k(t)dt.
By the properties of the multifinction F'(¢,-) and the selector f* of Foxz* it follows
that

E\E -F —0

)
[ pariFi
t

* _px

B}
e (6 — )| = E / 16— 1l

t* t*
< E/ h((F(t, ), F(t, 2))dt < |lz; — 2*]| k(t)dt.
t*—h* t*—h*
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For every ¢ > N one gets

t; .
d <E[:z:z- + / GLdT|Fy_pe], Kt — h*)>
t

i—h*
o

t1, .
Elzs + / 6L dr|Fr,_n] — Bl + / Frdr|Fren]
t

i—h* t*—h*

<FE

-
+d (E[gc* +/ FrdT| Foe_pa], Kt — h*)> + DK(t* = h*),K(t; — h*)).
t* —h*

But for every i > N we have

ti ) t*
plpfo+ [ saimiw|-Bles [ gz
ti—h* t*—h*
< E|E|(: — 1) Fos—a]| + E|El™| Fos—e] — Elz* | Foe ]|
£ =Rt t*—h" ti
+E|B / (68 — [)dr|Fovne || + E ildr+ B [ |61t
t* ti—h* t*
t*—h* t*
+E |E / frdr|Fy,—n-| — E / [rdT|Fre_pa || < 62h* /2.
t* t* —h*

Therefore, for every i > N one gets

t;
d [E {xi +/ ¢id7|]-"ti_h*} ,K(ti)} < 8h*/2° = eh* /2,
t

i—h*
which implies that
t;
D(S(Ex; +/ F(r,2)dr|Fi,—pe], K(t:)) < eh* /22
t;—h*

But t* <t; for i > 1. Therefore, for every ¢ > N one has h* € S;; and (1/2)h* <
sup S;+1 < h; = t; —t;41, which contradicts to the convergence of a sequence (%;)$2;.
Then there is a p > 1 such that a = ¢, < t,_1,....,t1 < to = T. Taking f° =
Tae, 1 fP + Z?:p72 Tt,,, )" we obtain the desired selector of coF o (z€06.). O
Remark 4.1. The above results are also true if instead of continuity of a set-valued
mapping K we assume that it is uniformly upper semicontinuous on [0,T], i.e., that
lims_ supg<, <7 D(K(t + 6), K(t)) = 0.

5. EXISTENCE OF VIABLE SOLUTIONS

We shall prove now that conditions (A) imply the existence of strong viable so-
lutions for BSDI(F,K). To begin with let us observe that immediately from the
properties of the multivalued conditional expectation the following result follows.
Lemma 5.1. If F satisfies conditions (A), then for every xz,y € S(IF,IR™) one has

E [h (E Ut F(r,2,) des} E Ut F(r, yT)d7-|]-"s] ﬂg/: k()Elz, — y,|dr

for every 0 < s <t < T, where h is the Hausdorff metric on CI(IR™).
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We can prove now the main result of the paper.

Theorem 5.2. Let Pp = (Q,F,IF,IP) be a complete filtered probability space with
a continuous filtration IF = (Fy)o<i<r Such that Fr = F. Assume that F satisfies
conditions (A) and let K : [0,T] x Q@ — CI(IR™) be IF-adapted set-valued process
such that KK(t) # 0 for every 0 <t <T and such that K : [0,T] — CI(IL(Q, Fp, R™)
is continuous. If Pr, F and K are such that (4.1) is satisfied for every (t,x) €
Graph(K) then BSDI(F, K) possesses a strong viable solution.

Proof. Let zp € K(T) and a € (0,T) be fixed. Put 2¥ = 27 a.s. for a <t < T and
let fO = (f?)a<t<r be a measurable process on P such that f2 € coF (¢, (z°06p)(t))
a.s. for a.e. a <t < T, where 0g(t) =T for a <t <T. Let ¢, = f0 as. for ae.
a <t <T. By virtue of Theorem 4.1, for ¢; = 1/23/2 and the above measurable
process ¢ = (¢¢)a<t<r there exist a partition a =t, <t, ; <..<t; <ty=T,
a step function 0y : [a,T] — [a,T], a step process z' = (z})a<t<r and a measurable
process f! = (f})a<t<r on Pp such that conditions (i) - (vi) of Theorem 4.1 are
satisfied. In particular, f! € coF(t,(z' o 61)(t)), |f} — f2| = dist(f?,coF (¢, (z! o
01)(t))) as. forae. a <t <T and d(z'(t),K(t)) < e for a <t < T, because
d(a (£), K(2)) < 2 (6) =21 (6(0))] +d(z(6(2)), K(8(2))) + DUC(O(2)), K(8)) < 21, where

z; = Elar + ftT fodr| R + j;T zldr as. for a <t < T. In a similar way for
¢ = (f1)a<t<r and g3 = 1/2 we can define a partition a = 12, < 12, ;| < ... <
t2 < t3 = T, a step function 6 : [a,T] — [a,T], a step process 2% = (22),<i<r

and a measurable process f2 = (f2)a<i<r such that f? € coF'(t, (2% 0 0s)(t)), |fZ —
fH = dist(f}, coF(t, (2% 0 02)(t))) as. for a.e. a <t < T and d(22(t),K(t)) < &2
for a <t < T, where 2? = E[zp + ftT frdr| 7] + ftT 22dr as. fora <t < T.
Furthermore, for i = 1,2 we have

E [dist <xi(s),E [:c"(t) + / Flr (o Hi)(r))d7-|]-'s]ﬂ <&

a.s. for a < s <t < T. By the inductive procedure for ¢, = 1/23'“/2 and ¢F =
(fF)a<t<r we can select for every k > 1 a partition a = tF < th | < . <t} <
th = T, a step function 0y : [a,T] — [a,T], a step process z* = (zF),<i<7 and a
measurable process f¥ = (fF),<i<7 such that fF € coF(t, (z*0l;)(t)), |fE—fF1 =
dist(fF, coF (¢, (x% 0 O;)(t))) as. for ae. a <t < T and d(z*(t),K(t)) < e for
a <t <T, where

T T
xh = E[xT+/ fE=Ldr| ) —I—/ 2kdr
t t
a.s. for a <t <T. Furthermore,
t
E [dist (mk(s),E [mk(t) +/ F(r, (2" o ek)(7)>deS:| )] <ep

fora<s<t<T. Of course z¥ € S(IF,IR™) for k > 1. By Remark 3.1 a process

x¥ is continuous for every k > 1. Furthermore, by the properties of the sequence
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k
(f%)52,, one gets

M) — () < B

T
/t . ff”IdTIE]

T T
+/ E|zFt —2Mdr < E [/ dist(f*~1co F(r, (2" o Gk)(T)))dﬂ]-"t]
t t

9
+-Ter. < aep + F
8 r<s<T

T
/t K(r) sup |x’“<s>x'“<s>drft],

a.s. for a <t < T, where o = %T. Therefore,
sup |xk+1(u) — xk(u)\
t<u<T

T
<aegp+ sup E / k(1) sup |z*(s) — 2 71(s)|dr|F.| < aex
u

t<u<T T<s<T ]
. :

+ sup E / k(r) sup |z%(s) — 2" (s)|dT|F.
t<u<T ¢ T<s<T |

a.s. fora <t <T and k =1,2,.... By Doob’s inequality we get
42

E

T
sup E[/ k() sup |:1:k(s) — xk71(5)|d7'|}'u]
t<u<T t T7<s<T

T 2
<4 / K(r) sup |xk<s>—x’”<5)'dﬂ]

7<s<T

for a <t < T. Therefore, for every a <t <T and k = 1,2, ... we have
T
E[ sup |a"* (u) — 2" (u)?] < 207} +5/ KA(1)E[ sup_|2*(s) — 2" (s)[*]dr
t<u<T t 7<s<T
where 8 = 8T. By the definitions of 2' and z° we obtain Efsup,<,<p |z'(u) —
2%(u)[?] < L, where L = 2T( [ m2(t)dt + T). Therefore,

T
E[ sup \xQ(u) — xl(u)|2] < 20%e? + L,B/ k*(t)dr
t

t<u<T
for a <t <T. Hence it follows

T
E[ sup |x3(u) - xQ(u)F] < 20[5% + aﬁe%/ kz(’]’)d’r
t<u<T t

+2LBT / ' k2 (T) < /T ' k‘2(u)du> dr

t
T g (T 2
< 20762 + o?Be? K2 (7)dr + La / E*(T)dr
t : t
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T 2 [ T 2
< Mej |1+ (86) /t kQ(r)dr+(8£> ( /t k2(T)d7'> ;

for a <t < T, where M = max(2a?,L). By the inductive procedure for every
k=1,2,... and a <t < T we obtain

E[ sup [a"(u) — 2" (u)[’]
t<u<T

< M2 [1 +(86) /tjl;2(7')d7' " (85!)2 (/tZI;Q(T)dT>2 + ..+ (88)" (/:I;Q(T)d7> n]

n!

T
< Me2exp [86/ K*(r)dr| .
t

Hence, similarly as in the proof of ([12], Th.3.2.5), by Chebyschev’s Inequality and
Boreli-Canalli lemma it follows that a sequence (z¥)$2, of stochastic processes
(2% (t))a<t<r is for a.e. w € Q uniformly converging in [a,T] to a continuous pro-
cess (2(t))a<t<r. We can verify that a sequence (f¥)22, is a Cauchy sequence of
L([a,T) x , Br @ Fr,IR™). Indeed, for every k =0,1,2,... one has

| Bl ptar
gZfMHGWﬂﬁo@Mﬂ»Fﬁxﬁ*O%qﬂﬂWHT

g/oak(T)E[ sup o (u) — 2 (u)[Jdr

o<u<rt
Then there is an f € IL([a, T] x 2, Br ® Fr,IR™) such that ||f*— f| — 0 as k — co.
Let y; = Elzr + ftT frdr|Fi] as. for a <t <T. For every k> 1 we have

E[ sup |z(t) —wl] < E[ sup |z(t) — zf[] + E|
<T a<t<T

a‘if

sup [2"(t) — yl]
a<t<T
T
+/ E|zF|dr
t

+Te?

< B[ sup |z(t) —af|| + E
a<t<T

T
wa%\ﬁ—mme

a<t<

< E[ sup |z(t) —af|| + E
a<t<T

T
E%|ﬁ—mmm]

T
< E[ sup |z(t) — zF]] +E/ |fF — frldr + Te2,
a<t<T 0

which implies that E[sup,<;<r [#(t) —y¢|] = 0. Then x(t) = Elxr +ftT frdr|F] as.
fora <t <T. Now, for every a < s <t < T, we get

E [dist (:U(s), E {x(t) + /: F(T,x(T))dTIJ-'s] ﬂ
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+E [H (E [/t F(r, xk(ek(T)))dﬂ]:s} B [/t F(r, x%))dﬂfsm

+E [H (E UstF(nm’“(T))des} B [/gtF(T’x(T))dT|fs]>}

T T
< ||lz* —x||+5k+E/ E(t)|z* (05(2)) —xk(t)|dt+E/ E(t)|z* (t) — z(t)|dt .

a a

But
Ella*(0x(t)) — 2 ()] < [Ja* — || + E[ailtlgT |20k () — 2" (1)]]

for every k> 1 and a <t <T. Then

E [dist (z(s),E {x(t) + /: F(T,a:(T))dTU:s]ﬂ

< ( / k(t)dt) {E[ sup [2(04(8)) — *(1)]) + B[ sup x(t)—xm}

a<t<T a<t<T

T
+2* — x| +ex < ||2F — 2| (1 —|—/ k(t)dt) +ek
0

for every k > 1 and a < s <t <T. Hence it follows that

E [dist (:v(s),E [m(t) +/: F(T,x(T))dﬂfsm =0

for every a < s <t < T. In a similar way we also get that d(z(t),(t)) =0 for every
a<t<T. Then z is a strong solution of BSDI(F, K) on the interval [a,T].

We can extend now the above solution on the whole interval [0, 7. Let us denote
by A, the set of all extensions of the above getting viable solution = of BSDI(F, K).
We have A, # () because we can repeat the above procedure for every interval [a, T
with o € (0,a] and get a solution z* of BSDI(F,K) on an interval [o,T]. A
process z = Iy q2® + T4z is an extension of x on the interval [a,T]. Let us
introduce in A, the partial order relation < by setting x < z if and only if a, < a,
and © = 2|4, 1), Where a;,a. € (0,a) are such that x and z are strong viable
solutions for BSDI(F,K) on [a,,T] and [a.,T], respectively and z|[,, 7] denotes
the restriction of the solution z to the interval [a,,T]. Let ¢ : [, T] — IR? be an
extension of z on [a, T] with a € (0,a] and denote by P¥ C A, the set containing
¢ and all its restrictions 1|(g 1) for every € (o, a). It is clear that each completely
ordered subset of A, is of the form P¥ determined by some extension v of . Then
by Kuratowski and Zorn’s Lemma there exists the maximal element ~ of A, . It
has to be a, = 0, where a, € [0,7) is such that v is a strong viable solution of
BSDI(F,K) on the interval [a,,T]. Indeed, if it would be a, > 0 then we could
repeat the above procedure and extend <, as a viable strong solution & € A, of
BSFI(F,K), to the interval [b,T] with 0 <b < a. It would be imply that v < &.
A contradiction to the assumption that + is a maximal element of A,. Then x can
be extended on the whole interval [0, 7. O
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Remark 5.1. The above existence theorem is also true if K(t) = {u € IL(Q, Fy, IRY) :
u € K( )}. In such a case instead of (4.1) we can assume that liminf;, o, D[S((z +
ft W F(r,2)d7),K(t)] = 0 for every (t,z) € Graph(K).

Proof. For every (t,x) € Graph(K), f € S(coF ox) and u € K(t) we have

E <‘E[m + /tth frdr|Fizp] —u )
)

t
=E (’E[m +/ frdr|Feon] — Elu|lFi—p]
t—h
T+ deT—U .

co(effer [ rar—d[r]) = les [

T+ frdT —u
t—h
Therefore, d(E[x + ft W AT Feop), K(t) < d(z + f;h frdr,K(t)) for every f €
S(coF o x). Then

t

D {S(E[x + F(r,z)dr|Fi—n)), K(t — h)]

t—h

<D {x + /tth F(r,z)dr, K(t h)]

for every (t,z) € Graph(KC). Then liminf, o4 ﬁ[S(x—ﬁ—ff_h F(r,z)dr),K(t—h)] =0
implies that (4.1) is satisfied. O
It can be verified that the requirement P({X; € K(t)}) =1 for 0 <t < T in
some above viability problems is too strong to be satisfied. For example the stochastic
differential equation dX; = f(X;) + dB; with Lipschitz continuous and bounded
function f:IR — IR does not have any solution X = (X;)o<;<r with X; belonging
to a compact set K C IR a.s. for every 0 <t < T. It is a consequence (see [10]) of
the following theorem.
Theorem 5.4. Let Py = (Q, F,IF,P) be a filtered probability space and B =

(Bt)i>o a real valued IF-Brownian motion on Pr. Assume that & = (& )o<i<T
18 an Ito diﬁusion such that d& = «au(&)dt + dBt, & =0 for 0 <t < T.
Then P( {fo a(é)dt < oo}) = 1 and P( {f( B)dt < oo}) = 1 if and only

if & and B have the same distributions as Cp- mndom variables on Pr, where
Cr=C([0,T],R).

Example 5.1. Let f : IR — IR be bounded and Lipschitz continuous. Let Pp
and B be such as in Theorem 5.4. Put a;(x) = f(et(x)) for = € Cr, where
Cr = C([0,T],IR) and e; is the evaluation mapping on Cr, i.e., e;(x) = x(t) for
x € Cpr and 0 <t <T. Assume that K is a nonempty compact subset of IR such
that 0 € K and consider the viable problem

dX; = f(Xy)dt +dB; a.s. for 0<t<T
X: €K a.s. for te€]0,T)
Suppose there is a solution X , an Ito diffusion, of (5.1) such that Xy = 0. By the

properties of f we have fOT f2(X;)dt < oo and fOT f?(B;)dt < oo a.s. Therefore, by
virtue of Theorem 5.4, for every A € 3(Cr) with PX1(A) =1 one has PX1(A) =

(5.1)
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PB~1(A). By the properties of the process X one has P({X; € K}) = 1. But
P({X; € K}) = P{es(X) € K}) = PX '(e;}(K)). Hence it follows that 1 =
PX ' (e;Y(K)) = PB (e *(K)) = P({B; € K}) < 1. A contradiction. Then the
problem (5.1) does not have any K-viable strong solution.

Remark 5.3. It is possible to consider viability problems with weaker viable require-
ments of the form P({X; € K(t)}) € (¢,1) for 0 < ¢ < T and a given sufficiently
large € € (0,1).
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