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Abstract. In this paper, we prove that if f is a contractive closed-valued correspondence on a cone

metric space (X, d) and there is a contractive orbit {xn} for f at x0 ∈ X such that both {xni} and
{xni+1} converge for some subsequence {xni} of {xn}, then f has a fixed point, which generalizes a

fixed point theorem for contractive closed-valued correspondences from metric spaces to cone metric

spaces.
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1. Introduction

A class of interesting cone metric spaces were firstly introduced and investigated
by P. P. Zabrejko in a survey on some fixed point theorems [13]. Let B be an ordered
linear space over R and K be a cone in B. For a set X, P. P. Zabrejko [13] defined a
function ρ : X ×X −→ B, which satisfies the following properties.

(a) ρ(x, y) ≥ 0 for all x, y ∈ X.
(b) ρ(x, y) = 0 is equivalent to x = y for all x, y ∈ X.
(c) ρ(x, y) = ρ(y, x) for all x, y ∈ X.
(d) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X.

Here, the function ρ is called a K-metric on X and the pair X = (X, ρ) is called a
K-metric space. Many interesting results in [13] are gathered in some theorems about
existence and uniqueness of fixed points for operators that act in K-metric spaces,
which generalized the classical Banach-Caccioppoli principle of contractive mappings.

As further investigation for K-metric spaces, another class of cone metric spaces
were presented and discussed by L.G. Huang and X. Zhang in [4]. This paper refers
to cone metric spaces in the sense of [4]. Recently, many interesting results, around
fixed point theorems for mappings on cone metric spaces, had been obtained (see [1, 3,
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4, 5, 9, 11, 12], for example). However, can fixed point theorems for correspondence
be also generalized from metric spaces to cone metric spaces? It is an interesting
topic. In the classical theory of fixed points for correspondence on metric spaces, the
following is a known theorem.

Theorem 1.1 ([7, 10]) Let f be a contractive closed-valued correspondence on a
metric space (X, d) and there be a contractive orbit {xn} for f at x0 ∈ X such that
both {xni

} and {xni+1} converge for some subsequence {xni
} of {xn}. Then f has a

fixed point.

Thus, the following question arise naturally.

Question 1.2 Can “metric space” in Theorem 1.1 be generalized “cone metric space”?

In this paper, we give an affirmative answer for Question 1.2. Throughout this
paper, N and R denote the set of all natural numbers and the set of all real numbers
respectively, {xn} denotes the sequence {x0, x1, x2, · · · , xn, · · · }. A correspondence f
on a space X means a set-valued mapping f : X −→P0(X), where P0(X) = {B ⊂
X : B 6= ∅} (see [7, 8], for example). A point x ∈ X is a fixed point for f if x ∈ f(x).

2. Preliminaries

Definition 2.1 ([4]) Let E be a real Banach space. A subset P of E is called a cone
if the following are satisfied.

(1) P is closed, P 6= ∅ and P 6= {0}.
(2) a, b ∈ R, a, b > 0 and x, y ∈ P =⇒ ax+ by ∈ P .
(3) x,−x ∈ P =⇒ x = 0.

Definition 2.2 ([4]) Let P be a cone of a real Banach space E. Some partial orderings
≤, < and� on E with respect to P are defined as follows, respectively. Let x, y ∈ E.

(1) x ≤ y if y − x ∈ P .
(2) x < y if x ≤ y and x 6= y.
(3) x� y if y − x ∈ P ◦, where P ◦ denotes the interior of P .

Remark 2.3 In this paper, for the sake of conveniences, we also use notations “≥”,
“>” and “�′” on E with respect to P . The meanings of these notations are clear
and the following hold.

(1) x ≥ 0 if and only if x ∈ P .
(2) x� 0 if and only if x ∈ P ◦.
(3) If x ≥ y and y � 0, then x� 0 [6].
(4) If x1 � 0 and x2 � 0, then there is x� 0 such that x� x1 and x� x2 [12].

Definition 2.4 Let P is a cone of a real Banach space E.
(1) P is called strictly normal if 0 ≤ x < y implies ‖x‖ < ‖y‖ for all x, y ∈ E.
(2) P is called strongly minihedral [11] if each subset of E which is bounded from

above has a supremum.
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Remark 2.5 ([11]) Let P is a cone of a real Banach space E. P is strongly minihedral
if and only if each subset of E bounded below has an infimum.

Example 2.6 Let E = R and P = {x ∈ R : x ≥ 0}. Then P is a strictly normal and
strongly minihedral cone of E.

Throughout this paper, we always suppose that E is a real Banach space and P is
a strictly normal and strongly minihedral cone of E. Thus, the following notations
are well defined [2, 11], which will be used in our investigation.

Notation 2.7 Let (X, d) be a cone metric space.
(1) d(x,A) = inf{d(x, y) : y ∈ A}, where x ∈ X and A ⊆ X.
(2) B(x, β) = {y ∈ X : d(x, y)� β}, where x ∈ X and β � 0.
(3) β +A = {x ∈ X : d(x,A)� β}, where β � 0 and ∅ 6= A ⊆ X.
(4) ρ(A,B) = inf{β � 0 : A ⊆ β +B} ≥ 0, where ∅ 6= A,B ⊆ X.
(5) δ(A,B) = inf{β ≥ 0 : β ≥ ρ(A,B), β ≥ ρ(B,A)}, where ∅ 6= A,B ⊆ X.

Definition 2.8 ([4]) Let X be a non-empty set. A mapping d : X × X −→ E is
called a cone metric on X, and (X, d) is called a cone metric space if the following
are satisfied.

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Remark 2.9 (1) For a cone metric space (X, d), the cone metric d : X ×X −→ P
from Remark 2.3(1).

(2) If we choose E and P as Example 2.6, then the cone metric space (X, d) is a
metric space.

Lemma 2.10 ([6, 12]) Let (X, d) be a cone metric space. Put B = {B(x, c) : x ∈
X, c � 0} and T = {U ⊆ X : ∀x ∈ U, ∃B ∈ B, s.t. x ∈ B ⊆ U}. Then T is a
topology on X and B is a base for T .

In this paper, we always suppose that the cone metric space (X, d) is a topological
space endowed the topology T , where T is described as in Lemma 2.10.

Definition 2.11 ([7, 8]) Let f be a correspondence on a cone metric space (X, d).
(1) f is called closed-valued if f(x) is a closed subset of X for each x ∈ X.
(2) f is called contractive if δ(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y.

Definition 2.12 ([7, 10]) Let f be a correspondence on a cone metric space (X, d).
(1) A sequence {xn} in X is called an orbit for f at x0 if xn ∈ f(xn−1) for each

n ∈ N.
(2) An orbit {xn} for f at x0 is called contractive if for each n ∈ N , d(xn+1, xn+2) ≤

d(xn, xn+1) and d(xn+1, xn+2) ≤ δ(f(xn), f(xn+1)).

Definition 2.13 ([4]) Let (X, d) be a cone metric space. A sequence {xn} in X is
called to converge to x ∈ X if for each c� 0, there is n0 ∈ N such that d(xn, x)� c
for all n > n0. The sequence {xn} converges to x is denoted by lim

n→∞
xn = x.
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3. Main results

Lemma 3.1 Let P be a cone of a real Banach space E.
(1) If α� 0, then rα� 0 for each r ∈ R+.
(2) If β ≥ 0 and c� 0, then β + c� 0.

Proof. (1) Let α � 0, i.e., α ∈ P ◦. Then there is an open neighborhood Bα of α in
E such that Bα ⊆ P . If r ∈ R+, then rBα ⊆ P from Definition 2.1(2). Note that
rα ∈ rBα and rBα is an open subset of E. So rα ∈ P ◦, i.e. rα� 0.

(2) Let β ≥ 0 and c � 0. Since β + c − c = β ≥ 0, β + c ≥ c. It follows that
β + c� 0 from Remark 2.3(3).

Proposition 3.2 Let (X, d) be a cone metric space.
(1) ρ(A,B) ≤ δ(A,B) for A,B ∈P0(X).
(2) ρ(A,B) ≤ ρ(A,C) + ρ(C,B) for A,B,C ∈P0(X).

Proof. (1) It is clear from Notation 2.7(4) and (5).
(2) Let ρ(A,B) = β, ρ(A,C) = β1 and ρ(C,B) = β2. Whenever c � 0, then

β1 + c � 0, β2 + c � 0 and β1 + β2 + 3c � 0 from Lema 3.1. By Notation 2.7(4),
A ⊆ β1+c+C and C ⊆ β2+c+B. Let x ∈ A, then x ∈ β1+c+C, i.e., d(x,C)� β1+c.
Thus, there is y ∈ C such that d(x, y) ≤ β1 + 2c. Also, y ∈ β2 + c+B, i.e., d(y,B)�
β2 + c. It follows that d(x,B) ≤ d(x, y) + d(y,B)� β1 + 2c+ β2 + c = β1 + β2 + 3c,
i.e., x ∈ β1 +β2 + 3c+B. This proves that A ⊆ β1 +β2 + 3c+B. By Notation 2.7(4),
β ≤ β1 + β2 + 3c. By the arbitrariness of c� 0, β ≤ β1 + β2.

Proposition 3.3 Let f be a closed-valued correspondence on a cone metric space
(X, d). Then the following are equivalent for x, y ∈ X.

(1) x ∈ f(y).
(2) ρ({x}, f(y)) = 0.

Proof. (1) =⇒ (2): Let x ∈ f(y). Then 0 ≤ d(x, f(y)) ≤ d(x, x) = 0. So d(x, f(y)) =
0 � c for arbitrary c � 0. It follows that {x} ⊆ c + f(y) for arbitrary c � 0.
Consequently, ρ({x}, f(y)) = inf{β � 0 : {x} ⊆ β + f(y)} = 0.

(2) =⇒ (1): Let ρ({x}, f(y)) = 0. If x 6∈ f(y), then there is c � 0 such that
B(x, c)

⋂
f(y) = ∅ because f(y) is closed in (X, d). It follows that d(x, f(y)) ≥ c� 0.

Thus, {x} 6⊆ c/2 + f(y). Consequently, ρ({x}, f(y)) = inf{β � 0 : {x} ⊆ β+ f(y)} >
c/3� 0. this contradicts that ρ({x}, f(y)) = 0.

Now we give the main theorem of this paper.

Theorem 3.4 Let (X, d) be a cone b-metric space (X, d) with coefficient s ≥ 1 and f
be a contractive mapping on (X, d). If there is a contractive orbit {xn} for f at some
x0 ∈ X such that {xni

} converges for some subsequence {xni
} of {xn}, then f has a

fixed point.
Proof. Let {xn} be a contractive orbit for f at some x0 ∈ X such that a subsequence
{xni
} of {xn} converges to some a ∈ X. Then, for arbitrary ε� θ, there is t ∈ N such

that d(xni , a) � ε for all i ≥ t. Furthermore, we write b = f(a), then d(xni+1, b) =
d(f(xni), f(a)) ≤ d(xni , a)� ε for all i ≥ t. So {xni+1} converges to b. We only need
to prove that a = b.
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Put ∆ = {(x, x) : x ∈ X}, i.e., ∆ is the diagonal of X ×X. Let

g : (X ×X)−∆ −→ R,

where R is the set of all real numbers and g is defined as follows.
Whenever (x, y) ∈ (X×X)−∆, then x 6= y, so d(x, y) 6= 0, and hence ‖d(x, y)‖ 6= 0.

Put

g(x, y) =
‖d(f(x), f(y))‖
‖d(x, y)‖

.

Then g is continuous because g is a quotient of two continuous functions
‖d(f(x), f(y))‖ and ‖d(x, y)‖. For each (x, y) ∈ (X × X) − ∆, since f is con-
tractive, θ ≤ d(f(x), f(y)) < d(x, y). By the strictly normality of the cone P ,
‖d(f(x), f(y))‖ < ‖d(x, y)‖. It follows that g(x, y) < 1 for all (x, y) ∈ (X ×X)−∆.

If a 6= b, then (a, b) ∈ (X × X) − ∆, and hence g(a, b) < 1. Thus, there are
disjoint neighborhoods U and V of a and b respectively, such that g(x, y) ≤ λ for
all (x, y) ∈ U × V and for some λ < 1. There are βa � 0 and βb � 0 such that
B(a, βa) ⊆ U and B(b, βb) ⊆ V . By Remark 2.3(4), there is β � 0 such that β � βa
and β � βb. Without loss of generality, we can choose β � 0 such that 2β < d(a, b).
Then

d(a, b)− 2β > 0, B(a, β) ⊂ U, B(b, β) ⊂ V.
Since

a = lim
i→∞

xni
, b = lim

i→∞
xni+1,

there is m ∈ N such that xni
∈ B(a, β) and xni+1 ∈ B(b, β) for all i ≥ m. So, if

i ≥ m, then

d(a, b) ≤ d(a, xni
) + d(xni

, xni+1) + d(xni+1, b) ≤ 2β + d(xni
, xni+1),

Thus

d(xni
, xni+1) ≥ d(a, b)− 2β > 0.

On the other hand, for each i ≥ m, (xni
, xni+1) ∈ B(a, β) × B(b, β) ⊆ U × V , so

g(f(xni
), f(xni+1)) < λ, i.e., ‖d(f(xni

), f(xni+1))‖ ≤ λ‖d(xni
, xni+1)‖. Since {xn} is

a contractive orbit for f at x0, d(xni+1, xni+2) ≤ δ(f(xni
), f(xni+1)), and hence, by

the strong normality of the cone P ,

‖d(xni+1, xni+2)‖ ≤ ‖δ(f(xni
), f(xni+1))‖ ≤ λ‖d(xni

, xni+1)‖.

Furthermore, we have

‖d(xni+1
, xni+1+1)‖ ≤ ‖d(xni+1−1, xni+1

)‖ ≤ · · ·

· · · ≤ ‖d(xni+1, xni+2)‖ ≤ λ‖d(xni
, xni+1)‖.

Iterating this inequality, we have ‖d(xnk
, xnk+1)‖ ≤ λk−i‖d(xni , xni+1)‖ for all k >

i ≥ m. In particular, ‖d(xnk
, xnk+1)‖ ≤ λk−m‖d(xnm , xnm+1)‖ for all k > m. It

follows that

lim
k→∞

‖d(xnk
, xnk+1)‖ = 0.

This contradicts that ‖d(xni , xni+1)‖ ≥ ‖d(a, b)‖ − 2‖β‖ > 0 for all i ≥ m.
Thus, we have proved that a = b.
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Theorem 3.4 improves Theorem 1.1 by relaxing “metric space” in Theorem 1.1
to cone metric spaces. which gives an affirmative answer for Question 1.2. As an
application of Theorem 3.4, we also have the following corollary, which improves a
fixed point theorem of contractive mapping on cone metric spaces (see [4]).

Corollary 3.5 Let (X, d) be a sequentially compact cone metric space. If the mapping
T : X −→ X is a contractive mapping, i.e., d(Tx, Ty) < d(x, y) for all x, y ∈ X with
x 6= y, then T has a fixed point, i.e., Tx = x for some x ∈ X.
Proof. Let T : X −→ X be a contractive mapping. Put f : X −→ P0(X) by
f(x) = {Tx} for each x ∈ X. Then T has a fixed point if and only if f has a fixed
point.

(1) Since each single-point set is closed in X, f is a closed-valued correspondence
on X.

(2) It is clear that δ(f(x), f(y)) = d(Tx, Ty) for all x, y ∈ X. It follows that
δ(f(x), f(y)) = d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. So f is a contractive
correspondence.

(3) Choose x0 ∈ X and for each n ∈ N, put xn = Txn−1, i.e., {xn} =
f(xn−1). Then the sequence {xn} is an orbit for f at x0. Since d(xn+1, xn+2) =
δ({xn+1}, {xn+2}) = δ(f(xn), f(xn+1)) < d(xn, xn+1), the sequence {xn} is a con-
tractive orbit for f at x0.

(4) Since X is sequentially compact, there is a convergent subsequence {xni} of
{xn}. It is clear that the mapping T is continuous, {Txni

} converges, i.e., {xni+1
}

converges.
By the above (1),(2),(3) and (4), the orbit {xn} and the correspondence f satisfy

the conditions in Theorem 3.4, so f has a fixed point. It follows that T has a fixed
point.

4. Some Example

In this section, we give some examples to illuminate the importance of the condi-
tions in Theorem 3.4.

Example 4.1 “f is contractive” in Theorem 3.4 can not be omitted.
Proof. Let (M,d) be a cone metric space having a infinite dense proper sub-
set D. Choose x0 ∈ M − D and ε � 0, then B(x0, ε)

⋂
D 6= ∅ and choose

x1 ∈ B(x0, ε)
⋂
D. If x1, x2, · · · , xn ∈ M have been chosen, then we choose

xn+1 ∈ B(x0, d(x0, xn)/10)
⋂
D. By induction, we construct a sequence {xn} in

(M,d) such that xn 6= xm for all n,m ∈ N and n 6= m, and xn 6= x0 for all n ∈ N.
Put X = {xn : n ∈ N

⋃
{0}} and put f(xn−1) = {xn} for each n ∈ N. Then f is a

correspondence on the cone metric space (X, d), where the restriction of d on X is
still denoted by d. It is not difficult to check that the following (1)–(5) are true.

(1) f is closed-valued.
(2) {xn} is a contractive orbit for f at x0.
(3) {xn} converges, hence both {xni} and {xni+1} converge for each subsequence

{xni} of {xn}.
(4) f is not contractive.
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(5) f has not any fixed point.
So “f is contractive” in Theorem 3.4 can not be omitted.

Example 4.2 “f is closed-valued” in Theorem 3.4 can not be omitted.
Proof. Let (X, d) be the cone metric space described in the proof of Example 4.1. For
each n ∈ N, put f(xn−1) = {xm : m ≥ n}. Then f is a correspondence on the cone
metric space (X, d). It is not difficult to check that the following (1)–(5) are true.

(1) f is contractive.
(2) {xn} is a contractive orbit for f at x0.
(3) {xn} converges, hence both {xni

} and {xni+1} converge for each subsequence
{xni
} of {xn}.

(4) f is not closed-valued.
(5) f has not any fixed point.

So “f is closed-valued” in Theorem 3.4 can not be omitted.

Example 4.3 “Both {xni
} and {xni+1} converge for some subsequence {xni

} of
{xn}” in Theorem 3.4 can not be omitted.
Proof. Let (M,d) be a cone metric space having a infinite dense proper subset D.
Choose x ∈M −D and ε� 0, then B(x, ε)

⋂
D 6= ∅ and choose x0 ∈ B(x, ε)

⋂
D. If

x0, x1, · · · , xn ∈ M have been chosen, then we choose xn+1 ∈ B(x, d(x, xn)/10)
⋂
D.

By induction, we construct a sequence {xn} in (M,d) such that xn 6= xm for all
n,m ∈ N

⋃
{0} and n 6= m. Put X = {xn : n ∈ N

⋃
{0}} and put f(xn−1) = {xn}

for each n ∈ N. Then f is a correspondence on the cone metric space (X, d), where
the restriction of d on X is still denoted by d. It is not difficult to check that the
following (1)–(4) are true.

(1) f is contractive closed-valued.
(2) {xn} is a contractive orbit for f at x0.
(3) {xn} has not any convergent subsequence.
(4) f has not any fixed point.

So “both {xni
} and {xni+1} converge for some subsequence {xni

} of {xn}” in Theorem
3.4 can not be omitted.
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