ON THE FIXED POINT THEOREMS OF CARISTI TYPE

GUOWEI ZHANG AND DAN JIANG

Department of Mathematics, Northeastern University Shenyang 110819, China E-mail: gwzhangneum@sina.com

Abstract. In this paper, using the minimal element method, we give some fixed point theorems of Caristi type which extend the previous results due to Amini-Harandi [Nonlinear Anal. 72 (2010) 4661–4665], Khamsi [Nonlinear Anal. 71 (2009) 227–231], Suzuki [J. Math. Anal. Appl. 302 (2005) 502–508] and others. Moreover, variational theorem of Ekeland type is discussed.

Key Words and Phrases: Caristi's fixed point, Ekeland's variational principle, minimal element, partially ordered set

2010 Mathematics Subject Classification: 47H10, 54H25

Acknowledgements. The authors express their gratitude to the referees for their valuable comments that make the proof of the main theorem more concise.

References

- [1] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.
- [2] A. Brøndsted, Fixed points and partial orders, Proc. Amer. Math. Soc., 60(1976), 365-366.
- [3] J. Caristi, W.A. Kirk, Geometric fixed point theory and inwardness conditions, in: Lecture Notes in Math., vol. 490, Springer-Verlag, New York, 1975, 74–83.
- [4] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47(1974), 324-353.
- [5] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1(1979), 443-474.
- [6] S. Shi, Equivalence between Ekeland's variational principle and Caristi's fixed point theorem, Advan. Math., 16(1987), 203-206 (in Chinese).
- [7] R.P. Agarwal, M.A. Khamsi, Extension of Caristi's fixed point theorem to vector valued metric spaces, Nonlinear Anal., 74(2011), 141-145.
- [8] A. Amini-Harandi, Some generalizations of Caristi's fixed point theorem with applications to the fixed point theory of weakly contractive set-valued maps and the minimization problem, Nonlinear Anal., 72(2010), 4661-4665.
- [9] J.S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284(2003), 690-697.
- [10] J.S. Bae, E.W. Cho, S.H. Yeom, A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems, J. Korean Math. Soc., 31(1994), 29-48.
- [11] D. Downing, W.A. Kirk, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math., 69(1977), 339-346.
- [12] Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mapping, J. Math. Anal. Appl., 317(2006), 103-112.
- [13] M.A. Khamsi, Remarks on Caristi's fixed point theorem, Nonlinear Anal., 71(2009), 227-231.

- [14] A. Latif, Generalized Caristi's fixed point theorems, Fixed Point Theory Appl., 2009(2009) Article ID 170140, 7 pages.
- [15] Z. Li, Remarks on Caristi's fixed point theorem and Kirk's problem, Nonlinear Anal., 73(2010), 3751-3755.
- [16] J.L. Sun, J.X. Sun, A generalization of Caristi's fixed point theorem and its applications, J. Math. Res. Exposition, 26(2006), 199-206.
- [17] T. Suzuki, Generalized Caristi's fixed point theorems by Bae and others, J. Math. Anal. Appl., 302(2005), 502-508.
- [18] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253(2001), 440-458.
- [19] A. Hamel, Variational Principles on Metric and Uniform Spaces, Habilitation Thesis, Halle, 2005.

Received: November 2, 2011; Accepted: April 26, 2012.