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Abstract. In this paper, using the minimal element method, we give some fixed point theorems
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1. INTRODUCTION

Throughout the paper, (M,d) is a metric space. Caristi in [1] gave the following
fixed point theorem in complete metric spaces (see also [2, 3]).
Theorem 1.1 Let T : M — M, ¢ be a lower semi-continuous functional on M and
bounded below. If for any x € M, d(z,Tz) < p(x) — o(Tz), then T has a fized point.

Caristi’s fixed point theorem is a generalization of the Banach contraction principle
and is equivalent to Ekeland’s variational principle [4, 5, 6]. There are many authors
who extended Caristi’s fixed point theorem in their works to various directions (see,
for example, [7]-[18] and the references cited there). In this paper, we are motivated
by [8, 13, 17] to give some fixed point theorems of Caristi type, which extend the
previous results(see the theorems and the remarks in Section 2), by the minimal
element method in [19]. Moreover, variational theorem of Ekeland type is discussed
in Section 3.

In order to state and prove our main results, we give some notions and notations.

Let (M, d) be provided with a quasiorder <, i.e. a reflexive and transitive relation.
A sequence {z,} C M is said to be decreasing with respect to < iff 41 < z,(n =
1,2,--+). (M,d,<) is said to be <-complete iff every decreasing Cauchy sequence
in M converges to some element of M. Of course, (M,d, <) is <-complete if it is a
complete metric space. A quasiorder < is called lower closed iff x < z,(n =1,2,--)
for any decreasing sequence {x,} C M converging to some x € M. A quasiorder
< on a metric space M is called regular iff every decreasing sequence {z,} C M is
asymptotic, i.e., lim, o d(Zp41, Zn) = 0. It follows from Proposition 40 in [19] that
a regular quasiorder on a metric space is antisymmetric, hence we may assume that
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the quasiorder on a metric space is partial order without loss of generality if it is
regular. The following lemma is the basic minimal element theorem in [19] on metric
space.

Lemma 1.1 Let < be a quasiorder on (M,d) such that (M,d, <) is <-complete. If <
is reqular and lower closed, then there exists a minimal element T in (M,d, <), that
is, if vt € M with x X T, then x =T.

Let v : [0,00) — [0,00) be subadditive, i.e. ~(t 4+ s) < ~(t) + y(s) for each
s,t € [0,00), a increasing continuous map such that v~1({0}) = {0}, for example,
v(#) =t (0<p <1)fortel0,00). Let T consist of all such functions ~.

A denotes the class of all maps 7 : [0,00) — [0, 00) for which there exist € > 0 and
~ € I' such that if n(t) <&, then n(t) > v(¢).

Let F: R — R, F(0) =0, F7'[0,00) C [0,00), and for ¢t > 0, F is increasing,
upper semi-continuous, moreover F'(t) + F(s) < F(t+ s) for t,s > 0. For example,

<0, t<0,
Ft)y={ t*, 0<t<t,
t;ﬂ+1’ tZth

where tg > 1 and p > 1. The class of all these functions F' is denoted by F. If
F(t) =t, ¥Vt € R, then trivially F' € F.

2. FIXED POINT THEOREMS OF CARISTI TYPE

In the sequel, (M, d) is a complete metric space.
Theorem 2.1 Let T : M — M, ¢ be a lower semi-continuous functional on M and
bounded below. If there exist n € A and F € F such that for any x € M,

n(d(z, Tz)) < F(e(z) — o(Tx)), (2.1)

then T has a fized point.
Proof. 1. Define in M that for x,y € M,

z <.y e ndz,y) < Feo(y) — o).
Notice that (M, <,) is not necessarily a partially ordered set. Let ¢ = inf,cns p(z).
Since F' is upper semi-continuous for ¢ > 0,
limsup F(t) < F(0) = 0.
t—0t

Then for € > 0 in the definition of A, there exists § > 0 such that F(¢) < g for
0<t<é.

Denote Ms = {x € M | p(x) < o+ d}. Clearly M5 # () and Ms is a closed set by
the lower semi-continuity of ¢. Thus (My, d) is a complete metric space.

Vx,y € Ms, we have

o < (@) <o+, wo<e(y) <ot (2.2)

If 2 <, y, then p(y)—p(x) > 0since 0 < n(d(x,y)) < F(p(y)—¢(z)) and F~1[0,00) C
[0, oo)f. 1]13y (2}21) we have 0 < p(y) —p(z) < §, and thus n(d(z,y)) < F(e(y) —¢(x)) <
¢. It follows that

y(d(z,y)) < n(d(z,y)) < F(p(y) — ¢(z)). (2.3)
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2. Define in M that for x,y € Mjy,

z <y < (dz,y) < Fle(y) — o).
Now we prove that (M, <) is a partially ordered set.
(i) For x € Ms, it is clear that # <  from F(0) = 0 and v~1({0}) = {0}.
(ii) Let z,y € My. If x <y, y < x, then

0 <7(d(z,9)) < Fe(y) — (@), 0<~(dy,)) < Flp(z) = ¢(y))- (2.4)
It follows from F~1[0,00) C [0,00) and (2.4) that cp( ) > o(x), p(x) > p(y), and
hence ¢(z) = ¢(y). Therefore, from (2.4), F(0) = 0 and 7*1({0}) = {0}, we have

d(z,y) =0, ie. z=y.
(iii) Let z,y,2 € Ms. f 2 <y, y < z, then

0 <v(d(z,y) < Fle(y) —¢(z), 0=<7(d(y,2)) < Flo(z) — 0(y))- (2.5)

It follows from F' 1[0, 00) C [0, 00) and (2.5) that ¢(y) —p(x) > 0, ¢(2)—e(y) > 0.
Since F(t) + F(s) < F(t + s) for t,s > 0, we have from the subadditivity of v and
(2.5),

Ad(w, 2)) < y(d(z,)) +(d(y, 2))
< Fle(y) —o(@) + Fle(z) — oY) < Flo(z) — (2)),

and thus z < z.

3. In this step we will prove that (Mjs, <) has a minimal element. By Lemma 1.1,
we need only to show that < is regular and lower closed.

(i) Let {x,} be a decreasing sequence in (Ms, <), then

0 <y(d(@ni1,7n)) < Fp(an) — ¢(2n41)) (2.6)
and ¢(x,) — ¢(Tntr1) > 0 by F710,00) C [0,00). So {¢(z,)} is a real num-
ber sequence which is decreasing and bounded below, and we may suppose that
lim,, oo @(2,) = a. Since F is upper semi-continuous for ¢ > 0 and ¢(z,) —
o(Tpt1) = a—a=0(n — o), we have from (2.6) that

0 < limsup ’Y(d(xn—&-la-rn)) <lim SupF(QO(xn) - Qo(xn-‘rl)) < F(O) =0.

n—oo n—oo

Therefore lim,, oo Y(d(Znt1,2,)) = 0 which implies that

lim d(zn41,2,) =0,

n—oo
i.e., < is regular. In fact, suppose for the contrary that lim, o, d(z,+1,2,) # 0, let
Uy = d(Tpt1,Zn), then there exist g > 0 and a subsequence {u,, } such that u,, > g
for any 4, and thus 0 < y(g9) < 7(up,) by monotonicity of v and y~1({0}) = {0},
lim; 00 ¥(tn,) > v(e0) which contradicts lim,, o y(u,) = 0.

(ii) If the decreasing sequence {z,} converges to = € My, it follows that

o(x) < liminf p(z,) = a, (2.7
n—oo
from the lower semi-continuity of . Since F' is increasing, upper semi-continuous for

t > 0 and ~ is continuous, for m > n we have from ¢(z,,) < ¢(x,) and (2.7) that

< limsup,,_,o F(p(zn) — ¢(@n)) < F(p(zn) —a) < F(p(zn) — ¢(2)),
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and hence z < z,, for any n, i.e., < is lower closed.
4. Suppose that z, is a minimal element in (Ms,<). In the following, we prove
that x, is also a minimal element in (M, <,), i.e. if z € M with « <, z., then z = z.,.
Let € M and = <, x.. By the definition of <,,

0 < nd(z,z.)) < F(p(z.) — (). (2.8)
It follows from F~1[0,00) C [0,00) and (2.8) that
p(xs) — () = 0. (2.9)
Since z, € Mg, by the definitions of ¢y and Ms we have
vo < @) < po + 0. (2.10)

(2.9) and (2.10) lead to ¢ < ¢(x) < ¢ + ¢ which implies that z € Ms and 0 <
o(xs) — @(z) <. According to the selection of §, F(p(z.) — ¢(z)) < €. It follows
from (2.8) that n(d(z,z.)) < &, and hence

v(d(z, z.)) < nld(z,z.)) < F(e(zs) — (),
ie. © < x,. Since z, is a minimal element in (Mjs, <), we have that © = z, and that
Z, is also a minimal element in (M, <,).
5. Finally, for the minimal element z, in (M, <,), it follows from (2.1) that

n(d(@s, Te.)) < Fp(w.) = p(Te.)),

then Tz, <, x,, and Tz, = x,.

Remark 2.1 By Remark 3 in [13] for v € T, there exist € and ¢ > 0 such that if
~v(t) <&, then v(t) > ct. Therefore, if F(t) =1t fort € R and n(t) = v(t), Theorem
2.1 reduces to Theorem 3 in [13].

Corollary 2.1 Let T : M — 2M\{0}, ¢ be a lower semi-continuous functional on M
and bounded below. If there exist n € A and F € F such that for any x € M, there
exists y € T'x satisfying

n(d(z,y)) < F(p(z) — ¢(y)), (2.11)

then T has a fized point, i.e. there exists v € M such that x, € Tx,.

Proof. From the proof of Theorem 2.1, it follows that (M, <,) has a minimal element
Zx. (2.11) tells us that there exists y. € Tx, such that y. <, z., thus y. = x,, ie.
Ty € T,

Remark 2.2 Corollary 2.1 extends Theorem 4 in [13].

Similar to the proof of Corollary 2.1, it is easy to prove Corollary 2.2 below.
Corollary 2.2 Let T : M — 2M\{0}, ¢ be a lower semi-continuous functional on M
and bounded below. If there existn € A and F € F such that for any x € M and any
yeTx,

n(d(z,y)) < Fle(z) = ¢(y)),
then there exists x. € M such that Tz, = {x.}.
Remark 2.3 Let U be the class of all the maps 1 : M x M — R satisfying the following
conditions: (i) there exists & € M such that ¥(Z,-) is bounded below and lower semi-
continuous, and Y(-,y) is upper semi-continuous for each y € M; (ii) ¥(xz,x) =0 for
each © € M; (i) v(z,y) + ¥(y, 2) < ¢¥(z,z) for each x,y,z € M. Amini-Harandi



FIXED POINT THEOREMS OF CARISTI TYPE 527

proved in [8] that if T : M — M and there exists n € A such that for any x € M,
n(d(z,Tz)) < Y(Tz,x), then T has a fized point. If we define p(z) = ¥(&,x), then
@ 1s a lower semi-continuous functional on M and bounded below. Since

it is easy to see that the main results in [8] are the spacial cases of Theorem 2.1 and
Corollary 2.2 in this paper.

Theorem 2.2 Let T : M — M, ¢ be a lower semi-continuous functional on M and

bounded below. Suppose that ® is a nonnegative functional on M and there exists
0 > 0 such that

sup {@(m) | x € M, p(z) < yiéljfwgp(y) + 6} < +00.

If there exist n € A and F € F such that for any © € M,
n(d(z,Tz)) < ®(x)F(p(x) — ¢(T)), (2.12)

then T has a fized point.

Proof. If ®(x) > 0, then F(p(x) — (Tz)) > 0 and ¢(Tz) < ¢(x). If &(z) = 0,
then n(d(xz,Tx)) = 0 <€, and thus y(d(z, Tx)) < n(d(x,Tx)) = 0 which implies that
d(z,Tz) =0, ie. x =Tz, and p(Tx) = p(x). Therefore p(Tx) < p(x) for all z € M.

Let o = infyen o(y), Ms = {x € M | p(x) < @o + 0} and a = sup,¢,,, P(x) <
+00. Obviously, Ms # ) and is closed by the lower semi-continuity of ¢, hence (Mg, d)
is a complete metric space.

Vo € My, it follows from ¢(Tx) < p(z) < ¢o + 0 that Tx € Ms, that is, T : Ms —
Ms. By (2.12) we have that n(d(z,Tz)) < aF(o(x) — ¢(Tz)), Yo € Ms. Clearly,
aF € F. Therefore Theorem 2.1 indicates that there exists g € Ms C M such that
Txg = xop.

Remark 2.4 If n(t) = v(t) =t fort > 0 and F(t) =t fort € R, Theorem 2.2 is just
Theorem 2 in [17] and is also a generalization of the results in [9, 10].

Corollary 2.3 Let T : M — 2M\{(}, ¢ be a lower semi-continuous functional on M
and bounded below. Suppose that ® is a nonnegative functional on M and there exists
0 > 0 such that

sup{q)(ac) | x € M,p(z) < yléljg ©(y) +5} < +o0.

If there exist n € A and F € F such that for any x € M and any y € Tz,

n(d(z,y)) < @(x)F(e(z) — ¢(y)), (2.13)

then there exists x. € M such that Tz, = {z.}.
Proof. Similar to the proof of Theorem 2.2, we have that ¢(y) < ¢(x), Ve € M, y €
Tx. Take Ms and « as the same in the proof of Theorem 2.2. Then y € My, Vz €
Ms, y € Tz, and hence T : Ms — 2Ms\{()}.

From (2.13) it follows that Vz € Ms, y € T,

n(d(z,y)) < aF(p(z) — ¢(y)). (2.14)
Clearly, aF € F. Define in M; that for x, z € My,
z < z & n(d(z, 2)) < aF(p(2) — ¢(z)).
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By the analogous proof to Theorem 2.1, (Ms, <,) has a minimal element z,. It follows
from (2.14) that y. <. ., Yy. € Tz, and thus y. = x,, i.e. Tz, = {z.}.

3. VARIATIONAL THEOREM OF EKELAND TYPE

Theorem 3.1 Let v € I', F € F. If ¢ is a lower semi-continuous functional on
M and is bounded below, then Ve > 0, 7 > 0 and z. € M satisfying o(x:) <
infoen @(x) + €, there exists y. € M such that

(i) o(ye) < o(xe);

(i) y(d(ze,ye)) < (1/€)F(e);

(iir) F(o(ye) — p(x)) < (¢/7)v(d(ye, 7)), Yo € M, & # ye.
Proof. 1. Assume that there exists 7 > 0 such that for any y € M satisfying

F(p(ze) —@(y)) > (e/T)v(d(ze, y)),

there exists x € M with x # y, and

Flo(y) — e(x)) = (¢/7)v(d(z,y)).

2. Let X ={ye M | F(o(z:) —p(y)) > (¢/7)y(d(ze,y))}. Obviously, z. € X and
X # (). Now we show that X is closed.
Ify, € X(n=1,2,---) and y,, — yo, then

0 < (e/m)y(d(ze,yn)) < Flp(ze) = ¢(yn))- (3.1)

Because ¢ is lower semi-continuous, ¢(yo) < liminf, .. ©(y,). Denote o« =
liminf, o ©(yn), then there is a subsequence ¢(y,,) — «. It follows from (3.1)
and F~10,00) C [0,00) that ¢(z.) — ¢(y,) > 0. Since v is continuous and F' is
increasing, upper semi-continuous for ¢ > 0, by (3.1) we have

(e/T)v(d(2; o)) = (¢/7) limsupy,_ o Y(d(2e, Yn,,))
< limsupy oo Fp(ze) = ¢(yn, ) < Flp(ze) — ) < F(e(z:) = ¢(y0)),

which implies that yo € X and X is closed. Hence (X, d) is a complete metric space.
3.WyeX let Ty={2€M|z#y Floy) —¢(z) 2 (¢/T)7(d(z,y))}. Ty #0

by step 1. If there exists z € T'y such that z ¢ X, then

Flp(ze) = 9(2)) < (e/7)y(d(ze, 2)). (3-2)
It follows from z € Ty, y € X and F~1[0,00) C [0,00) that »(y) — ¢(z) > 0 and
w(xe) —p(y) > 0. Since F(t) + F(s) < F(t + s) for t,s > 0 and ~ is subadditive,
increasing, we have

Fp(ze) — ¢(2)) 2 F(o(y) = ¢(2) + Flo(ze) — ¢(y))
> (e/m)(d(z,9)) + (¢/T)v(d(2e, )
> (e/m(d(z,y) + d(ze,y)) = (e/7)y(d(ze, 2)),

which contradicts (3.2). Therefore Ty C X, Vy € X, i.e. T: X — 2X\{0}.

4. By the definition of T, (¢/7)v(d(z,y)) < F(p(y) — ¢(2)), Vy € X, z € Ty.
Because (¢/7)v € I', from Corollary 2.2 in which 7 is replaced with (¢/7)y, we have
that there exists z, € X such that Tz, = {z.} which is in contradiction with the
definition of T'.



FIXED POINT THEOREMS OF CARISTI TYPE 529

5. In summary, the assumption in step 1 is false. Then V7 > 0, there exists y. € M
satisfying
Fle(ze) = o(ye)) = (e/m)y(d(ze, ve)), (3-3)

and F(o(ye) — o(x)) < (¢/7)y(d(2,4¢)), Yo € M, x # ye.
From (3.3) and F~1[0, 00) C [0, 00), it follows that p(y.) < ¢(z.). Finally, by (3.3)
and the monotonicity of F' for ¢t > 0, we have

(5/T)Nd(e,5e)) < Flp(ae) = p(y:)) < F(ple2) = inf (@) < F(e).
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