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Abstract. In this paper, we discuss the existence and uniqueness of solutions to the system of

functional equations: �
Tx = x
ϕ(x) = 0

where T : X → X is a given mapping and ϕ : X → [0,∞) is a lower semi-continuous function on

X endowed with a metric d. We apply our obtained results to derive some fixed point theorems

on partial metric spaces. This answers three open problems posed by Ioan A. Rus in [Fixed point
theory in partial metric spaces, Anal. Univ. de Vest, Timisoara, Seria Matematică-Informatică. 46

(2) (2008) 141-160].
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1. Introduction

In 1994, Matthews [4] introduced the concept of partial metric spaces as a part
of the study of denotational semantics of dataflow networks, and showed that the
Banach’s contraction principle can be generalized to the partial metric context for
applications in program verification. Later on, many authors studied fixed point
theorems on partial metric spaces (see, for example [1, 3, 5, 6, 7, 8, 9] and references
therein).

We start by recalling some basic definitions and properties of partial metric spaces
(see [4, 5] for more details).
Definition 1.1 A partial metric on a nonempty setX is a function p : X×X → [0,∞)
such that for all x, y, z ∈ X, we have:
(P1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X.
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It is clear that, if p(x, y) = 0, then from (P1) and (P2), x = y; but if x = y, p(x, y)
may not be 0. A basic example of a partial metric space is the pair ([0,∞), p), where
p(x, y) = max{x, y} for all x, y ∈ [0,∞). Other examples of partial metric spaces
which are interesting from a computational point of view may be found in [4]. Each
partial metric p onX generates a T0 topology τp onX which has as a base the family of
open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x)+ε}
for all x ∈ X and ε > 0.
Definition 1.2 Let (X, p) be a partial metric space and {xn} be a sequence in X.
Then
(i) {xn} converges to a point x ∈ X if and only if p(x, x) = lim

n→+∞
p(x, xn). We may

write this as xn → x;
(ii) {xn} is called a Cauchy sequence if lim

n,m→+∞
p(xn, xm) exists and is finite;

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X, such that p(x, x) = lim

n,m→+∞
p(xn, xm).

If p is a partial metric on X, then the function ps : X ×X → [0,∞) given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

is a metric on X.
Lemma 1.3 Let (X, p) be a partial metric space. Then
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, ps);
(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is
complete. Furthermore, lim

n→+∞
ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).

In [4], Matthews extended the Banach contraction principle to the setting of partial
metric spaces.
Theorem 1.4 (The partial metric contraction mapping theorem) Let (X, p) be a
complete partial metric space and T : X → X be a given mapping. Suppose that there
exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ k d(x, y), ∀x, y ∈ X.
Then T has a unique fixed point x∗ ∈ X. Moreover, we have p(x∗, x∗) = 0.
Remark 1.5 Under the assumptions of Theorem 1.4, we can say that the system of
functional equations: {

Tx = x
p(x, x) = 0

has a unique solution. A point x ∈ X such that p(x, x) = 0 is called a total element
(see [8]).

In [8], Ioan A. Rus presented three interesting open problems. Let (X, p) be a
complete partial metric space.
Problem 1. If T : (X, p) → (X, p) is a generalized contraction, which condition satisfies
T with respect to ps?
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Problem 2. The problem is to give fixed point theorems for these new classes of
operators on a metric space.
Problem 3. Use the results for the above problems to give fixed point theorems in a
partial metric space.

The purpose of this paper is to answer to the above problems of Ioan A. Rus. More
precisely, we consider the system of functional equations:{

Tx = x
ϕ(x) = 0

where (X, d) is a complete metric space, T : X → X is a given mapping and ϕ : X →
[0,∞) is a lower semi-continuous function. Under a generalized contractive condition
imposed on T that involves the function ϕ, we establish the existence and uniqueness
of solutions to the considered system. Finally, we use our obtained results to give
fixed point theorems on partial metric spaces.

2. Solutions to a system of functional equations on a metric space

Let (X, d) be a metric space, T : X → X and ϕ : X → [0,∞) are two given
mappings. We consider the system of functional equations:

(S) :
{
Tx = x
ϕ(x) = 0

In this section, we give sufficient conditions that assure the existence and uniqueness
of solutions to the system (S).

We denote by Ψ the set of functions ψ : [0,∞) → [0,∞) satisfying the following
conditions:

(i) ψ is upper semi-continuous from the right (i.e. for all t ≥ 0, for any se-
quence {tn} ⊂ [0,∞) such that tn ≥ t and tn → t as n → ∞, we have
lim supn→∞ ψ(tn) ≤ ψ(t));

(ii) ψ(t) < t for all t > 0.
We have the following result.

Theorem 2.1 Let (X, d) be a complete metric space and let T : X → X, ϕ : X →
[0,∞) be two mappings such that ϕ is lower semi-continuous and

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ ψ
(
d(x, y) + ϕ(x) + ϕ(y)

)
, ∀x, y ∈ X, (2.1)

where ψ ∈ Ψ. Then T has a unique fixed point z ∈ X. Moreover, z is the unique
solution to the system (S).
Proof. At first, let us prove that T admits at least one fixed point. Let x0 ∈ X be
an arbitrary point. Consider the sequence {xn} ⊂ X defined by: xn = Tnx0 for all
n ∈ N. If for some N ∈ N, we have xN = xN−1, then xN−1 will be a fixed point of T .
So, we can suppose that

d(xn−1, xn) > 0, ∀n ∈ N. (2.2)

Using (2.1), for all n ∈ N, we get that

d(Txn, Txn−1) + ϕ(Txn) + ϕ(Txn−1) ≤ ψ
(
d(xn, xn−1) + ϕ(xn) + ϕ(xn−1)

)
.



476 BESSEM SAMET

This implies from the definition of {xn}, (2.2) and the condition (ii), that for all
n ∈ N,{

d(xn+1, xn) + ϕ(xn+1) + ϕ(xn) ≤ ψ
(
d(xn, xn−1) + ϕ(xn) + ϕ(xn−1)

)
ψ

(
d(xn, xn−1) + ϕ(xn) + ϕ(xn−1)

)
< d(xn, xn−1) + ϕ(xn) + ϕ(xn−1)

(2.3)

It follows from (2.3) that there is c ≥ 0 such that

lim
n→∞

d(xn+1, xn) + ϕ(xn+1) + ϕ(xn)

= lim
n→∞

ψ
(
d(xn+1, xn) + ϕ(xn+1) + ϕ(xn)

)
= c. (2.4)

If c > 0, using that ψ is upper semi-continuous from the right and condition (ii), we
obtain from (2.4) that

c = lim sup
n→∞

ψ
(
d(xn+1, xn) + ϕ(xn+1) + ϕ(xn)

)
≤ ψ(c) < c,

a contradiction. So, we have

lim
n→∞

d(xn+1, xn) + ϕ(xn+1) + ϕ(xn)

= lim
n→∞

ψ
(
d(xn+1, xn) + ϕ(xn+1) + ϕ(xn)

)
= 0. (2.5)

Next we show that {xn} is a Cauchy sequence in (X, d).
Suppose that {xn} is not a Cauchy sequence. Then there exists ε > 0 for which
we can find two sequences of positive integers {m(k)} and {n(k)} such that for all
positive integer k,

n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε. (2.6)

From (2.6), we have

ε ≤ d(xn(k), xm(k))
≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))
< ε+ d(xn(k), xn(k)−1).

Thus, for all k, we have

ε ≤ d(xn(k), xm(k)) < ε+ d(xn(k), xn(k)−1).

Letting k →∞ in the above inequality and using (2.5), we obtain

lim
k→∞

d(xn(k), xm(k)) = ε+. (2.7)

From (2.5) and (2.7), we get that

lim
k→∞

d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k)) = ε+. (2.8)

Since ψ is upper semi-continuous from the right,we deduce from (2.7) that

lim sup
k→∞

ψ
(
d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k))

)
≤ ψ(ε). (2.9)

On the other hand, for each k ∈ N, from (2.1) and (2.7), we have

ε ≤ d(xn(k), xm(k)) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1) + d(xm(k)+1, xm(k))

≤ d(xn(k), xn(k)+1) + ψ
(
d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k))

)
+ d(xm(k)+1, xm(k)).
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So, from (2.5) and (2.9), we get that

ε ≤ lim sup
k→∞

ψ
(
d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k))

)
≤ ψ(ε),

a contradiction because ψ(ε) < ε. Consequently, {xn} is a Cauchy sequence in the
complete metric space (X, d). Hence, there is z ∈ X such that

lim
n→∞

d(xn, z) = 0. (2.10)

Next, we shall prove that
ϕ(z) = 0. (2.11)

From (2.5), we have
lim

n→∞
ϕ(xn) = 0. (2.12)

Since ϕ is lower semi-continuous, it follows from (2.10) and (2.12) that

0 ≤ ϕ(z) ≤ lim inf
n→∞

ϕ(xn) = lim
n→∞

ϕ(xn) = 0,

which implies (2.11).
Now, we show that z is a fixed point of T .
From (2.1) and (2.11), for all n ∈ N, we have

d(xn+1, T z) ≤ ψ
(
d(xn, z) + ϕ(xn) + ϕ(z)

)
= ψ

(
d(xn, z) + ϕ(xn)

)
. (2.13)

On the other hand, since 0 ≤ ψ(t) < t for all t > 0, we have lim
t→0+

ψ(t) = 0. Then, it

follows from (2.10) and (2.12) that

lim
n→∞

ψ
(
d(xn, z) + ϕ(xn)

)
= lim

t→0+
ψ(t) = 0.

Using the above equality and letting n→∞ in (2.13), we obtain that

lim
n→∞

d(xn+1, T z) = 0. (2.14)

From the uniqueness of the limit, it follows from (2.10) and (2.14) that z = Tz, that
is, z is a fixed point of T .
Finally, let u ∈ X be such that Tu = u. Applying (2.1) with x = z and y = u, we get
that

d(z, u) + ϕ(z) + ϕ(u) = d(Tz, Tu) + ϕ(Tz) + ϕ(Tu) ≤ ψ
(
d(z, u) + ϕ(z) + ϕ(u)),

which holds only if d(z, u) = 0, i.e., u = z. This concludes the proof. �
Taking ϕ ≡ 0 in Theorem 2.1, we obtain immediately the the celebrated Boyd and

Wong fixed point theorem [2].

3. An homotopy result

We have the following homotopy result.
Theorem 3.1 Let (X, d) be a complete metric space, U be an open subset of X and
V be a closed subset of X with U ⊂ V . Suppose that H : V × [0, 1] → X has the
following properties:

(1) x 6= H(x, λ) for every x ∈ V \U and λ ∈ [0, 1];
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(2) There exist a lower semi-continuous function ϕ : X → [0,∞) and L ∈ (0, 1)
such that for all x, y ∈ V and λ ∈ [0, 1],

d(H(x, λ),H(y, λ)) + ϕ(H(x, λ)) + ϕ(H(y, λ)) ≤ L
(
d(x, y) + ϕ(x) + ϕ(y)

)
;

(3) There exists a continuous function η : [0, 1] → R such that for all x ∈ V and
λ, µ ∈ [0, 1],

d(H(x, λ),H(x, µ)) + ϕ(H(x, λ)) + ϕ(H(y, λ)) ≤ |η(λ)− η(µ)|.

Then, H(·, 0) has a fixed point if and only if H(·, 1) has a fixed point.
Proof. Suppose that H(·, 0) has a fixed point. Consider the set

Q := {t ∈ [0, 1] |x = H(x, t) for some x ∈ U}.

Since H(·, 0) has a fixed point and (1) holds, we have 0 ∈ Q, so Q is a nonempty set.
We will show that Q is both closed and open in [0, 1], and so by the connectedness
of [0, 1], we are finished since Q = [0, 1].
First, let us prove that Q is open in [0, 1]. Let t0 ∈ Q and x0 ∈ U with x0 = H(x0, t0).
From condition (2), since L ∈ (0, 1), clearly we have ϕ(x0) = 0. Moreover, we can
show that for all t ∈ [0, 1], if x ∈ U is a fixed point of H(·, t), then ϕ(x) = 0. Since U
is open in (X, d), there exists r > 0 such that B(x0, r) ⊆ U , where

B(x0, r) := {z ∈ X | d(x0, z) < r}.

Consider the set

Λ(x0, ϕ) := {z ∈ X | d(x0, z) + ϕ(z) < r}.

Clearly, Λ(x0, ϕ) is nonempty, since x0 ∈ Λ(x0, ϕ), and Λ(x0, ϕ) ⊆ B(x0, r) ⊆ U . Let
ε = (1−L)r. Since η is continuous on t0, there exists α(ε) > 0 such that |η(t)−η(t0)| <
ε for all t ∈ (t0 − α(ε), t0 + α(ε)) ∩ [0, 1]. Let t ∈ (t0 − α(ε), t0 + α(ε)) ∩ [0, 1], for
x ∈ Λ(x0, ϕ) (the closure of Λ(x0, ϕ)), we have

d(H(x, t), x0) + ϕ(H(x, t)) = d(H(x, t),H(x0, t0)) + ϕ(H(x, t))

≤ d(H(x, t),H(x, t0)) + ϕ(H(x, t)) + d(H(x, t0),H(x0, t0))

≤ |η(t)− η(t0)|+ L
(
d(x, x0) + ϕ(x) + ϕ(x0)

)
= |η(t)− η(t0)|+ L

(
d(x, x0) + ϕ(x)

)
< ε+ Lr = r.

Thus, for all t ∈ (t0−α(ε), t0+α(ε))∩[0, 1], the mapping H(·, t) : Λ(x0, ϕ) → Λ(x0, ϕ)
is well defined. Now, from condition (2), applying Theorem 2.1, we obtain that H(·, t)
has a fixed point in V , for all t ∈ (t0 − α(ε), t0 + α(ε)) ∩ [0, 1]. But this fixed point
must be in U since (1) holds. Hence, (t0 − α(ε), t0 + α(ε)) ∩ [0, 1] ⊆ Q and therefore
Q is open in [0, 1].
Next, we show that Q is closed in [0, 1]. To see this, let {tn} be a sequence in Q with
tn → t∗ ∈ [0, 1] as n → ∞. We have to prove that t∗ ∈ Q. By the definition of Q,
for all n ∈ N, there exists xn ∈ U with xn = H(xn, tn) and ϕ(xn) = 0 . On the other
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hand, for all m,n ∈ N, we have

d(xn, xm) = d(H(xn, tn),H(xm, tm))

≤ d(H(xn, tn),H(xn, tm)) + d(H(xn, tm),H(xm, tm))

≤ |η(tn)− η(tm)|+ Ld(xn, xm).

Thus, for all m,n ∈ N, we have

d(xn, xm) ≤ |η(tn)− η(tm)|
1− L

.

Letting n,m→∞ and using the continuity of η, we obtain that lim
n,m→∞

d(xn, xm) = 0,

which implies that {xn} is a Cauchy sequence in the complete metric space (X, d).
So, there is z ∈ X such that lim

n→∞
d(xn, z) = 0 and ϕ(z) = 0 (since ϕ is lower semi-

continuous). On the other hand, for all n ∈ N, we have

d(xn,H(z, t∗)) = d(H(xn, tn),H(z, t∗))

≤ d(H(xn, tn),H(xn, t
∗)) + d(H(xn, t

∗),H(z, t∗))

≤ |η(tn)− η(t∗)|+ Ld(xn, z).

Letting n→∞, we get that lim
n→∞

d(xn,H(z, t∗)) = 0. By the uniqueness of the limit,

we obtain that z = H(z, t∗), which implies from condition (1) that z ∈ U and t∗ ∈ Q.
Thus Q is closed in [0, 1].
For the reverse implication, we use the same strategy. �

4. Applications to partial metric spaces

In this section, from our previous obtained results on metric spaces, we will show
that we can deduce easily various fixed point theorems on partial metric spaces in-
cluding Matthews fixed point theorem.

We have the following partial metric version of Boyd and Wong fixed point theorem.
Corollary 4.1 Let (X, p) be a complete partial metric space and let T : X → X be a
mapping such that

p(Tx, Ty) ≤ ψ
(
p(x, y)

)
, ∀x, y ∈ X, (4.1)

where ψ ∈ Ψ. Then T has a unique fixed point z ∈ X. Moreover, we have p(z, z) = 0.
Proof. From (1.1), for all x, y ∈ X, we have

p(x, y) =
ps(x, y) + p(x, x) + p(y, y)

2
· (4.2)

Note that since (X, p) is complete, from Lemma 1.3, (X, ps) is a complete metric
space.
We denote by qs the metric on X defined by

qs(x, y) =
ps(x, y)

2
, ∀x, y ∈ X.

Clearly, (X, qs) is also a complete metric space. Let ϕ : X → [0,∞) be the function
defined by

ϕ(x) =
p(x, x)

2
, ∀x ∈ X.
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We shall prove that ϕ is a continuous function in (X, qs).
Indeed, let {xn} be a sequence in X such that lim

n→∞
qs(xn, x) = 0, which is equivalent

to lim
n→∞

ps(xn, x) = 0. From Lemma 1.1 (b), we get that lim
n→∞

p(xn, xn) = p(x, x),

which implies that lim
n→∞

ϕ(xn) = ϕ(x). Thus, we proved the continuity of ϕ in X

with respect to the topology of qs.
Now, taking the new expression of p given by (4.2) in (4.1), we obtain that

qs(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ ψ
(
qs(x, y) + ϕ(x) + ϕ(y)

)
, ∀x, y ∈ X.

Now, the desired result follows immediately from Theorem 2.1. �.
Taking in Corollary 4.1, ψ(t) = kt with k ∈ (0, 1), we obtain Matthews fixed point

theorem.
Finally, we end this paper with the following homotopy result on partial metric

spaces.
Corollary 4.2 Let (X, p) be a complete partial metric space, U be an open subset of
(X, p) and V be a closed subset of (X, p) with U ⊂ V . Suppose that H : V ×[0, 1] → X
has the following properties:

(1) x 6= H(x, λ) for every x ∈ V \U and λ ∈ [0, 1];
(2) There exists L ∈ (0, 1) such that for all x, y ∈ V and λ ∈ [0, 1],

p(H(x, λ),H(y, λ)) ≤ Lp(x, y);

(3) There exists a continuous function η : [0, 1] → R such that for all x ∈ V and
λ, µ ∈ [0, 1],

p(H(x, λ),H(x, µ)) ≤ |η(λ)− η(µ)|.
Then, H(·, 0) has a fixed point if and only if H(·, 1) has a fixed point.
Proof. We shall prove that V is closed in (X, ps).
Let {xn} be a sequence in V such that lim

n→∞
ps(xn, x) = 0, where x ∈ X. We have

to prove that x ∈ V . From Lemma 1.3 (b), we have lim
n→∞

p(xn, x) = p(x, x), which

implies, since V is closed in (X, p), that x ∈ V . Thus we proved that V is closed in
X with respect to the topology of ps. Since U is open in (X, p), we deduce that U is
also open in the metric space (X, ps).
Now, define the function ϕ : X → [0,∞) by

ϕ(x) = p(x, x), ∀x ∈ X.

We proved that ϕ is a continuous function in (X, ps) (see the proof of Corollary 4.1).
Using the equality (4.2), we obtain from condition (2) that for all x, y ∈ V and
λ ∈ [0, 1],

ps(H(x, λ),H(y, λ)) + ϕ(H(x, λ)) + ϕ(H(y, λ)) ≤ L
(
p(x, y) + ϕ(x) + ϕ(y)

)
.

Using the equality (4.2), we obtain from condition (3) that for all x ∈ V and λ, µ ∈
[0, 1],

ps(H(x, λ),H(x, µ)) + ϕ(H(x, λ)) + ϕ(H(x, µ)) ≤ |2η(λ)− 2η(µ)|.

Now, the desired result follows immediately from Theorem 3.1. �
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