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1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
Let A be a bounded operator on C. In this paper, we assume A is strongly positive;
that is, there exists a constant γ > 0 such that 〈Ax, x〉 ≥ γ‖x‖2, for all x ∈ C.
Let φ : C × C → R be a bifunction of C × C into R. The equilibrium problem for
φ : C × C → R is to find u ∈ C such that

φ(u, v) ≥ 0, for all v ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (φ). Some authors have proposed some
useful methods for solving the equilibrium problem (1.1); see [6, 8, 14, 22]. The
problem (1.1) is very general in the sense that it includes, as special cases, numerous
problems in physics and economics, optimization problems, variational inequalities,
minimax problems, Nash equilibrium problem in noncooperative games and others;
see for instance, [1, 4, 5, 7, 12].

A mapping T of C into itself is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖, for all
x, y ∈ C. Let F (T ) denote the fixed points set of T . Recall that a contraction on C
is a self-mapping f of C such that ‖f(x)− f(y)‖ ≤ α‖x− y‖, for all x, y ∈ C, where
α ∈ (0, 1) is a constant. In 2000, Mudafi [19] proved the following strong convergence
theorem.
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Theorem 1.1 [19] Let C be a nonempty closed convex subset of a Hilbert space H
and let T be a nonexpansive self-mapping on C such that F (T ) 6= ∅. Let f : C → C
be a contraction and let {xn} be a sequence defined as follows: x1 = x ∈ C and

xn+1 =
1

1 + εn
Txn +

εn

1 + εn
f(xn),

for all n ≥ 1, where εn ⊂ (0, 1) satisfies

lim
n→∞

εn = 0,
∞∑

n=1

εn = ∞ and lim
n→∞

| 1
εn+1

− 1
εn
| = 0.

Then, the sequence {xn} converges strongly to z ∈ F (T ), where z = PF (T )f(z) and
PF (T ) is the metric projection of H onto F (T ).

Such a method for approximation of fixed points is called the viscosity approxima-
tion method.

Finding an optimal point in the intersection F of the fixed points set of a family of
nonexpansive mappings is one that occurs frequently in various areas of mathematical
sciences and engineering. For example, the well-known convex feasibility problem
reduces to finding a point in the intersection of the fixed points set of a family of
nonexpansive mappings; see, e.g., [3, 11]. The problem of finding an optimal point
that minimizes a given cost function Θ : H → R over F is of wide interdisciplinary
interest and practical importance see, e.g., [2, 10, 13, 27]. A simple algorithmic
solution to the problem of minimizing a quadratic function over F is of extreme value
in many applications including the set theoretic signal estimation, see, e.g., [15, 27].
The best approximation problem of finding the projection PF (a) (in the norm induced
by inner product of H) from any given point a in H is the simplest case of our problem.

Marino and Xu [18] considered a general iterative method for a single nonexpansive
mapping. Let f be a contraction on H and A : H → H be a strongly positive
bounded linear operator. Starting with arbitrary initial x0 ∈ H, define a sequence
{xn} recursively by

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (1.2)

where γ > 0 is a constant and {αn} is a sequence in (0, 1) satisfying the following
conditions:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn = ∞;

(iii)
∑∞

n=1 |αn − αn+1| < ∞ or limn→∞
αn

αn+1
= 1.

Consequently, Marino and Xu [18] proved the sequence {xn}, generated by (1.2)
converges strongly to the unique solution of the following variational inequality:

〈(A− γf)x∗, x∗ − x〉 ≤ 0, x ∈ F (T ),

which is the optimality condition for minimization problem

min
x∈F (T )

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
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Recently, Yao et al. [25] introduced the iterative sequence:

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)Wnxn, for all n ≥ 0. (1.3)

where f is a contraction on H and A : H → H is a strongly positive bounded linear
operator, Wn is the W -mapping generated by an infinite countable family of non-
expansive mappings T1, T2, . . . , Tn, . . . and λ1, λ2, . . . , λn, . . . such that the common
fixed points set F :=

⋂∞
n=1 F (Tn) 6= ∅ and {αn}, {βn} are two sequences in (0, 1).

Under very mild conditions on the parameters, it was proved the sequence {xn}, gen-
erated by (1.3), converges strongly to p ∈ F where p is the unique solution in F of
the following variational inequality:

〈(A− γf)p, p− x∗〉 ≤ 0, for all x∗ ∈ F,

which is the optimality condition for minimization problem

min
x∈F

1
2
〈Ax, x〉 − h(x).

On the other hand, Ceng and Yao [9], inspired by Moudafi [19], Tada and Takahashi
[21], Takahashi and Takahashi [22] and Yao et al. [26], introduced an iterative scheme
by 

φ(un, x) + 1
rn
〈x− un, un − xn〉 ≥ 0, for all x ∈ C,

yn = (1− γn)xn + γnWnun,
xn+1 = ηnWnyn + αnf(yn) + (1− ηn − αn)xn,

(1.4)

where φ : C × C → R is a bifunction, f is a contraction of C into itself, {αn}, {ηn}
and {γn} are three sequences in (0, 1) such that αn + ηn ≤ 1, {rn} ⊂ (0,∞) and
Wn is the W -mapping generated by an infinite countable family of nonexpansive
mappings T1, T2, . . . , Tn, . . . and λ1, λ2, . . . , λn, . . .. They proved the sequences {xn}
and {un}, generated iteratively by (1.4), converge strongly to x∗ ∈ F , where x∗ =
PT∞

n=1 F (Tn)
T

EP (φ)f(x∗).
In this paper, motivated by Yao et al. [25] and Ceng and Yao [9], we introduce a

new iterative scheme by the viscosity approximation method:
φ(un, x) + 1

rn
〈x− un, un − xn〉 ≥ 0, for all x ∈ C,

yn = (1− γn)xn + γnWnun,
xn+1 = αnγf(yn) + βnxn + ((1− βn)I − αnA)Wnyn,

(1.5)

where φ : C×C → R is a bifunction, A is a strongly positive bounded linear operator
on C, f is a contraction of C into itself, {αn}, {βn} and {γn} are three sequences in
(0, 1), {rn} ⊂ (0,∞) and Wn is the W -mapping generated by an infinite countable
family of nonexpansive mappings T1, T2, . . . , Tn, . . . and λ1, λ2, . . . , λn, . . ., for finding
a common element of the set of solutions of the equilibrium problem (1.1) and the set
of common fixed points of infinitely many nonexpansive mappings in a Hilbert space.
Then, we prove a strong convergence theorem which improves the main results of [9].

2. Main results

Let H be a real Hilbert space with inner product 〈., .〉 and the norm ‖.‖. Weak and
strong convergence are denoted by notation ⇀ and →, respectively. In a real Hilbert
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space H,

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2,
for all x, y ∈ H and λ ∈ [0, 1]. Let C be a nonempty closed convex subset of H. Then,
for any x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖, for all y ∈ C.

Such a PC is called the metric projection of H onto C. It is known that PC is
nonexpansive. Further, for x ∈ H and z ∈ C,

z = PC(x) ⇔ 〈x− z, z − y〉 ≥ 0, for all y ∈ C.

Now, we collect some lemmas which will be used in the main results.
Lemma 2.1 [4, 12] Let C be a nonempty closed convex subset of H and φ : C×C → R
be a bifunction satisfying the following conditions:

(A1) φ(x, x) = 0 for all x ∈ C;
(A2) φ is monotone, i.e., φ(x, y) + φ(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

φ(tz + (1− t)x, y) ≤ φ(x, y);

(A4) for each x ∈ C, y 7→ φ(x, y) is convex and lower semicontinuous.
Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

φ(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all y ∈ C.

Lemma 2.2 [12] Assume φ : C×C → R satisfies (A1)− (A4). For r > 0 and x ∈ H,
define a mapping Tr : H → C as follows:

Trx = {z ∈ C : φ(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all y ∈ C},

for all x ∈ H. Then, the following hold:
(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(iii) F (Tr) = EP (φ);
(iv) EP (φ) is closed and convex.
Lemma 2.3 [18] Assume A is a strongly positive bounded linear operator on a Hilbert
space H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ.
Lemma 2.4 [23] Let {xn} and {yn} be bounded sequences in Banach space X and
{βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose
xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ −
‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖xn − yn‖ = 0.
Lemma 2.5 [24] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnvn,

where {γn} is a sequence in (0, 1) and {vn} is a sequence in R such that
(i)

∑∞
n=1 γn = ∞;
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(ii) lim supn→∞ vn ≤ 0 or
∑∞

n=1 |γnvn| < ∞.
Then limn→∞ an = 0.
Lemma 2.6 [16] Each Hilbert space H satisfies Opial’s condition, i. e., for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for each y ∈ H with x 6= y.
Let C be a nonempty closed convex subset of H. Let {Tn}∞n=1 be a sequence of

nonexpansive self-mappings on C and {λn}∞n=1 be a sequence of nonnegative numbers
in [0, 1]. For any n ≥ 1, define a mapping Wn of C into itself as follows:

Un,n+1 = I,
Un,n = λnTnUn,n+1 + (1− λn)I,
...
Un,k = λkTkUn,k+1 + (1− λk)I,
Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,
...
Un,2 = λ2T2Un,3 + (1− λ2)I,
Wn = Un,1 = λ1T1Un,2 + (1− λ1)I.

(2.1)

Such a mapping Wn is called the W−mapping generated by T1, . . . , Tn−1, Tn and
λ1, . . . , λn−1, λn; see [17].
Lemma 2.7 [20] Let C be a nonempty closed convex subset of a strictly convex Ba-
nach space X, {Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such that⋂∞

n=1 F (Tn) 6= ∅ and {λn}∞n=1 be a sequence of positive numbers in [0, b] for some
b ∈ (0, 1). Then, for every x ∈ C and k ≥ 1, the limit limn→∞ Un,kx exists.
Remark 2.8 [26] It can be known from Lemma 2.7 that if D is a nonempty bounded
subset of C, then for ε > 0 there exists n0 ≥ k such that for all n > n0,

sup
x∈D

‖Un,kx− Ukx‖ ≤ ε.

Remark 2.9 [26] Using Lemma 2.7, one can define mapping W : C → C as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x,

for all x ∈ C. Such a W is called the W−mapping generated by {Tn}∞n=1 and {λn}∞n=1.
Since Wn is nonexpansive, W : C → C is also nonexpansive.

If {xn} is a bounded sequence in C, then we put D = {xn : n ≥ 0}. Hence, it is
clear from Remark 2.8 that for an arbitrary ε > 0 there exists N0 ≥ 1 such that for
all n > N0,

‖Wnxn −Wxn‖ = ‖Un,1xn − U1xn‖ ≤ sup
x∈D

‖Un,1x− U1x‖ ≤ ε.

This implies
lim

n→∞
‖Wnxn −Wxn‖ = 0.

Lemma 2.10 [20] Let C be a nonempty closed convex subset of a strictly convex
Banach space X, {Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such
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that
⋂∞

n=1 F (Tn) 6= ∅ and {λn}∞n=1 be a sequence of positive numbers in [0, b] for
some b ∈ (0, 1). Then F (W ) =

⋂∞
n=1 F (Tn).

Now, we prove the following strong convergence theorem concerning the iterative
scheme (1.5) for finding a common element of the set of solutions of the equilibrium
problem (1.1) and the set of common fixed points of infinitely many nonexpansive
mappings in a Hilbert space.
Theorem 2.11 Let C be a nonempty closed convex subset of a real Hilbert space
H. Let φ : C × C → R be a bifunction satisfying (A1) − (A4) and A be a strongly
positive bounded linear operator on C with coefficient γ > 0 and ‖A‖ ≤ 1. Let
{Tn}∞n=1 be an infinite family of nonexpansive self-mappings on C which satisfies
F :=

⋂∞
n=1 F (Tn)

⋂
EP (φ) 6= ∅. Suppose {αn}, {βn} and {γn} are sequences in (0, 1)

and {rn} ⊂ (0,∞) is a real sequence satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0;
(iv) 0 < lim infn→∞ rn and limn→∞ |rn+1 − rn| = 0.

Let f be a contraction of C into itself with constant α ∈ (0, 1) and 0 < γ < γ
α

where γ is some constant. Let x0 ∈ C. Then, the sequences {xn} and {un}, generated
iteratively by (1.5) where {λn}∞n=1 is a sequence of positive numbers in [0, b] for some
b ∈ (0, 1), converge strongly to x∗ ∈ F , where x∗ = PT∞

n=1 F (Tn)
T

EP (φ)(I − A +
γf)(x∗).
Proof. Let Q = PF . Then

‖Q(I −A + γf)(x)−Q(I −A + γf)(y)‖ ≤ ‖(I −A + γf)(x)
−(I −A + γf)(y)‖

≤ ‖(I −A)(x)− (I −A)(y)‖
+γ‖f(x)− f(y)‖

≤ (1− γ)‖x− y‖+ γα‖x− y‖
= (1− (γ − γα))‖x− y‖,

for all x, y ∈ F . Therefore, Q(I − A + γf) is a contraction of F into itself. So,
there exists a unique element x∗ ∈ F such that x∗ = Q(I − A + γf)(x∗) =
PT∞

n=1 F (Tn)
T

EP (φ)(I − A + γf)(x∗). Note that from the conditions (i) and (ii), we
may assume, without loss of generality, αn ≤ (1 − βn)‖A‖−1. Since A is a strongly
positive bounded linear operator on C, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ C, ‖x‖ = 1}.

Observe
〈((1− βn)I − αnA)x, x〉 = (1− βn)− αn〈Ax, x〉

≥ 1− βn − αn‖A‖
≥ 0,

that is to say (1− βn)I − αnA is positive. It follows that

‖(1− βn)I − αnA‖ = sup{〈((1− βn)I − αnA)x, x〉 : x ∈ C, ‖x‖ = 1}
= sup{1− βn − αn〈Ax, x〉 : x ∈ C, ‖x‖ = 1}
≤ 1− βn − αnγ.

(2.2)
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Let p ∈ F . From the definition of Tr, we know un = Trnxn. It follows that

‖un − p‖ = ‖Trn
xn − Trn

p‖ ≤ ‖xn − p‖,

and hence

‖yn − p‖ = ‖(1− γn)(xn − p) + γn(Wnun − p)‖
≤ (1− γn)‖xn − p‖+ γn‖Wnun − p‖
≤ (1− γn)‖xn − p‖+ γn‖un − p‖
≤ (1− γn)‖xn − p‖+ γn‖xn − p‖
= ‖xn − p‖.

First, we claim {xn} and {yn} are bounded. Indeed, from (1.5), (2.1) and (2.2), we
obtain

‖xn+1 − p‖ = ‖αn(γf(yn)−Ap) + βn(xn − p)
+((1− βn)I − αnA)(Wnyn − p)‖

≤ (1− βn − αnγ)‖yn − p‖+ βn‖xn − p‖+ αn‖γf(yn)−Ap‖
≤ (1− αnγ)‖xn − p‖+ αnγ‖f(yn)− f(p)‖+ αn‖γf(p)−Ap‖
≤ (1− αn(γ − αγ))‖xn − p‖+ αn‖γf(p)−Ap‖.

(2.3)

It follows from (2.3) that

‖xn − p‖ ≤ max{‖x0 − p‖, 1
γ − γα

‖γf(p)−Ap‖}, n ≥ 1.

Hence, {xn} is bounded, so are {un}, {yn}, {f(yn)}, {Wnun} and {Wnyn}. Define

xn+1 = (1− βn)zn + βnxn, n ≥ 0.

Then

zn+1 − zn = xn+2−βn+1xn+1
1−βn+1

− xn+1−βnxn

1−βn

= αn+1γf(yn+1)+((1−βn+1)I−αn+1A)Wn+1yn+1
1−βn+1

−αnγf(yn)+((1−βn)I−αnA)Wnyn

1−βn

= αn+1
1−βn+1

γf(yn+1)− αn

1−βn
γf(yn) + Wn+1yn+1

−Wnyn + αn

1−βn
AWnyn − αn+1

1−βn+1
AWn+1yn+1

= αn+1
1−βn+1

[γf(yn+1)−AWn+1yn+1] + αn

1−βn
[AWnyn − γf(yn)]

+Wn+1yn+1 −Wn+1yn + Wn+1yn −Wnyn,

(2.4)
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and
‖Wn+1yn+1 −Wn+1yn‖ ≤ ‖yn+1 − yn‖

= ‖(1− γn+1)xn+1 + γn+1Wn+1un+1 − (1− γn)xn

−γnWnun‖
≤ (1− γn+1)‖xn+1 − xn‖+ |γn+1 − γn|‖xn‖

+γn+1‖Wn+1un+1 −Wnun‖
+|γn+1 − γn|‖Wnun‖

≤ (1− γn+1)‖xn+1 − xn‖+ |γn+1 − γn|‖xn‖
+γn+1(‖Wn+1un+1 −Wn+1un‖+
+‖Wn+1un −Wnun‖) + |γn+1 − γn|‖Wnun‖.

(2.5)
From (2.1), Since Ti and Un,i are nonexpansive, we have

‖Wn+1un −Wnun‖ = ‖λ1T1Un+1,2un − λ1T1Un,2un‖
≤ λ1‖Un+1,2un − Un,2un‖
= λ1‖λ2T2Un+1,3un − λ2T2Un,3un‖
≤ λ1λ2‖Un+1,3un − Un,3un‖
≤ . . .
≤ λ1λ2 . . . λn‖Un+1,n+1un − Un,n+1un‖
≤ M

∏n
i=1 λi,

(2.6)

for all n ≥ 1 and similarly,

‖Wn+1yn −Wnyn‖ ≤ λ1λ2 . . . λn‖Un+1,n+1yn − Un,n+1yn‖ ≤ M
n∏

i=1

λi, (2.7)

for some constant M ≥ 0. On the other hand, from un = Trn
xn and un+1 =

Trn+1xn+1, we obtain

φ(un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C, (2.8)

and

φ(un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, for all y ∈ C. (2.9)

Putting y = un+1 in (2.8) and y = un in (2.9), we have

φ(un, un+1) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0,

and

φ(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

So, from (A2), we get

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0,

and hence

〈un+1 − un, un − un+1 + un+1 − xn −
rn

rn+1
(un+1 − xn+1)〉 ≥ 0.
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Without loss of generality, we may assume there exists a real number r such that
0 < r < rn for all n ≥ 0. Therefore

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖}.

So
‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+ 1
r |rn − rn+1|L,

(2.10)

where L = sup{‖un − xn‖ : n ≥ 0}. Substituting (2.6) and (2.10) in (2.5), we have

‖Wn+1yn+1 −Wn+1yn‖ ≤ (1− γn+1)‖xn+1 − xn‖+ |γn+1 − γn|‖xn‖
+γn+1(‖xn+1 − xn‖+ 1

r |rn − rn+1|L)
+γn+1M

∏n
i=1 λi + |γn+1 − γn|‖Wnun‖

≤ ‖xn+1 − xn‖+ |γn+1 − γn|‖xn‖+ 1
r |rn − rn+1|L

+M
∏n

i=1 λi + |γn+1 − γn|‖Wnun‖.
(2.11)

By combining (2.4), (2.7) and (2.11), we obtain

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ αn+1
1−βn+1

(‖γf(yn+1)‖+ ‖AWn+1yn+1‖)

+ αn

1−βn
(‖AWnyn‖+ ‖γf(yn)‖)

+‖Wn+1yn+1 −Wn+1yn‖

+‖Wn+1yn −Wnyn‖ − ‖xn+1 − xn‖

≤ αn+1
1−βn+1

(‖γf(yn+1)‖+ ‖AWn+1yn+1‖)

+ αn

1−βn
(‖AWnyn‖+ ‖γf(yn)‖)

+[‖xn+1 − xn‖+ |γn+1 − γn|‖xn‖

+ 1
r |rn − rn+1|L + M

∏n
i=1 λi + |γn+1

−γn|‖Wnun‖] + M
∏n

i=1 λi − ‖xn+1 − xn‖

≤ αn+1
1−βn+1

(‖γf(yn+1)‖+ ‖AWn+1yn+1‖)

+ αn

1−βn
(‖AWnyn‖+ ‖γf(yn)‖)

+|γn+1 − γn|‖xn‖+ 1
r |rn − rn+1|L

+|γn+1 − γn|‖Wnun‖+ 2M
∏n

i=1 λi.
(2.12)
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Thus it follows from (2.12) and condition (i)− (iv) that (noting that 0 < λi ≤ b < 1,
for all i ≥ 1)

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.4, we have limn→∞ ‖zn − xn‖ = 0. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0.

From (2.10) and limn→∞ |rn+1 − rn| = 0, we get

lim
n→∞

‖un+1 − un‖ = 0.

Since xn+1 = αnγf(yn) + βnxn + ((1− βn)I − αnA)Wnyn, we obtain

‖xn −Wnyn‖ ≤ ‖xn+1 − xn‖+ αn‖γf(yn)−AWnyn‖+ βn‖xn −Wnyn‖.

That is,

‖xn −Wnyn‖ ≤
1

1− βn
‖xn+1 − xn‖+

αn

1− βn
‖γf(yn)−AWnyn‖.

It follows that

lim
n→∞

‖xn −Wnyn‖ = 0. (2.13)

Let p ∈ F . Since Tr is firmly nonexpansive, we have

‖un − p‖2 = ‖Trnxn − Trnp‖2 ≤ 〈Trnxn − Trnp, xn − p〉
= 〈un − p, xn − p〉 = 1

2 (‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖2),

and hence

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2.
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Therefore

‖xn+1 − p‖2 = ‖αnγf(yn) + βnxn + ((1− βn)I − αnA)Wnyn − p‖2
= ‖(1− βn)(Wnyn − p) + βn(xn − p) + αnγf(yn)− αnAWnyn‖2
= α2

n‖γf(yn)−AWnyn‖2 + ‖βn(xn − p) + (1− βn)(Wnyn − p)‖2
+2αn〈βn(xn − p) + (1− βn)(Wnyn − p), γf(yn)−AWnyn〉

≤ α2
n‖γf(yn)−AWnyn‖2 + βn‖xn − p‖2 + (1− βn)‖Wnyn − p‖2
+2αn(1− βn)〈Wnyn − p, γf(yn)−AWnyn〉
+2αnβn〈xn − p, γf(yn)−AWnyn〉
≤ (1− βn)‖yn − p‖2 + βn‖xn − p‖2 + α2

n‖γf(yn)−AWnyn‖2
+2αn(1− βn)〈Wnyn − p, γf(yn)−AWnyn〉
+2αnβn〈xn − p, γf(yn)−AWnyn〉

= (1− βn)‖(1− γn)(xn − p) + γn(Wnun − p)‖2 + βn‖xn − p‖2
+α2

n‖γf(yn)−AWnyn‖2
+2αn(1− βn)〈Wnyn − p, γf(yn)−AWnyn〉
+2αnβn〈xn − p, γf(yn)−AWnyn〉

≤ (1− βn)(1− γn)‖xn − p‖2 + (1− βn)γn‖un − p‖2 + βn‖xn − p‖2
+α2

n‖γf(yn)−AWnyn‖2 + 2αn(1− βn)〈Wnyn − p, γf(yn)
−AWnyn〉+ 2αnβn〈xn − p, γf(yn)−AWnyn〉

≤ (1− βn)(1− γn)‖xn − p‖2 + (1− βn)γn(‖xn − p‖2 − ‖xn − un‖2)
+βn‖xn − p‖2 + α2

n‖γf(yn)−AWnyn‖2
+2αn(1− βn)〈Wnyn − p, γf(yn)−AWnyn〉
+2αnβn〈xn − p, γf(yn)−AWnyn〉

≤ ‖xn − p‖2 + α2
n‖γf(yn)−AWnyn‖2

+2αn(1− βn)‖xn − p‖‖γf(yn)−AWnyn‖
+2αnβn‖xn − p‖‖γf(yn)−AWnyn‖ − (1− βn)γn‖xn − un‖2

= ‖xn − p‖2 + α2
n‖γf(yn)−AWnyn‖2

+2αn‖xn − p‖‖γf(yn)−AWnyn‖ − (1− βn)γn‖xn − un‖2.

Thus

(1− βn)γn‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α2
n‖γf(yn)−AWnyn‖2

+2αn‖xn − p‖‖γf(yn)−AWnyn‖
= (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖+ ‖xn+1 − p‖)

+α2
n‖γf(yn)−AWnyn‖2

+2αn‖xn − p‖‖γf(yn)−AWnyn‖
≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

+α2
n‖γf(yn)−AWnyn‖2

+2αn‖xn − p‖‖γf(yn)−AWnyn‖.

Since lim infn→∞(1− βn) > 0 and lim infn→∞ γn > 0, it is easy to see
lim infn→∞(1− βn)γn > 0. So

lim
n→∞

‖xn − un‖ = 0. (2.14)
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Observe
‖yn − un‖ ≤ ‖yn − xn‖+ ‖xn − un‖

≤ γn‖Wnun − xn‖+ ‖xn − un‖
≤ γn‖Wnun −Wnyn + Wnyn − xn‖+ ‖xn − un‖
≤ γn[‖yn − un‖+ ‖Wnyn − xn‖] + ‖xn − un‖,

and hence
(1− γn)‖yn − un‖ ≤ ‖Wnyn − xn‖+ ‖xn − un‖.

So, from (2.13), (2.14) and lim supn→∞ γn < 1, we get

lim
n→∞

‖yn − un‖ = 0 (2.15)

and hence limn→∞ ‖xn − yn‖ = 0. Since

‖Wnun − un‖ ≤ ‖Wnun −Wnyn‖+ ‖Wnyn − xn‖+ ‖xn − un‖
≤ ‖yn − un‖+ ‖Wnyn − xn‖+ ‖xn − un‖,

we have limn→∞ ‖Wnun − un‖ = 0. On the other hand, observe

‖Wun − un‖ ≤ ‖Wnun −Wun‖+ ‖Wnun − un‖. (2.16)

It follows from (2.16) and Remark 2.9 that

lim
n→∞

‖Wun − un‖ = 0.

Next, we claim
lim sup

n→∞
〈γf(x∗)−Ax∗, xn − x∗〉 ≤ 0,

where x∗ = PF (W )
T

EP (φ)(I −A + γf)x∗. First, we can choose a subsequence {unj}
of {un} such that

lim
j→∞

〈γf(x∗)−Ax∗, unj
− x∗〉 = lim sup

n→∞
〈γf(x∗)−Ax∗, un − x∗〉.

Since {unj
} is bounded, there exists a subsequence of {unj

} which converges weakly
to w. Without loss of generality, we can assume unj ⇀ w. From ‖Wun − un‖ → 0,
Wunj ⇀ w. Now, we show w ∈ EP (φ). By un = Trnxn, we have

φ(un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C.

From (A2), we obtain
1
rn
〈y − un, un − xn〉 ≥ φ(y, un),

and hence
〈y − unj ,

unj
− xnj

rnj

〉 ≥ φ(y, unj ).

Since
unj

−xnj

rnj
→ 0 and unj

⇀ w, from (A4), we have

φ(y, w) ≤ 0, for all y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and w ∈ C, we
have yt ∈ C and hence φ(yt, w) ≤ 0. Therefore, from (A1) and (A4), we obtain

0 = φ(yt, yt) ≤ tφ(yt, y) + (1− t)φ(yt, w) ≤ tφ(yt, y),
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and so φ(yt, y) ≥ 0. From (A3), we have

φ(w, y) ≥ 0, for all y ∈ C,

and hence w ∈ EP (φ). Next, we show w ∈ F (W ). Assume w /∈ F (W ). Since
unj ⇀ w and Ww 6= w, from Lemma 2.6, we obtain

lim infj→∞ ‖unj − w‖ < lim infj→∞ ‖unj −Ww‖
≤ lim infj→∞(‖unj −Wunj‖+ ‖Wunj −Ww‖)
≤ lim infj→∞ ‖unj

− w‖.

This is a contradiction. So, w ∈ F (W ) =
⋂∞

n=1 F (Tn). Therefore, w ∈ F . Since
x∗ = PT∞

n=1 F (Tn)
T

EP (φ)(I −A + γf)x∗, we have

lim supn→∞〈γf(x∗)−Ax∗, xn − x∗〉 = limj→∞〈γf(x∗)−Ax∗, xnj − x∗〉
= limj→∞〈γf(x∗)−Ax∗, unj − x∗〉
= 〈γf(x∗)−Ax∗, w − x∗〉 ≤ 0.

(2.17)

From (2.13), we obtain

lim sup
n→∞

〈γf(x∗)−Ax∗,Wnyn − x∗〉 = lim sup
n→∞

〈γf(x∗)−Ax∗, xn − x∗〉 ≤ 0 (2.18)

Finally, we prove {xn} converges strongly to x∗ = PF (W )
T

EP (φ)(I − A + γf)x∗.
Indeed, from (1.5), we have

‖xn+1 − x∗‖2 = ‖αn(γf(yn)−Ax∗) + βn(xn − x∗)
+((1− βn)I − αnA)(Wnyn − x∗)‖2

= α2
n‖γf(yn)−Ax∗‖2 + ‖βn(xn − x∗)
+((1− βn)I − αnA)(Wnyn − x∗)‖2
+2βnαn〈xn − x∗, γf(yn)−Ax∗〉
+2αn〈((1− βn)I − αnA)(Wnyn − x∗), γf(yn)−Ax∗〉

≤ ((1− βn − αnγ)‖Wnyn − x∗‖+ βn‖xn − x∗‖)2
+α2

n‖γf(yn)−Ax∗‖2 + 2βnαnγ〈xn − x∗, f(yn)− f(x∗)〉
+2βnαn〈xn − x∗, γf(x∗)−Ax∗〉
+2(1− βn)γαn〈Wnyn − x∗, f(yn)− f(x∗)〉
+2(1− βn)αn〈Wnyn − x∗, γf(x∗)−Ax∗〉
−2α2

n〈A(Wnyn − x∗), γf(yn)−Ax∗〉,
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Which implies

‖xn+1 − x∗‖2 ≤ [(1− αnγ)2 + 2αβnαnγ + 2α(1− βn)αnγ]‖xn − x∗‖2
+2βnαn〈xn − x∗, γf(x∗)−Ax∗〉
+α2

n‖γf(yn)−Ax∗‖2
+2(1− βn)αn〈Wnyn − x∗, γf(x∗)−Ax∗〉
−2α2

n〈A(Wnyn − x∗), γf(yn)−Ax∗〉
≤ [1− 2αn(γ − αγ)]‖xn − x∗‖2 + α2

nγ2‖xn − x∗‖2
+2βnαn〈xn − x∗, γf(x∗)−Ax∗〉+ α2

n‖γf(yn)−Ax∗‖2
+2(1− βn)αn〈Wnyn − x∗, γf(x∗)−Ax∗〉
+2α2

n‖γf(yn)−Ax∗‖‖A(Wnyn − x∗)‖
= [1− 2αn(γ − αγ)]‖xn − x∗‖2 + αn{αn(γ2‖xn − x∗‖2

+‖γf(yn)−Ax∗‖2 + 2‖γf(yn)−Ax∗‖‖A(Wnyn − x∗)‖)
+2βn〈xn − x∗, γf(x∗)−Ax∗〉
+2(1− βn)〈Wnyn − x∗, γf(x∗)−Ax∗〉}.

Since {xn}, {f(yn)} and {Wnyn} are bounded, we can take a constant M1 ≥ 0 such
that

γ2‖xn − x∗‖2 + ‖γf(yn)−Ax∗‖2 + 2‖γf(yn)−Ax∗‖‖A(Wnyn − x∗)‖ ≤ M1,

for all n ≥ 0. So

‖xn+1 − x∗‖2 ≤ [1− 2αn(γ − αγ)]‖xn − x∗‖2 + αnξn, (2.19)

where

ξn = 2βn〈xn − x∗, γf(x∗)−Ax∗〉+ 2(1− βn)〈Wnyn − x∗, γf(x∗)−Ax∗〉+ αnM1.

By (i), (2.17) and (2.18), we get lim supn→∞ ξn ≤ 0. Now applying Lemma 2.5 to
(2.19) concludes that xn → x∗ as n →∞. This completes the proof.

As direct consequences of Theorem 2.11, we obtain two corollaries.
Corollary 2.12 Let C be a nonempty closed convex subset of a real Hilbert space
H. Let φ : C × C → R be a bifunction satisfying (A1) − (A4) such that EP (φ) 6= ∅
and A be a strongly positive bounded linear operator on C with coefficient γ > 0 and
‖A‖ ≤ 1. Suppose {αn}, {βn} and {γn} are sequences in (0, 1) and {rn} ⊂ (0,∞) is
a real sequence satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0;
(iv) 0 < lim infn→∞ rn and limn→∞ |rn+1 − rn| = 0.

Let f be a contraction of C into itself and given x0 ∈ C arbitrarily. Then, the
sequences {xn} and {un} generated iteratively by

φ(un, x) + 1
rn
〈x− un, un − xn〉 ≥ 0, for all x ∈ C,

xn+1 = αnγf((1− γn)xn + γnun) + βnxn

+((1− βn)I − αnA)((1− γn)xn + γnun),

converges strongly to x∗ ∈ EP (φ), where x∗ = PEP (φ)(I −A + γf)(x∗).
Proof. Put Tix = x for all i = 1, 2, . . . and for all x ∈ C in (2.1). Then, Wnx = x for
all x ∈ C. The conclusion follows immediately from Theorem 2.11.
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Corollary 2.13 Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {Tn}∞n=1 be an infinite family of nonexpansive self-mappings on C which
satisfies

⋂∞
n=1 F (Tn) 6= ∅ and A be a strongly positive bounded linear operator on C

with coefficient γ > 0 and ‖A‖ ≤ 1. Suppose {αn}, {βn} and {γn} are sequences in
(0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0.

Let f be a contraction of C into itself and given x0 ∈ C arbitrarily. Then, the
sequences {xn} generated iteratively by{

yn = (1− γn)xn + γnWnPCxn,
xn+1 = αnγf(yn) + βnxn + ((1− βn)I − αnA)Wnyn,

where {λn}∞n=1 is a sequence of positive numbers in [0, b] for some b ∈ (0, 1), converges
strongly to x∗ ∈

⋂∞
n=1 F (Tn), where x∗ = PT∞

n=1 F (Tn)(I −A + γf)(x∗).
Proof. Put φ(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ≥ 0. Then, un = PCxn.
From (1.5), {

yn = (1− γn)xn + γnWnPCxn,
xn+1 = αnγf(yn) + βnxn + ((1− βn)I − αnA)Wnyn.

So, the conclusion follows immediately from Theorem 2.11.
Remark 2.14 Let ηn = 1 − αn − βn, A = I (identity map) with constant γ = 1
and γ = 1 in Theorem 2.11, then Theorem 2.11 is a generalization of [9, Theorem
3.1]. Also, Corollaries 2.12 and 2.13 are generalizations of [9, Corollary 3.1] and [9,
Corollary 3.2], respectively.

3. Numerical Test

In this section, we give an example to illustrate the scheme (1.5) given in Theorem
2.11.
Example 3.1 Let C = [−1, 1] ⊂ H = R and define φ(x, y) = −5x2 +xy+4y2. First,
we verify that φ satisfies the conditions (A1)− (A4) as follows:
(A1) φ(x, x) = −5x2 + x2 + 4x2 = 0, for all x ∈ [−1, 1];
(A2) φ(x, y) + φ(y, x) = −(x− y)2 ≤ 0, for all x, y ∈ [−1, 1];
(A3) For all x, y, z ∈ [−1, 1],

lim sup
t→0+

φ(tz + (1− t)x, y) = −5x2 + xy + 4y2 ≤ φ(x, y).

(A4) For all x ∈ [−1, 1], Φ(y) = φ(x, y) = −5x2 +xy +4y2 is a lower semicontinuous
and convex function.

From Lemma 2.2, Tr is single-valued, for all r > 0. Now, we deduce a formula for
Tr(x). For any y ∈ [−1, 1] and r > 0, we have

φ(z, y) +
1
r
〈y − z, z − x〉 ≥ 0 ⇔ 4ry2 + ((r + 1)z − x)y + xz − (5r + 1)z2 ≥ 0.

Set G(y) = 4ry2 + ((r + 1)z − x)y + xz − (5r + 1)z2. Then G(y) is a quadratic
function of y with coefficients a = 4r, b = (r + 1)z− x and c = xz− (5r + 1)z2. So its
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discriminate ∆ = b2 − 4ac is

∆ = [(r + 1)z − x]2 − 16r(xz − (5r + 1)z2)
= (r + 1)2z2 − 2(r + 1)xz + x2 − 16rxz + (80r2 + 16r)z2

= [(9r + 1)z − x]2.

Since G(y) ≥ 0 for all y ∈ C, this is true if and only if ∆ ≤ 0. That is, [(9r + 1)z −
x]2 ≤ 0. Therefore, z = x

9r+1 , which yields Tr(x) = x
9r+1 . So, from Lemma 2.2, we

get EP (φ) = {0}. Let αn = 1
n , βn = n

3n+1 , λn = β ∈ (0, 1), γn = 1
2 , rn = 1, Tn = I,

for all n ∈ N, Ax = x with coefficient γ = 1, f(x) = 1
2x and γ = 1

2 . Hence,
F =

⋂∞
n=1 F (Tn)

⋂
EP (φ) = {0}. Also, Wn = I. Indeed, from (2.1), we have

W1 = U1,1 = λ1T1U1,2 + (1− λ1)I = λ1T1 + (1− λ1)I,
W2 = U2,1 = λ1T1U2,2 + (1− λ1)I = λ1T1(λ2T2U2,3 + (1− λ2)I)

+(1− λ1)I
= λ1λ2T1T2 + λ1(1− λ2)T1 + (1− λ1)I,

W3 = U3,1 = λ1T1U3,2 + (1− λ1)I = λ1T1(λ2T2U3,3 + (1− λ2)I)
+(1− λ1)I

= λ1λ2T1T2U3,3 + λ1(1− λ2)T1 + (1− λ1)I
= λ1λ2T1T2(λ3T3U3,4 + (1− λ3)I) + λ1(1− λ2)T1 + (1− λ1)I
= λ1λ2λ3T1T2T3 + λ1λ2(1− λ3)T1T2 + λ1(1− λ2)T1

+(1− λ1)I.

By computing in this way by (2.1), we obtain

Wn = Un,1 = λ1λ2 . . . λnT1T2 . . . Tn + λ1λ2 . . . λn−1(1− λn)T1T2 . . . Tn−1

+λ1λ2 . . . λn−2(1− λn−1)T1T2 . . . Tn−2

+λ1(1− λ2)T1 + (1− λ1)I.

Since Tn = I, λn = β, for all n ∈ N, we get

Wn = (βn + βn−1(1− β) + . . . + β(1− β) + (1− β))I = I.

Then, from Lemma 2.5, the sequences {xn} and {un}, generated iteratively by
un = Trn

xn = 1
10xn,

yn = 1
2xn + 1

2Wnun = 11
20xn,

xn+1 = 168n2−55n−33
80n(3n+1) xn,

(3.1)

converges strongly to 0 ∈ F , where 0 = PF ( 3
4I)(0).

If γ = 1, then xn+1 = 84n2−11n−11
40n(3n+1) xn in scheme (3.1). So, it is to see, the rate

of convergence of Theorem 2.11 is faster than the rate of convergence of [9, Theorem
3.1].
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